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Generating low-temperature expansions for Ising spin glasses
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We define a prescription to generate the low-temperature expansion of the free energy of the Ising spin

glass. We test our ideas by computing the first few coeScients in D =2. Our results indicate that the
series coefBcients are not numbers but averages over a nontrivial distribution.

Studies of spin glasses' are predominantly Monte Carlo
simulations. Whereas high-temperature expansions exist
for Ising spin glasses, low-temperature expansions have
been unavailable for spin glasses because it has not been
clear how to define such an expansion in view of the com-
plicated vacuum structure and the quenched averaging
that is necessary.

In a recent paper, we studied these systems by generat-
ing their partition functions exactly on small lattices and
studying their zeros. In the present paper, we use these
partition functions in a new way to define and compute
the low-temperature expansion for the free energy in the
thermodynamic limit.

Starting from general arguments, we first determine a
prescription to compute the coefficients of such an expan-
sion. This is described in Sec. I. In Sec. II, we test our
scheme in D =2 and estimate a few expansion coefficients
in the thermodynamic limit. We end with some general
remarks and a summary of our results

F(p) =g FJ(p)
J J

(1.2)

I. GENERAL CONSIDERATIONS

The Ising spin glass is defined by the Hamiltonian,

HJ(cr )= g —[1 tr, J~ o J ], —1 (1.1)
&ij )

where o; has the values +1, (i,j ) denotes all nearest-

neighbor pairs of sites on the lattice and for each such

pair, the energy term depends on the bond J;. which can
be +1. The free energy is defined as a "quenched aver-
age" over all bond configurations. Thus

i=0 i=0

The summation index i is just a count over the discrete
set of values of HJ. Expanding FJ in u defines the low-
temperature series. Thus

F =Jln Z& /V=lnqp/ V++ a;u',
i=1

where the a, 's can be expressed in terms of the p s.
For each bond configuration, we get a set of a; values.

The low-temperature series for F in (1.2) is defined by
averaging these over all bond configurations. Thus

F(u)=Fp+ g A, u',
i=1

(1.7)

where Fo is an irrelevant constant and the A's are aver-
ages of the a's over bond configurations. Note that Fo is
irrelevant not in the sense that it is without physical con-
tent but rather that it is irrelevant to the issue of defining
a low-T expansion. Thus

is the partition function for a fixed bond configuration.
Since o; are bivalued, we can think of them as bit vari-

ables. Assuming a certain ordering of the lattice sites,
the 0.; for a given lattice configuration can be represented
by an integer a ranging from 0 to 2 —1, where V is the
volume. A useful measure of the distance between two
lattice configurations cr and o is the bit distance, defined
as the number of bits that are different in the integers cr

and cr'.
Since HJ takes on discrete values, for finite systems, ZJ

is a finite polynomial in u =e ~. Let D be the dimension.
Then

DV DV
Zz= g q, u'=qp g p;u' .

where

FJ (p) =ln[Zs(p) ) /V, (1.3)

A, =(a, ) (1.8)

and

ZJ(P)=g exp[ PH~(tr)]— (1.4)

with ( ) denoting bond averaging.
We will address two issues here. The first is how to

compute the coefficients p, and a,. in the thermodynamic
limit from exact calculations on finite systems. The
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second is whether the thermodynamic distribution of the
a's is a 5 function or not. This would determine whether
the A's are numbers or averages over a distribution in the
thermodynamic limit.

Let us consider how to compute the p s for a fixed
bond configuration. We know that the system defined by
(1.1) has a number of degenerate vacua. Because of these,
there arise several issues that are special to the spin glass
which we clarify below.

