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The problem of maximizing the density of quasiperiodic sphere packings is investigated. The investi-

gation is limited primarily to the case where the centers of the spheres are determined by a cut through a
higher-dimensional Bravais lattice of a single atomic surface. For certain cases, the sphere packing ob-
tained by the largest connected atomic surface can be made more dense by replacing it with an atomic
surface that is nonconnected. The nonconnected atomic surfaces differ from the connected ones only in

specific regions near the atomic surface boundaries. These regions are determined by the quasicrystal-
line point-group symmetry and by the radius of the spheres. This method of improving sphere packings
is applied to find nonconnected atomic surfaces for the dodecagonal, octagonal, and icosahedral cases.
Using this method in conjunction with other methods, a packing fraction of approximately 0.5645 for a
simple icosahedral b-c network is achieved.

I. INTRODUCTION

The problem of finding dense quasiperiodic sphere
packings is of interest in the field of quasicrystals for
several reasons. To find a plausible atomic structure for a
quasicrystal, a "packing" of atoms must be found, subject
to information about near-neighbor distances, that agrees
with the experimental density. ' In addition, in
cluster-based models of quasicrystals, where a high
density of clusters is desired, the clusters themselves are
similar to spheres in a sphere packing. Furthermore,
studies of the stability of quasicrystalline structures using
pair potentials appear to favor structures corresponding
to high-density sphere packings.

Various methods are known for generating quasi-
periodic structures. These include grid methods, '

inflation rules, and projection. ' ' Here, the method
of Bak" is used, where a periodic set of (D-d)
dimensional "atomic surfaces" in higher (D)-dimensional
space is cut appropriately by a d-dimensional hyperplane
of physical (parallel) space to produce a quasiperiodic
network of points. The atomic surfaces in this work are
imbedded in planes that are strictly parallel to the (Dd)-
space orthogonal to physical space known as perpendicu-
lar space (henceforth called perp. space). For simplicity,
this work concerns itself with cuts through structures
consisting of a single atomic surface (the "monatomic"
case) that is centered at each point of a D-dimensional
Bravais lattice, where D is the smallest possible lifting di-
mension' for the symmetry chosen, although many of
the results obtained can be generalized for more compli-
cated cases. The Bravais lattices are formed by the in-
tegral linear combinations of a set of D basis vectors e;.
The parallel and perp. -space projections of the basis vec-
tors are denoted e~~ and e;, respectively. Associated with
the atomic surface centered on

r=g n;e, +ro

are its parallel space component r"=g n, e)' r(+and

b,r"=g b, n, e)~ . (4)

For a given minimum separation constraint, there are an
infinite number of possible pair separations of the form
(4) that are too close. All such pairs must be avoided for
a valid sphere packing. The parallel space condition that
no points lie too close together is equivalent to the perp. -

space condition that an atomic surface does not contain
any pairs of points separated by a perp. -space vector
Isr„=gb,n, e, whenever ~hr. „".

~
(d;„.The term "con-

straint vector" will be used henceforth to describe both a
parallel space vector that is shorter than d;„and its
perp. -space counterpart. The disallowed perp. -space dis-
placements can be sorted in order of increasing perp. —

space magnitude. Only the constraint vectors of smallest

perp. -space component r =g n;e;+ra If .—r is inside
the atomic surface, then r ~ is projected. Since all atomic
surfaces considered here have inversion symmetry, r is
equivalently projected if +r is within the atomic sur-
face.

If the volume of the atomic surface is V~ and the
volume of the D-dimensional unit cell is VD, then the d-
dimensional density of projected points is

p= Vx/VD

If spheres of radius r are placed around each projected
point then the packing fraction f is given by

f =Q~r"p,

where 0& is volume of the unit d-dimensional sphere.
Maximizing the packing fraction is thus equivalent to
maximizing the volume of the atomic surface.

For the sphere packing problem, there is a constraint,
namely, the minimum separation constraint, that for
spheres of radius r, all pairs of sphere centers must be at
least d;„=2rapart. The separation of two projected
points is another integral linear combination of parallel
space vectors,
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the terminology consistent throughout this work,
"sphere" will be used to refer to a d sphere and, in the
context of perp. space, "volume" will be used to refer to a
(D-d)-dimensional volume. In the basis used here for
dodecagonal quasicrystals,

eI =[cos(2ni/12), sin(2@i/12)]

and

ei= [ cos(14ni /12), sin(14ni/12)], (6)

FIG. 1. Example of a pinwheel. The interior of the dodecag-
onal boundary is the pinwheel region. Half of the pinwheel re-
gion is shaded black to indicate that it is part of the atomic sur-
face; the remainder of the pinwheel region is not part of the
atomic surface.

perp. -space magnitude play a role in the cases considered
here. The perp. -space constraints lead naturally to the
construction of connected atomic surfaces such that no
point immediately outside the boundary of the atomic
surface can be added to the surface without violating the
minimum separation constraint. Equivalent1y, for a11

points on the boundary of the atomic surface, there are
one or more constraint vectors that connect this point
with other points on the boundary. Such atomic surfaces
will be referred to as "maximal connected surfaces"
(MCS}. The crux of this paper is to show that under
speci5c conditions, it is possible to replace a MCS by a
nonconnected surface of greater volume without violating
the minimum separation constraint. The method for
creating such atomic surfaces is called the "pinwheel con-
struction" because the nonconnected atomic surfaces
contain local regions of high symmetry that typically
resemble pinwheels (see Fig. 1}. The conditions under
which the pinwheel construction can be made are given
in the "pinwheel theorem. "

The organization of this paper is as follows. Section II
describes in detail the pinwheel theorem and the cir-
cumstances under which it applies, using the dodecagonal
quasicrystal as an example. Section III applies the
pinwheel construction to the octagonal case and shows its
failure in the decagonal case. In Sec. IV, the pinwheel
theorem is shown to apply to an icosahedral packing.
The manner in which the pinwheel construction changes
the arrangement of spheres in the corresponding project-
ed structure is discussed in Sec. V. Under some cir-
cumstances, detailed in Sec. VI, the pinwheel construc-
tion can be shown to imply a simple inflation rule for the
sphere packing produced. Section VII discusses some
other methods for improving the packing fraction of a
quasicrystalline sphere packing and Sec. VIII gives a
brief summary of the results obtained.