We begin by considering the case of a simple Ising
model with all the bonds set to +1. There are two
ground states, one with all the o.;=+1 and the other
with o, = —1. To compute the low-temperature series
one usually expands around a fixed vacuum. However,
image that on a finite lattice one enumerated all states
and computed the energies of each of them. How would
one use this information to generate the low-temperature
expansion? The procedure which generalizes to the spin-
glass case is as follows: Classify the states with respect to
their energy and their bit distance from each ground
state. One can then consider two towers of states, one
tower for each ground state. A state belongs to a given
tower if its bit distance from the vacuum state under the
tower is smaller than its bit distance from the other vacu-
um state. The states in each tower are then classified
with respect to the energy and one computes the series
for each tower separately. The final result is obtained by
averaging the series for the two towers. In the Ising case,
this procedure splits the states into two sets, one set over
each tower. The series one gets from the two towers are
identica1. Because of this equality of series over the
towers, one never considers the Ising expansion in this
way —one just constructs the series on one of the vacua.

For the spin glass, the situation is different. There are
a great many ground states and it is not at a11 clear, a
priori, which ground state to build the series on. The
only reasonable definition is to compute the series over all
ground states and average over all of them. This leads to
the following procedure:

(1) Determine all the ground states era and all the excit-
ed states o and their energies by explicit enumeration for
a fixed bond configuration. The index i labels the ground
states.

(2) Find the bit distances k(cro, o ) for all excited states
o relative to all the ground states era. One can think of k
as a "relative" magnetization of the state e relative to the
ground state oo. We now define a tower of states over
each ground state as follows: assign the state o. to the
tower of the ground state cro for which k(cr, cro) is the
smallest over all i. If the minimum value of k for some
state 0 is degenerate (i.e., has the same value for several

ground states), we assign that state to all the towers
(3) Now we consider the ground states and their towers

one by one. The states in each tower are labeled by their
energy Hz(cr) and their relative magnetization k. We
now define a series for the p s in a variable v=e
Thus

In this way, we generate a double series in u and u for Zz
for each tower. Here ii is the "conjugate" field that cou-
ples to k.

(4) The final series for Zz for a given bond
configuration is the average overall the series obtained
from the towers.

(5) Steps 1 —4 are repeated for all the bond
configurations.

Several points need to be clarified.
For fixed J, why do we chose to average Zz and not

ln[ZJ] over the ground states? A priori, there is no
reason to choose one over the other. For the lowest-
order terms (pz„p2z, p4„etc.) which we are concerned
with in this paper, it does not matter if we choose to aver-
age Zz or in[Zz]. Higher-order terms will depend on
which of the two are averaged.

Next, we would like to discuss the need for the relative
magnetization k. Without introduction it and its conju-
gate field, the coefficients Va; would not have been pro-
portional to the volume. This has to do with (a) the fact
that states with an arbitrary number of spins flipped can
have arbitrarily small energy relative to the ground state
and (b) the fact that the ground states are separated by a
finite number of flipped spins. The introduction of an ap-
propriate conjugate field classifies the states in the correct
way and eliminates the double counting that would other-
wise have happened.

Note that there is no intrinsic meaning to the conju-
gate field —its meaning is limited to the ground states for
a given bond configuration. The field is an artifact to
separate the ground states to define a perturbative tower
over each ground state. It has to be taken to zero (v =1)
after intensive quantities (such as the free energy per site)
are obtained.

There is a simple analogy with the D =1 Ising model
that further clarifies this issue. Consider the low-
temperature expansion of the D=1 Ising model on a
finite lattice of L sites with free boundary conditions. It
is easy to see that ai=0 (except for boundary effects
which vanish in the thermodynamic limit). The
coefficient az is the number of states N2 of energy E=2
divided by the volume L. Unfortunately, N2-L and so

az diverges as L+00. The reason N2-L is that one
can get E=2 with one spin flipped, or with two adjacent
spins flipped, or with three adjacent spins flipped, and so
on up to L —2 spins flipped (for free boundary condi-
tions). The single flipped spin can be in L —2 locations,
the two flipped spins in L —3 locations and so on. Thus
%&=[1+2+3+ . + (L —2)]=(L —2)(L —1)l2. The
cure for this is to turn on a conjugate field that classifies
states both by their energy and number of spins flipped.
Now a11 states with more than one spin flipped do not
contribute to Nz and we get Nz =L —2. After computing
intensive quantities, the field is turned off (set to zero).

Coming back to the spin glass, we note that with a con-
jugate field, A,. is given by a series

pi =Xpi@"
k

k

Each state of energy i and relative magnetization k con-
tributes a count of 1 to the coefficient p,.k for the tower.