II. THE PINWHEEL THEOREM
AND ITS APPLICATION

TO DODECAGONAL SPHERE PACKINGS

In this section, the problem of the 12-fold quasicrystal-
line sphere packing in the plane is considered. To make

0&i &3, yielding a four-dimensional unit cell volume

V4 =3. The minimum sphere separation is taken to be 1.
Sphere packings in this paper will also be described as the
networks formed by the sphere centers (nodes} when
joined by linkages which are d;„in length. In all of the
structures described in this work, these linkages create a
division of parallel space into a number of distinctly
shaped regions or "tiles." (Sometimes it proves necessary
to include linkages slightly longer than d;„aspart of the
network in order to yield a tiling. ) In the dodecagonal
case, the linkages are all of length 1. The maximum den-
sity dodecagonal sphere packing is known: the linkages
form a tiling of squares and triangles, ' where the frac-
tion of the plane covered by squares is exactly one-half. '

The square-triangle tiling has a density of
(1+2M 3)/2= 1.0774 spheres per unit area and yields a
packing fraction of n(1+2 /~3) /8=0. 8461. An infinite
number of difFerent packings of this density can be ob-
tained by application of Stampfli's inflation rules. ' The
pinwheel theorem has already been used by Smith to
show how atomic surfaces that produce such dense dode-
cagonal packings can be found. ' Here the 12-fold pack-
ing problem is revisited in more detail so that the general
conditions of the pinwheel theorem are made clear.

First, four-dimensional (4D) vectors b,r1 are found
whose parallel space component is less than d;, . Then
these vectors are sorted in order of increasing ~hr„~.
The two sets of constraint vectors with the smallest
~br„~are [g;(eII—e()I and [g;(2eI —

e[I
—e(}],where [g;]

refers to the set of elements of the quasicrystalline point
group G (here 12 mm). These sets of vectors
have ~br„~=2cos(m/12)=1. 9319 and [hr„[=1+~3
=2.7321, respectively. For quasicrystals with perp. -

space dimensionality D —d=2, one can use the con-
straint vectors in a construction akin to the Voronoi con-
struction to 6nd a MCS. First place points at the center
of the atomic surface and at all points separated from the
center by a constraint vector. Then draw the planes that
bisect the line segments connecting the center with the
end points of the constraint vectors. Finally, take the re-
gion centered at the origin entirely within these bisectors
to be the atomic surface. For the 12-fold case, only the
bisectors of the set of vectors [g;(ez —ei3}] contribute to
the boundary of the MCS, which is a regular dodecagon
of maximum radius 1 along the directions [g;(eo)]. It is
convenient to define a function f(r ) such that f (r )=1
if r is in the atomic surface and f (r )=0 if r is outside
the atomic surface. The MCS for a D —d =2 quasicrys-
tal is then given by f (r )=1 if

r .Ar„&I« I /2 (7)
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for all b,r„andf (r )=0 if

r b,r„)lb, r, l /2

for any b,r„.The problem of giving f (r } a value on the
boundary of the atomic surface will be ignored in this
work, since, in practice, one can choose ro in Eq. (1) so as
to avoid projecting boundary points. However, whether
an atomic surface that contains regions of finite size that
only meet at a'finite number of points is connected does
depend on how f (r ) is defined at the points that they
meet. Throughout this work, such a surface wi11 be con-
sidered as nonconnected.

If r is on the boundary of the atomic surface, then
r b,r„=lb,r„l /2 for one or more hr„.One immediately
has (r —br„)br„=—l br l /2. Since each point on the
boundary is displaced from at least one other point on the
boundary by a constraint vector, the surface is proven to
be a MCS. Furthermore, the displacement of any point
inside the MCS by any b,r„violates Eq. (7) and is outside
the MCS, and thus the MCS gives a valid sphere packing.
Despite the fact that the dodecagonal-shaped atomic sur-
face is maximal, its volume is only Vi(MCS)=3 giving a
density of projected points p=1, less than that for the
square-triangle tiling. Figure 2(d) shows a region of the
network generated by the dodecagonal MCS. Note that
it contains distorted hexagons which reduce the density
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FIG. 2. (a)—(c) The MCS for the dodecagonal sphere packing
problem and the atomic surfaces for the first two stages of the
iterated pinwheel construction. (d) —(f) The tilings correspond-

ing to the projections of the surfaces shown in (a)—(c), respec-
tively.

I hr„,~ l
= ( {rki —rj l U irk&+ br„—r;,. l ) Il0 . (12}

Then the following pinwheel regions will satisfy con-
straints (P4) and (P5): 5r;. HS, if

from that of the square-triangle tiling.
A set of special points for the pinwheel construction

can now be found. The set of special points Ir, l must

possess the following properties. (Sl) All special points
are on the boundary of the atomic surface. (S2) The set
of special points is a single orbit of the point group G of
the atomic surface. (S3) Every point on the boundary of
the atomic surface that is separated from a special point
by a constraint vector must also be a special point. (S4)
There must be at least two other special points connected
to each special point via constraint vectors. (S5} The
MCS must be "convex" at each special point, that is, the
filling fraction about r„p(r, ), must satisfy

J, ,d Vif (r, +5r )

p(r )= lim " (—. (9)
jar'I &s»„' '

1

s»,' o V~
I&"I &~»,'

If one connects each special point with the other special
points that are separated from it by constraint vectors,
one obtains a network or networks of special points. In
the case where there is more than one network, the net-
works will be distinguished by being labeled Ir„l. The
subscript "i" will be omitted when there is only a single
network. The pinwheel theorem can now be stated: If
the network or each individual network of special points
of a maximal connected atomic surface has no loops con-
taining an odd number of links, then it is possible to in-
crease the volume of the atomic surface without violating
minimum separation constraints by replacing it with a
nonconnected atomic surface.

The pinwheel construction is accomplished by chang-
ing the atomic surface within a volume S;, centered on
each special point r„".These regions, I r„j+5r;~ l,
5r,j ES,J will be referred to as the pinwheel regions. The
volumes (S,"I must have the following properties. (Pl)
Each S; has the symmetry G; where G, is the subgroup
of 6 that leaves the ith network of special points r„in-

variant. (P2) Each S; centered on a special point r„in

the same network is identical. (P3) Pinwheel regions
about special points on different networks are related by
symmetry: Sk& =gk(SJ ), where gk is such that

gk(r„j)=r,ki. (P4} Pinwheel regions do not overlap. If
r„,Wr,„,then fo.r all 5r;~ &S,J and 5r„,&Skr,

r;.+5r; Ar ki+5rkI (10)

(P5} No new constraint vectors are introduced between
pinwheel regions If r„.jAr, k.& and 5r;~- ES;,. and 5rk, ESk,
then

r~, -+5r, -+br Wr,kh+6rkh

unless r„.-+hr =r,kI.
Constraints (P4) and (P5) lead to a natural definition

for the boundaries of a connected pinwheel region of
maximum volume. Define a set of effective constraint
vectors
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5r, g;1,(hr„;) & —,'~hr„"~ (13)

for all hr„;-and g, I, EG, .
Half the volume of each pinwheel region is then filled

in a manner that preserves the symmetry 6 of the atomic
surface and that introduces no pairs of atoms that violate
the minimum separation constraint. This "pinwheel con-
struction" is accomplished as follows. Pick an arbitrary
special point r;.. Since the network of special points that
this point is on has no odd-length loops, it is bipartite.
Call the subnetwork that r; is on the even-parity subnet-
work of i I r„,j. Call the other subnetwork the odd-parity
subnetwork I r„,j. Define S,

„

to be an irreducible wedge
ofS;. Then,

f([r„,j+Sr ), 5r 6S, (14)

f [g 1,(r 1 )+g I(5r )]=f (r,"+5r )

if P (gz )=P (g;& ), otherwise,

(15)

can be chosen to be any function that takes on the value 0
or 1 at each point. The value of f within the remainder
of the pinwheel regions is given by the following. Define
a parity operator P such that P(g,j)=0 if
g,"([r„,j)=[r„,j and P(g,")=1 if g,"([r„,j)=[r„,j.
Then

Vii = Vj (MCS)+ 12
1 Vj (MCS)

12 (2+g3)

Fig. 3.
The maximum connected pinwheel region about each

special point is determined by the effective constraint vec-
tors

[g,.(br„)j = [g;(2eo+2e, —e3) j .