A;=g A;r, u", v=e
k

and the free-energy series of Eq. (1.7) becomes

(1.10)
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F=Fo+Azi& U+~22ii U +~4iii U+ ' . . (1.11)

It is easy to see that the coefficients A,.k vanish for odd i.
The next issue is that of finite-size effects. Here again,

it is useful to consider the case of the simple Ising model
with J, . = 1. In this case, finite-size effects arise from lines
of excited spins that are affected by the presence of the
boundary. For a given lattice size and type (periodic, hel-
ical, fixed boundary, etc.), it is straightforward to decide
at what order finite-size corrections will contaminate the
series since all that is required is to determine the length
of shortest path that feels the boundary. One can also
determine in a quantitative way how increasing the size
of the lattice will improve the order of the expansion.

In the spin-glass case, the situation is not so simple.
This is because there is no direct correlation between
number of spins flipped and the energy of the state except
with respect to a given vacuum. Because of this, there is
no systematic way to decide which of the coefficients A;
are "correct" and which are contaminated by finite-size
effects. Moreover, there is no way to decide how the situ-
ation improves as the volume increases since we cannot
compare the vacuum states between different volumes.
The only possible resolution we see is an empirical one.
We adopt the procedure of determining the series from
lattices of progressively increasing sizes and using ap-
propriate extrapolation to get the values of the A's in the
thermodynamic limit.

II. A CONCRETE EXAMPLE ON D =2
HELICAL LATTICES

We derive series on generalized helical lattices in
D=2. Our lattice is defined as follows: Consider V
points along a circle. Neighboring points along the circle
are considered to be nearest neighbors in the x direction.
Points separated by r &1 steps are considered to be

TABLE I. List of lattices used together with the number of
sampled bond configurations.

Volume

5

6
7
8

9
10
11
12
13
14
15
16
17
18
20

3

4
5

3

7
4

5

5

10
11
10

5

7
6

EfFective square
lattice linear size

Number of sampled
bond confj.gurations

all
all
all
all

all
all
all

15 000
5 000
3 000
3 000
3 000
3 000
3 000
1 829

nearest neighbors in the y direction. We call such a lat-
tice a V/r lattice. Such lattices have been used to gen-

erate low-temperature expansions for Ising and Potts
models. They have the feature that they minimize
finite-size corrections from closed loops. For example,
the lattice with V=8 and r=3 (i.e., an 8/3 lattice) is
"equivalent" to a periodic lattice of size 4X4 in the sense
that the shortest path closed due to finiteness of the lat-
tice is of length n =4.

For each value of V, we chose r so as to maximize the
length of the shortest loop closed due to finite-size effects.
The lattices we used are listed in Table I. Up to V=11,
we generated all bond configurations and so our results
are exact. For V&11, we randomly sampled a large
number of bond configurations. The number sampled is
shown in Table I.
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FIG. 1. The distribution of
the number of ground states q0
for V=4 to V=11 over all bond
configurations.
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FIG. 2. The average number of ground states (qo ) as a func-
tion of volume. The curves are fits to ( qo ) —VI' and

( qo ) -exp(a V}.

To gain some insight, we start with a study of ground
states as a function of the bond configurations. Figure 1

shows the distribution of the number qo(V} of ground
states for all bond configurations for each V. As is evi-

dent from the figure, the distribution spreads to larger
values of qo as V~00. However, for the volumes we

considered, the distribution is almost Hat and no particu-
lar value is selected. In Fig. 2 we plot the average value

(qo) over these distributions for various volumes with

fits to an exponential and a power law in V. Our data
prefer ( qo ) growing like an exponential in V.