The pinwheel regions that satisfy Eq. (13) are dodecagons
that have diameters 1/(2+&3) that of the original MCS
and are shown in Fig. 4. Note that pinwheel regions
about adjacent special points touch without overlapping.

The two generators of 12 mm, R &6, and reflection
through the eo+e3 axis, both move special points into
those of the opposite parity. One can use this in conjunc-
tion with Eqs. (14)—(16) to construct a symmetry-
preserving pinwheel. It is natural to choose

f([r, j+5r )=1 for all 5r ES, . This choice for filling

the irreducible wedge produces shapes that resemble
pinwheels for which the pinwheel theorem is named (see

Fig. 1), although other fillings of the irreducible wedge
are possible which do not produce pinwheel-like shapes
[see Fig. 5(b)].

The volume of the new atomic surface, shown in Fig.
2(b), is

f [g,I,(r, )+g;I(5r )]="1 f (r~ +5r~) .— (16)

f [gl, ([r„j+5r}]=f(Ir„j+5r) . (17)

Note that this construction introduces no pairs that
violate the minimum separation constraint, since

f(r, +5r +Sr„}=0 (18)

The value of f within pinwheel regions on the other net-
works is given by

7+4~3 Vi(MCS), (20}

which leads to a node density of V~, /3=1. 0718 which is
still less than that of the square-triangle tiling.

However, there is no reason to assume that the indivi-
dual pinwheel regions themselves must be connected.
Under some conditions, the atomic surface volume can be
further expanded by use of nonconnected pinwheel re-
gions. These conditions are established by the following

if r, + b,r„6[r, j, by constraint (PS) and

f(r, +5r +hr„)=1—f(r~+5r~) (19)

if r, +Sr„&[r, j according to Eq. (16) and the fact that
constraint vectors always connect special points of oppo-
site parity. Note also that, while before the pinwheel
construction the fraction of each pinwheel region S;-
filled is less than one-half because of condition (SS), after
the pinwheel construction, each S;J is one-half filled.
Thus, the pinwheel construction increases the volume of
the atomic surface and the density of the corresponding
sphere packing.

As an example, the pinwheel construction for the dode-
cagonal quasicrystal with symmetry 12 mm will now be
derived in detail. The MCS for this case has already been
determined. The only points on the boundary of the
MCS that satisfy (S5) are the corners of the MCS,
[g;(eo)j. These points satisfy all of the other special
point conditions and are thus the unique set of special
points for the MCS. Each special point is linked to two
others by constraint vectors; a network of length 12 is
formed. The network is bipartite and thus the 12 mm
MCS satisfies the pinwheel theorem and can be expanded.
The special points and the network formed are shown in

FICx. 3. Special points of the dodecagonal MCS and the net-
work that they form. The special points are indicated by cir-
cles. The interior lines are the constraint vectors that form the
links of the network. The two colorings of the special points in-
dicate how the network is bipartite.
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FIG. 4. Special points of the dodecagonal MCS and the
dodecagon-shaped pinwheel region surrounding each special

point.

generalization of the pinwheel theorem. In the same way
special points were found before, find points on the
boundary of the pinwheel regions that satisfy the follow-

ing conditions. (Nl) The set of special points on the
boundary of a given pinwheel region is a single orbit of
the point group G; of the pinwheel region. (N2) New spe-

cial points on the boundary of other pinwheel regions
must be related to those of a given pinwheel region by
symmetry. (N3) Connect the new special points by the
constraint vectors that connect the centers of the
pinwheel regions to which they belong. These networks
of new special points must contain new special points
that are "linked" to new special points on at least two
other networks of new special points either by constraint
vectors or by coincidence. (N4} The pinwheel region
must be "convex" about each new special point in a
manner analogous to condition (SS) for the special points.

For each such new special point, form the network of
new special points described in condition (N3}. Then,
determine the "supernetworks" of the networks of new

special points where two networks are linked if there is

any constraint vector that connects a special point on one
network with one on the other or if they contain new spe-
cial points that are separated by a constraint vector.
Now, if the supernetwork is bipartite in the manner of
the pinwheel theorem, then the pinwheel construction
can be performed anew on the new special points. The
proof is similar to that for the pinwheel theorem. For the
dodecagonal case considered, the new special points are
the 144 points, 120 of which are distinct, on the corners
of the pinwheel regions surrounding the old special
points, specifically Ig;(eo)I+{g (2eo+2e, —e3)I. These
form 12 networks which form a supernetwork whose
links are between networks that share points, e.g. , the
points indicated by the largest circles in Fig. 6. This su-

pernetwork is bipartite and thus new pinwheel regions
can be grown around the new speci.al points to increase
the atomic surface volume further. The size of these new

pinwheel regions are limited by effective constraint vec-

tors in a manner similar to that which limits the pinwheel

regions, Eq. (13). Note that the new pinwheel region

about each new special point fills only half the surround-
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FIG. 5. (a) Pinwheel region from Fig. 4 showing the irreduc-
ible wedge of symmetry 12 mm. (b) Alternate decoration of the
pinwheel region. The decorations shown in Fig. 1 and in (b)
both produce valid sphere packings when they are used to fill

the pinwheel regions about the even special points and the rota-
tion of the decorations by m/12 are used to fill the pinwheel re-
gions about the odd special points.

FIG. 6. New special points for the second stage of the iterat-
ed pinwheel construction for dodecagonal symmetry. The
medium gray circles indicate new special points on one network
like that in Fig. 3; the large solid circles indicate special points
on another network. The two networks share the points indi-

cated by the largest solid circles and thus are linked in the su-

pernetwork of such networks.
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ing volume due to the supernetwork constraints, and fur-
thermore, only half of these regions are filled due to the
network constraints. An atomic surface for dodecagonal
symmetry with the new pinwheel regions fi11ed is shown
in Fig. 2(c).

In a similar manner, after maximizing the new
pinwheels, it may be possible to further extend the
volume of the atomic surface by performing the pinwheel
construction on yet another set of special points. This
procedure will be called the iterated pinwheel construc-
tion.