%e also obtained the distribution of the distances
d(cro, oo} between pairs of ground states. This was done

by computing d for all distinct pairs of vacua for all bond
configurations. In Fig. 3 we show the distribution of the
bit distance between ground states for V=20. The data
for other volumes are similar. The symmetry of the
figure around V/2 is a trivial consequence of the fact that
if the configuration ceo is a vacuum then so is the

FIG. 4. The free-energy coefficient A» as a function of 1/V.
The thermodynamic value given was obtained by a St to the
plus points.

configuration with all spins fiipped relative to op. Figure
3 shows that, in contrast to the simple Ising model, in the
spin-glass case there are almost equal numbers of vacua
separated by all distances from 1 to V/2. This is the
reason why it is important to carefully define the separa-
tion of the states with respect to both the energy and the
relative energy as we do here.

Figure 4 shows the coefficient A z& as a function of in-
verse volume 1/V. The open circles are from averaging
over a11 bond configurations. The pluses are from sam-
pling a finite number of random bond configurations as
listed in Table I. Finite-size efFects seem nicely
parametrized by a 1/V dependence and we list the ther-
modynamic value of A2& in this figure by making a linear
fit to the data. In Fig. 5 we plot the standard deviation
oz, of the A2, values as a function of 1/V. This is to be
intrepreted as the "width" of the distribution of A z, over
all bond configurations. The open circles and pluses have
the same interpretation as in Fig. 4 and a linear extrapo-
lation again seems to give an excellent fit. Note that the
word "standard deviation" should not suggest that we
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FICx. 3. The distribution of bit distances between ground
states for V=20.

0.0
0.0 0. 1

1/V
0.2

FICx. 5. The standard deviations for the coefficients A» as a
function of 1/V. The thermodynamic value given was obtained
by a fit to the plus points.
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are estimating a "statistical or systematic error" in our
measurement. It represents the intrinsic uncertainty in
the coeScients due to the fact that they are drawn from a
nontrivial distribution. The fact that the thermodynamic
value of oz, is nonzero is highly significant. It means
that the thermodynamic distribution of A2, is nontrivia1
(not a 5 function). We interpret this to mean that there is
an Inherent uncertainty in Green's functions in spin
glasses, arising from the bond averaging.

We also investigated some other coefficients (A22 and

A4, ) and find qualitatively similar results for them. We
estimate [see Eq. (1.11)],

Aii =0.459(3), Azi =0.239(5), A4i =0.479(3) .

(2.1)

The widths of the distributions of these quantities in
the thermodynamic limit are 0.»=0.053, o»=0.050,
and o « =0.036, respectively.

III. CONCI. UMNG REMARKS

%e have described a procedure to determine the low-
temperature expansion for the free energy of Ising-like
spin glasses. %e explain why one is forced to do a double
expansion in u =e ~ and v=e ". From numerical cal-
culations on volumes of up to 2Q sites, we extract the
thermodynamic values for several coefficients of the ex-
pansion. %e also showed that these coeScients are not
simple numbers but rather averages over a nontrivial dis-
tribution. This may be the reason why laboratory experi-
ments on spin glasses have a difficult time determining
thermodynamic averages.

The concept of self-averaging is based on the nonri-
gorous idea that a very large system can be divided into a
set of smaller (but still macroscopic) systems and self-

averaging wi11 fo11ow. This argument only works if the
boundary effects are small. As we have emphasized, the
number of vacuum states increases exponentially as the
system size grows and consequently, the free-energy
series coeKcients are highly sensitive to the boundary.
For this reason, our coeScients have no a prior' reason to
be self-averaging. Another way of saying this is that
theoretical proofs of self-averaging generally ignore bro-
ken ergodicity and so average over all macrostates,
whereas the low-temperature series considered here ex-
plicitly takes broken ergodicity into account.

However, note that the free energy can be self-

averaging without the coeScients of the low-temperature
expansion having the same property. This is because
coeScients can be distributions even if the sum of the
series is a number (recall that the 5 function obtains from
a sum over plane waves). The sum of an infinite set of
distributions can easily be a number (after proper normal-
ization). For this reason, the fact that the coefficients of
the free energy are distributions does not, by itself, prove
or disprove the conjecture that the free energy is a num-
ber. Our results, based on a few terms in the series, can-
not say anything conclusive about self-averaging. One
would need many terms in the series to decide this issue.

Finally, the issue of whether or not it is possible to
derive series which are long enough to be useful is still
open.
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