In the dodecagonal case, the iterated pinwheel con-
struction is particularly easy to follow, because each step
involves pinwheel construction about a set of new special
points that are the vertices of dodecagons centered on the
old special points, oriented in the same way and with a
radius 1/(2+&3) that of the dodecagons that formed the
old special points. The volume of the atomic surface at
each stage of the pinwheel construction can be deter-
mined by noting that the pinwheel region in each step is
similar in shape to and of linear dimension 1/(2+P3)
that of the entire atomic surface of the previous step:

5
Vg( + ~ )

= Vg(MCS}+ 12
(2+ 3)

(21)

After infinitely many iterations,

Vj = —+ Vi(MCS) . (22)

The density of points obtained is exactly that of the
square-triangle tiling. Next one must check that the pro-
cedure has not introduced any new constraint vectors.
The constraint vectors of length 1+&3 do not occur
within the new atomic surface because the maximum ra-
dius of the atomic surface is

r = g =(1+V3)/2 .
o (2+ 3)" (23)

The atomic surface just barely avoids containing points
separated by this set of constraint vectors. All other con-
straint vectors have ~r~~ even larger and so are not con-
tained within the surface. Thus, the infinitely iterated
limit of the pinwheel construction must be a square-
triangle tiling. Note that Fig. 2(f), which shows a portion
of the tiling corresponding to only the second iteration of
the pinwheel construction, already contains only squares
and triangles over regions as large as the approximately
700-tile region shown. It is clear by the nature of the
construction that the final atomic surface is a fractal, as
has been noted previously. ' The choices for filling the
pinwheel regions used in Figs. 2(b) and 2(c), in the
infinitely iterated limit, produce an atomic surface shape
apparently identical to that found by Baake. ' By using
other choices for filling the pinwheel regions at each stage
of the iterated pinwheel construction, it is possible to
achieve the same maximum density with an infinite num-
ber of differently shaped atomic surfaces.

III. OCTAGONAL
AND DECAGONAL SPHERE PACKINGS

Now, the pinwheel theorem will be applied to the oc-
tagonal and decagonal sphere packing problems. For the
octagonal case, the basis vectors used are

and

e~) = [ cos(2mi/8), sin(2m i/8)] (24)

e; = [ cos(10m i/8), sin(10m i/8) ] . (25)

For the decagonal case, the basis vectors used are

eI = [ cos(4m i/10), sin(4m. i/10)]

and

(26)

e; =[ cos(8m.i /10), sin(8mi/10)] . (27)

In each case 0~ i & 3. These give V4=4 for the octago-
nal case and V4 =5 ~ /4=2. 7951 for the decagonal case.

First consider the octagonal case. The three sets of
constraint vectors with the smallest

~
b,r„~ are

Ig;(elI —e()], Ig;(e% —e(—ejI)], and Ig;(2e(+e( —e%) L
with

~
b r„~=2 cos(m /8) = 1.8478,

~ hr„~= 1+V2
=2.4142, and ~b,r„~=2++2=3.4142, respectively. The
MCS is formed by the perpendicular bisectors of the set
of vectors with the smallest ~hr„~ and is shaped like an
octagon with largest radius 1. The volume is
V~(MCS)=2&2. The corners of the octagon, Ig, (eo)],
are special points and form a bipartite network. There-
fore, the pinwheel construction can be performed at each
special point. The size of the pinwheels are limited in
this case by the second shortest set of constraint vectors.
Pinwheel regions may be extended out to octagons whose
radius is [(+2—1}/2]/cos(m/8) that of the MCS and
which are oriented at a n/8 rotation . with respect to the
orientation of the MCS. It is possible to iterate the
pinwheel construction. The new special points are the
corners of the small octagons. Each subsequent iteration
constructs octagons of radius &2—1 that of the previous
iteration, centered on the vertices of the octagons of the
previous iteration and oriented in the same direction.
The final atomic surface is again a fractal as it was for the
dodecagonal case. The volume of the surface is Vy =3,
yielding p=0. 75 or f =3m/16=0. 5890, a rather poor
packing fraction. The final atomic surface extends
beyond the Voronoi domain associated with the second
shortest set of constraint vectors, in violation of an earlier
assumption that this domain confines the pinwheel re-
gions. '

The atomic surfaces and sections of the tilings for the
MCS and the first two steps of the iterated pinwheel con-
struction are shown in Figs. 7(a)—7(f). The tiles included
are squares, Qattened hexagons, regular octagons, con-
cave octagons, and the tile with 10 boundary points and
one interior point. It is likely that a denser packing in-
volving the same linkages exists. It is possible to put an
upper bound on the node density. The two tiles with
highest node density are the square and Battened hexa-
gon. Squares by themselves are obviously insufficient to
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tile the plane with octagonal symmetry, so both squares
and (at least) hexagons are necessary. A hexagon can be
divided into a square and two 45' rhombii as shown in
Fig. 8. It is easy to show using the grid method ' that for
a tiling consisting of squares and 45' rhombii to have oc-
tagonal symmetry, the ratio of squares to rhombii must
be ns:n~ =I:&2. If the packing is done using only
squares and hexagons, then the corresponding ratio of
squares to hexagons must be nz. nH = I:1+&2. The den-

sity of nodes is thus
FIG. 8. Division of a flattened hexagon into a square and two

rhombii.

4(2++2)=0.8536 . (28)

This upper limit on the density is significantly higher
than that found by the pinwheel construction. However,
there are no known octagonal tilings consisting solely of
squares and hexagons. Finding the maximum density oc-
tagonal sphere packing with linkages of length 1 in a set
of octagonal directions remains an interesting unsolved
problem. The octagonal case has implications for
icosahedral tiling models. These implications will be dis-
cussed in Sec. IV.

In the decagonal case, the three sets of constraint vec-
tors with the smallest

~
b,r„~ are ( g; ( —eII

—e( —e( ) j,

(a)

(g;(2e(+elI+e() j, and Ig, (eII —e')+e( —e() j with

~b,r„~=v=1.6180, ~hr„~=2=2.6180, and ~br„~
=+r /s =3.0777, respectively, where s =—I/&5 and r is

the golden mean, ~ (1+v 5)/2. The MCS is a decagon
of largest radius &sr=0.8507. The corners of the de-

cagon are in directions that are the basis vector directions
rotated by n/10. The MCS has an area of V~ =5&sr/2
which corresponds to a density of projected points

p = 10+s r=0.7608 and a packing fraction of

f =Sn')/s ~/2=0 5976. T. he MCS and a portion of the
corresponding tiling is shown in Figs. 9(a) and 9(c). The
corners of the MCS, (g;(2eo —e, +e2 —2e3)/5j, are spe-

cial points; however, they link to form two networks of
length 5. Both networks have an odd number of links

and thus are not bipartite. Therefore, the pinwheel
theorem does not apply to this decagonal case. More wi11

be said about the decagonal sphere packing problem in

Sec. VII.

(b) (a) (c)

(c}

FIG. 7. (a) —(c) The MCS for the octagonal sphere packing

problem and the atomic surfaces for the first two stages of the

iterated pinwheel construction. (d) —(f) The tilings correspond-

ing to the projections of the surfaces shown in (a)—(c), respec-

tively.

FIG. 9. (a) and (b) The MCS for the decagonal sphere pack-

ing problem and a nonconnected atomic surface for this prob-
lem. (c) and (d) The tilings corresponding to the projections of
the surfaces shown in (a) and (b), respectively.
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IV. ICOSAHEDRAL SPHERE PACKINGS

The icosahedral sphere packing problem is of great in-
terest because of the existence of intermetallic alloys with
icosahedral symmetry. Two separate icosahedral
sphere packing problems are examined in this section.
First, the icosahedral sphere packing problem with
d;„=1is considered and it is found that the pinwheel
theorem does not apply. Next, the icosahedral sphere
packing problem with d;„=+3s/r =0 562.8 is investi-
gated and it is found that the packing fraction of the
MCS can be improved via the pinwheel construction.

For icosahedral symmetry, D =6, D —d =3, and the
six-dimensional lattice is cubic. The basis used here is

and

eo=rl(O, r, 1,0, —l, r),
e& =rl(1,0,r, w, O, —1),
e2=rl(r, 1,0, —l, r, 0),
e~ =rl(0, r, —1,0, —1, —w),

e4= q( r, 1,0, 1—, r, O),

(29}

)
240' + 140'
( 16'r+ 12 )

(30)

e5=v]( —1,0, w, r, O, —1)—.

The constant g is equal to (&5r) '~ and the com-
ponents are given in the form (eI,e;). The six-
dimensional unit cell has volume V6 =8.

To use the pinwheel theorem, it is first necessary to
generate a MCS. The technique given in Sec. II for gen-
erating the MCS's of planar quasicrystals fails for the
icosahedral problems considered in this section. Still,
atomic surfaces for icosahedral quasicrystals that satisfy
the MCS conditions have been found. They will be used
here without reporting methods for their derivations or
proof that they are unique.

When d;„=1,the MCS is the truncated stellated
dodecahedron shown in Fig. 10. It has a volume of

and the packing fraction of the corresponding projected
structure is

60m +35
12 (16'+ 12)

(31)

The two shortest linkages in the projected structures are
those of length 1 along icosahedral fivefold directions and
those of length 2&s/v=1. 0515 (s =—1/&5) along
icosahedral twofold directions. Denoting icosahedral
fivefold, twofold, and threefold directions by the letters
"a," "b,"and "c,"respectively, the projected structure is
an example of an icosahedral a one-twork.

The sets of constraint vectors that connect points on
the boundary of the MCS are r„=Ig, (e& —e4+e5)] along
icosahedral threefold directions with

~ hr„~= )/3s~
=2.3840 and r„=Ig, (eo+e, —e2 —e, }]along icosahedral
twofold directions with ~b,r„~=2+sr =2.7528.

There is one set of special points and a related family
of sets of special points for the d;„=1MCS. The first
set of special points is

Ig;[( —eo+e]+e2+e3+e4+e5)/2]] . (32)

These special points lie on the 12 fivefold vertices of the
MCS shown in Fig. 10 and they form a network that
contains both 3-loops and 5-loops. Therefore, the
pinwheel construction is not possible on these special
points. The family of sets of special points is

tg ~( et+et+ez+e~+e4+es)/2 —Aez]]

0&A, &r '. (33)

Each special point in this family lies on an edge of the
MCS shown in Fig. 10 that connects a fivefold vertex
with a corner of the surrounding pentagon. Each set of
special points in the family contains 60 special points
which break down into 12 networks that are loops of
length 5. Since the loop size is again odd, these sets of
special points also do not allow pinwheel constructions.
The pinwheel construction is thus impossible on the MCS
used for the d;„=1 icosahedral sphere packing problem.

The MCS for the d;„=V3s/r sphere packing prob-
lem is a "rufHed" truncated triacontahedron and is
shown in Fig. 11. The sets of constraint vectors that con-
nect points on the boundary of this MCS are

r~ = Ig, ( —2eo+e, +ez+e~+e~+e5)}

along icosahedral fivefold directions with
~ hr,

~

=~
=4.2361 and

r„=Ig;( —eo —e~+2ez+2e~)]

along icosahedral twofold directions with
~
b,r„~

=2+sr =4 4541 The v. olum. e of this MCS is
V&=20s ~~r ~ (1 r) and the —corresponding packing
fraction is

' 1/2

f=—— s(1 r)=0.5535 —.3 —5

2 4 (34)

FIT&. 10. Truncated stellated dodecahedron atomic surface
for the d;„=1 icosahedral sphere packing problem.

The shortest linkages in parallel space are d;„along
icosahedral threefold directions and 2+s/~ =0.6498
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FIG. 11. Truncated triacontahedron atomic surface for the
d;„=0.5628 icosahedral sphere packing problem.

along icosahedral twofold directions, thus the structure is
an example of an icosahedral b-c network. The linkages
multiplied by ~ a, a the quasilattice constant, " are the
same linkages that connect clusters in cluster-based mod-
els of the icosahedral phase such as Henley's canonical
cell model. The sphere packing problem is hence
equivalent to the cluster packing problem. The highest-
density sphere packing corresponds with the highest den-
sity cluster packing. Random aggregation studies
suggest a packing fraction of 0.60 to 0.61 is possible for
this problem, well above the packing fraction of the
MCS. Mihalkovic and Mrafko have generated large-
unit-cell periodic approximants consisting entirely of
canonical cells, which also suggest a packing fraction of
0.60 to 0.61 is possible.

The MCS for the d;„=0.5628 sphere packing prob-
lem has the following sets of special points. (1) The set
[g;(e3—e4+es) ) having 20 vertices on the regular dode-
cahedron formed by the threefold vertices of the MCS
shown in Fig. 11. In this case, the special points form a
network that contains 3-loops and 5-loops which makes
the pinwheel construction impossible. (2) The family of
sets t g; (e3—e4+ e5+ A,e

&
) j, 0 & A, ( r', each containing

60 special points on the edges of the MCS in Fig. 11 that
connect threefold vertices with vertices on rufHed de-
cagons. These special points form 12 net-
works that are loops of length 5. Again the pinwheel
construction is impossible. (3) The set ( g; (eo —et+ 2ez—2e3+e4)/2) consisting of 120 special points which are
located on the centers of each of the edges of the ruaed
decagons of the MCS shown in Fig. 11. These edges are
along icosahedral threefold directions. These special
points form 10 networks of length 12. Each network and
therefore the pinwheel regions of each network have syrn-
metry 3m with the threefold axis parallel to the MCS
edges to which the specia1 points on the network belong.
The networks are bipartite and therefore the pinwheel
construction is possible.

The sizes of the pinwhee1 regions are limited by condi-
tion (P5). In this case, the pinwheel region about a given
special point must not contain any points that are
separated from any point in another pinwheel region by a

V~=20s r ~ (1—r +r /2 —r ' /2) (35)

and the packing fraction is f=0.5566. Even with the
pinwheel construction, the packing fraction remains well
below the believed maximum.

Checking for iterations of the pinwheel construction,
one finds no sets of new special points which do not pro-
duce odd-length loops in the supernetworks formed. In
this case, the pinwheel construction cannot be iterated.

There exist certain interesting analogies between the
icosahedral and octagonal sphere packing problems. In
the octagonal sphere packing problem it has neither been
proven nor disproven whether it is possible to cover the
plane with octagonal symmetry using only the square and
flattened hexagon as tiles. In the icosahedral case, it has
neither been proven not disproven whether it is possible
to cover space in a pattern with icosahedral symmetry us-

ing only the four canonical cells as tiles. The MCS for
each case introduce certain very poorly packed
regions —there are octagons in the tiling projected from
the octagonal MCS and there are icosahedra in the tiling
formed by the nodes projected from the icosahedral
MCS. The pinwheel construction is possible for each

FIG. 12. Shape of pinwheel regions for the atomic surface
shown in Fig. 11.

constraint vector of length 2&s~=1.7013 which is along
one of the icosahedral twofold direction that forms a 36'
angle with the twofold direction of the constraint vector
that links the special point with another special point on
the same network. The effective constraint vectors for
Eq. (13) are of length V s/7 =0.3249 along the 12
icosahedral twofold directions that form an angle of
arccos(1/&3)=54. 7' with the axis of the pinwheel re-
gion. The pinwheel regions thus formed are shaped like
the volume of intersection of two cubes of side length
+s/w that share a long diagonal and are rotated
&3/50m =44 1' w. ith respect to each other. This volume
is shown in Fig. 12. When the pinwheel regions are half-
filled, the new atomic surface volume is
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case, but does not get rid of all the poorly packed regions
[see Fig. 7(f)]. Finally, the very poorly packed regions for
each case are tiles whose center is not on a vertex of the
higher-dimensional cubic lattice but rather on a body-
center point. While the dodecagonal square-triangle til-
ing has been used as a 2D test case for the canonical cells
model, it seems that useful new insights into the
icosahedral problem could be found by investigating the
tilings corresponding to octagonal sphere packings as
well.

V. THE PINWHEEL THEOREM IN PARALLEL SPACE

So far, this work has concentrated mainly on the
pinwheel theorem's efFect on the atomic surfaces in perp.
space. In this section, the parallel space equivalent of the
pinwheel theorem and pinwheel construction will be in-
vestigated, in particular, the nature of the regions that
become better packed via the pinwheel construction.

In perp. space, the pinwheel theorem holds when there
is a bipartite network consisting of N special points. The
links in the network are constraint vectors. In parallel
space, for points with r in the pinwheel regions, the pro-
jected structure contains a corresponding bipartite net-
work where nodes are linked by vectors that are shorter
than d;„.In perp. space, the MCS is "convex" about
the special points, that is, according to Eq. (9),p (r, ) (—,',
while, after the pinwheel construction p(r, )=—,'. The
parallel-space equivalent is that pN nodes on the project-
ed network of the MCS are occupied, while N/2 of these
nodes are occupied after the pinwheel construction. In
the dodecagonal case, for example, N = 12 and p (r, )= —,'„
so in parallel space, 5 out of 12 of the nodes in the pro-
jected network are occupied before the pinwheel con-
struction and 6 out of 12 are occupied after the pinwheel
construction. These nodes plus other nearby nodes that
are necessary to build tiles form a region that will be
termed a "repackable volume. "

In addition, the pinwheel construction has an arbitrari-
ness as to which subnetwork of each network of points in
the pinwheel regions is occupied. There are always two
difFerent parallel-space packings of the repackable
volume corresponding to whether the even or the odd
nodes of the network are occupied. The repackable
volumes, their "poorly packed" tilings before the
pinwheel construction, and their two "well-packed" til-
ings for each structure to which the pinwheel construc-
tion has been applied will now be given. For all cases
here, the exterior of the repackable volume has the point
group of the network of special points, 6, , but the
decoration of the interior lowers the symmetry to that of
the subgroup of G,- consisting of the elements g; whose
parity, as defined in Sec. II, satisfies P (g;~ ) =0.

In the dodecagonal case, the repackab1e volume corre-
sponding to the first stage of the pinwheel construction
consists of 12 triangles and 6 squares. The exterior of
this region is a dodecagon. The poorly packed tiling and
the two well-packed tilings of this volume are shown in
Fig. 13. In essence, the pinwheel construction replaces
two distorted hexagons with four triangles and three
squares. The poorly packed tiling of the repackable

FIG. 13. Poorly packed and well-packed tilings of the
repackable volume for the dodecagonal sphere packing prob-
lem.

volume for octagonal symmetry and the two well-packed
tilings of this volume are shown in Fig. 14. The first
stage of the pinwheel construction essentially destroys
two concave octagons and replaces them with one square
and three flattened hexagons. Numerous poorly packed
tilings of repackable volumes can be seen in Figs. 2(d) and
7(d), corresponding to structure based on MCS's. In
Figs. 2(e) and 7(e), representing the corresponding tilings
after the pinwheel construction, many of the poorly
packed tilings are seen to be replaced by well-packed til-
ings. Finally, the repackable volume of the icosahedral
b-c network is shown in Fig. 15. The pinwheel construc-
tion makes this region well packed, consisting of 42 A
cells, 18 B cells, 20 C cells, and 6 D cells. Including the
interior, the point group of each well-packed tiling is 3.
Before the pinwheel construction, the interior is poorly
packed and contains noncanonical cells. This region was
independently discovered by Oxborrow in the study of
canonical cell tilings and is believed to be the smallest
rearrangeable volume consisting of canonical cells.

FIG. 14. Poorly packed and well-packed tilings of the
repackable volume for the octagonal sphere packing problem.
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FIG. 15. (a) Top and (b) front views of the repackable volume

for the d;„=0.5628 icosahedra1 sphere packing problem.
Thick lines indicate linkages along icosahedral twofold direc-

tions (b linkages). The volume shown can be tiled with canoni-

ca1 cells in two different ways.

Amusingly, for the icosahedral case, N = 12 and

p(r, )= —,'„exactly as for the dodecagonal case, so the

pinwheel construction again places six nodes on a net-
work where only five nodes were occupied before.

Where the pinwheel construction is iterable, successive
iterations repack regions of larger volume, as can be seen

by comparing Figs. 2(e) and 7(e) with Figs. 2(f) and 7(f).
It is to be noted that the shapes of the new repackable
volumes become more complicated. The details of the
shapes of these new repackable volumes have not yet
been worked out.

VI. DERIVATION OF INFLATION RULES

Whenever the pinwheel construction is infinitely iter-
able, the final atomic surface is fractal. It is then difficult
to compute the value of f (r ) for r near the boundary of
the fractal and thus it is difficult to calculate the parallel
space structure corresponding to the fractal atomic sur-
face.

A more practical way of generating quasiperiodic
structures corresponding to such complicated atomic sur-
faces is by inflation, if an inflation rule exists. Historical-
ly, the inflation rule for the square-triangle tiling was
found first, ' then this rule was found to lead to fractal
atomic surfaces. ' Here, the problem is considered in re-

verse: given a fractal atomic surface produced by the
iterated pinwheel construction, what, if any, inflation rule
is implied?

Inflation is a general property of the quasicrystalline
symmetries considered in this work, ' ' that is, if the
atomic surface is kept the same and the transformation
eIl~creII and e; ~+e;/o is performed, with cr such that
the D-dimensional lattice is mapped onto itself, then the
new structure is indistinguishable from the old one. An
equivalent operation is to (Ia) expanded the atomic sur-
faces about each point by a factor e and then (Ib) take

e; ~o.e,I. What we seek is an inflation rule in a stronger
sense, where the expansion of the atomic surfaces re-
places each node in parallel space with a set of nodes in a
manner that is equivalent for all nodes.

Simple inflation rules are possible for special atomic
surface shapes. Let A be the atomic surface and let o A

be the expansion of A by a factor of cr. Now if the set of
images of A, I A+6,r;j, with hr;=gb, n;.e completely
covers O. A without covering points not in o A, then
r"~tr" +b, rIlj, with b, r,"=g bn Jejj, is a simple rule for

step (Ia) of the infiation process for the structure. 3'

The inflated atomic surface of the iterated pinwheel
construction for dodecagonal symmetry can be complete-
ly covered with translations of the original atomic surface
if we include all of the pinwheel regions as part of the
atomic surface for the time being. The general inflation
symmetry for dodecagonal quasicrystals, eII~2eI',
+2e'I —e(, etc. , has 0 =2+v'3. Since each step of the
iterated pinwheel construction places dodecagons of
linear scale I /a that of the preceding dodecagons about
the corners of the preceding dodecagons, in the atomic
surface expanded by 0., the pinwheel regions can be ex-

actly congruent to the original complete atomic surface.
Furthermore, the displacements of the centers of these 12
pinwheel regions from the center of the expanded atomic
surface have integer coordinates Ig;(2eo —2e&+e3) j, as is

necessary for inflation. However, the translations just
found are insufficient to cover the expanded atomic sur-
face. If the translations (0) and (g;(eo —ez —e3) j are add-

ed to the above set, the set of translated surfaces then
does cover 0. A completely.

The parallel-space equivalent to the inflation rule (Ia)
just found is to replace each node with the set of nodes
shown in Fig. 16. The new nearest-neighbor distance be-
tween nodes should be I/(2+&3) that of the old
nearest-neighbor distance. One can see that adjacent ver-

tices of the central dodecagon violate the minimum sepa-
ration constraint. This is because the atomic surface that
generates this structure is one in which the pinwheel re-

gions are entirely filled, while in reality they are only half
filled. Half-filled pinwheel regions mean that only six of
the inner dodecagon points are occupied, thus in the true
inflation rule, each node is replaced by a set of tiles con-
taining a central hexagon in one of the two orientations
shown in Fig. 13.

The only dif5culty left is in determining the orientation
of the interior hexagon for each inflation step. This can
be done by applying a rule for filling the pinwheel to the
pinwheel construction and then using this rule along with

perp. -space information about each node to be inflated to
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packings. This section mentions some other ways in
which the density of a quasicrystalline sphere packing
can be increased over that produced by cutting a lattice
of MCS. Only the one-component sphere packing prob-
lem is considered throughout.

A. Relaxation of nodes from "ideal" positions

IP
FIG. 16. Parallel-space inflation for the fractal atomic sur-

face for the square-triangle tiling with the pinwheel regions
completely filled. In the actual atomic surface, the pinwheel re-

gions are only half filled, and thus in the actual inflation rule

only one of the hexagonal sets of nodes in the interior is occu-
pied, as in Fig. 13.

This work has maintained the assumption that the
atomic surfaces have no component along physical space,
that is, the atomic positions upon projection are always
r~~, where r, is the position of the center of the atomic
surface. More generally, it is possible to have displace-
ments of the atoms, that is, to have the atomic surface
centered at r, to contain points whose parallel com-
ponent is r,"+5r . The atoms in a real solid obey physical
interactions and know nothing about perp. space. One
would thus suspect that in any real material, atoms
placed at "ideal" positions would relax away from these
positions. Conceivably, the poorly packed regions of the
structures found would be compressed, leading to a larger
d;„in the relaxed structure than for the model and thus
a higher packing fraction.

determine the orientation of the inner hexagon upon
inflation. Alternately, a local inflation rule that main-
tains full dodecagonal symmetry and that never makes
use of perp. -space information is to take a random choice
of hexagon orientation at each inflation step. ' In perp.
space, the function f (r ) is taken to be randomly 0 or 1

for each value r ES;. Note that the value of the function
in various wedges of S; are no longer related by symme-

try; however, the average off (r ) over any finite volume
within S; is exactly —,

' so perfect dodecagonal symmetry is

maintained. This is the random Stampfii infiation rule.
In the octagonal case, the appropriate linear inflation

factor o is equal to 1+v 2. In contrast to the dodecago-
nal case, the pinwheel regions of 0.A are not congruent to
A. No translations of A cover the pinwheel regions
without overlap. Therefore, no simple inflation rule ex-
ists for this structure. It seems plausible that there could
be some more complicated inflation rule for this structure
because each step of the iterated pinwheel construction
after the first step places octagons whose sides are I/cr
that of the preceding octagons about the corners of the
preceding octagons, so there is some self-similarity under
expansion of the atomic surface. However, no specific
inflation rule has yet been determined.

The icosahedral b-c packing described, while arising
from a pinwheel construction, does not arise from an
atomic surface with self-similarity, therefore there is no
inflation rule for generating it. This does not mean that
there is no inflation rule for any b-c packing.

VII. LIMITATIONS OF THE PINWHEEL THEOREM

The pinwheel construction has proven useful in the oc-
tagonal, dodecagonal, and icosahedral sphere packing
problems. However, the pinwheel construction is not
powerful enough to always produce the highest-density

B. Use of "nonmonatomic" lattices

It is often possible to find structures that have a higher
packing fraction than those projected from a D-
dimensional Bravais lattice of a single atomic surface
shape. One way of increasing the packing fraction is to
place more than one atomic surface shape on the lattice
points. By using one atomic surface at the even nodes of
the 6D cubic lattice and a different atomic surface at the
odd nodes, Audier and Guyot ' were able to achieve a
packing fraction of 0.5583 (Ref. 25) for an icosahedral b c-
network. This structure has face-centered icosahedral
symmetry, the symmetry observed in the A1CuFe family
of quasicrystals.

A second way of increasing the packing fraction is by
adding additional atomic surfaces centered at other
points in the higher-dimensional lattice. In the octagonal
case, one could add a node to the center of each octagon
in the tiling. This is equivalent to adding an atomic sur-
face shaped like a small octagon to each body center of
the 4D cubic lattice and increases the packing fraction to
approximately 0.6723. In the icosahedral case, it is possi-
ble to include atomic surfaces to half of the body-center
positions of a face-centered icosahedral structure to ob-
tain a packing fraction of

' 1/2

f =—— s(1 ~+~ /2)—=0.5705 . (36)
3 —5 —6

2 4

The network now contains linkages of length ~ ' in
icosahedral fivefold directions and is an example of an
icosahedral a-b-c network. Surfaces that yield this pack-
ing fraction were found independently by Cockayne
et al. and by Katz and Gratias. In addition to the
higher packing fraction, the structure is a model for the
actual atomic positions in the AlCuFe family of
icosahedral quasicrystals.
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C. Use of alternative higher-dimensional lattices

The higher-dimensional lattice used here for decagonal
symmetry with D =4 is nonstandard. The higher-
dimensional lattice more commonly used is the D =5 cu-
bic lattice used for the 2D Penrose tiling. Such a lattice
has an associated D —d =three-dimensional perp. space.
One packing based on this lattice has a packing fraction
f=0.7386, which exceeds any decagonal packing frac-
tion found here.

D. Overpacking plus elimination

One commonly used method for generating quasi-
periodic packings is to produce a structure, for example,
by giving Penrose tiles a simple decoration, that has pairs
of atoms that are too close, and then eliminating some
points so as to eliminate these close pairs. This pro-
cedure was used to produce the Audier-Guyot
icosahedral b-c packing and the decagonal packing de-
scribed above. Henley eliminated points in the 3D Pen-
rose tiling to produce an icosahedral a-b packing with a
packing fraction f=0.6288, even higher than that corre-
sponding to the truncated stellated dodecahedron atomic
surface.

More recently, Mihalkovic and Mrafko have investi-
gated icosahedral b-c networks by generating the nodes
in a large-unit-cell periodic approximant corresponding
to an oversized atomic surface and then using Monte
Carlo methods to occupy a subset of these nodes to pro-
duce structures consisting entirely of canonical cells.
This work suggest that the atomic surface shapes corre-
sponding to an icosahedral canonical cell tiling would be
complicated and contain nonconnected regions.

E. Random growth

Random growth of icosahedral b-c networks has been
studied by Elser and by Robertson and Moss. They
obtained the previously stated result that a packing frac-
tion of 0.60 to 0.61 seems possible. The perp. -space map
of the coordinates of the nodes in the Robertson-Moss
packing suggest an atomic surface that, at the level of
resolution corresponding to the finite size of their model,
is a featureless "cloud" that is denser toward the center
of the atomic surface.

F. Nonpinwheel rearrangements

One nonpinwheel method of increasing the packing
fraction of a quasicrystalline sphere packing is of particu-
lar interest because it also produces nonconnected atomic
surfaces. One looks at a projected structure for poorly
packed regions other than the poorly packed regions
found by the pinwheel construction. Then, these regions
are repacked in a denser manner, and the repacking is
translated into the perp. -space alteration of the atomic
surface shape.

The method can be used in the decagonal sphere pack-
ing problem, where, as shown in Fig. 17, various regions
obtained in projecting the MCS can be replaced by re-
gions that are better packed. When this is done for every

FIG. 17. Repackable volumes of the decagonal tiling shown
in Fig. 9(c). These regions do not arise from the pinwheel
theorem.

such region, the new atomic surface obtained is shown in
Fig. 9(b). (Note that full decagonal symmetry is
preserved )Thi.s new atomic surface is not unique be-
cause there is some freedom in how to choose the orienta-
tions of the interiors of the decagons shown in Fig. 17.
The new decagonal packing fraction is

f =(1+2m )f (MCS) =0.7053.
This construction is somewhat analogous to the

pinwheel construction. The total volume is increased by
replacing the connected atomic surface with one that has
nonconnected pieces within regions centered on a set of
points that form a network. Again there is some arbitrar-
iness in how to choose f (r ) within these regions.
Effective constraint vectors limit the size of the regions in
which this construction can be done.

This construction differs from the pinwheel construc-
tion in that the network of "special points" may contain
odd-length loops (as it does here) and need not be located
on the original boundary of the MCS. Additionally, less
than half of the regions involved in the construction are
filled. Furthermore, the network of "special points" is
not a single orbit of G.

It is possible to expand the volume of the icosahedral
b-c network using a similar kind of construction. In
parallel space, there are points that have seven neighbors
in icosahedral threefold directions where it is possible to
replace these neighbors with eight neighbors in a set of
threefold directions that are congruent with the direc-
tions of a point to its nearest neighbors in a 3D bcc struc-
ture. In perp. space, this corresponds to expanding the
MCS about its threefold vertices. Although the network
that these vertices form has odd-length loops, the average
volume filled around each point can be increased from

2p

to —,0. The volumes that can be so refi11ed are 1imited by
additional constraint vectors. According to Eq. (13), the
maximal volume about each special point that can be —,',
filled is a regular dodecahedron of fivefold radius 0.5.
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s(1—r +5r /8)=0. 5616 .

The packing fraction achieved is
]/2

3f=
2 4

(37)

This modification of the icosahedral a-b-c packing is pro-
posed as a new model for the positions of the atoms in the
A1CuFe family of icosahedral quasicrystals.

These examples suggest the possibility that there is
some generalization of the pinwheel theorem and
pinwheel construction that could yield all possible ways
of increasing the packing fraction of a quasicrystalline
sphere packing. However, in contrast with the pinwheel
construction, where the set of special points can be sys-
tematically determined, no systematic way of finding
these other sets of "special points" has been found.

G. Combinations of methods

r' /2 —r' /4) =—0.5645 (38)

can be achieved by this process.
The 20 to 20 improvement is also possible for the

icosahedral a-b-c packing described in this section, and
improves the packing fraction to

' 1/2

f=—— s (1 r+r /2—+5r /8)
7r 3 —5 —6 —8

2 4

=0.5786 . (39)

It is sometimes possible to use more than one method
to improve the packing fraction for the quasiperiodic
sphere packing problem. In particular, the pinwheel
method, in combination with other local rearrangements,
can be used on the icosahedral b-c packing. However,
one must take care that the regions that are refilled via
the pinwheel theorem do not overlap the regions refilled
by the —,

' to —,', improvement. A packing fraction of
' 1/2

f=—— s (1 r+5r—/8+r /2
2 4

VIII. CONCLUSIONS

In this work, the quasiperiodic sphere packing problem
has been investigated. The atomic surfaces for the most
dense packings may be nonconnected. In fact, a simple
test, the pinwheel theorem, can show that a given con-
nected atomic surface is not the surface that leads to the
densest packing.

The details of finding a nonconnected atomic surface of
higher volume than the given connected surface are
given. For the dodecagonal case, the atomic surface for
the square-triangle tiling, a fractal, is the surface found
by this procedure. It is found without incorporating any
knowledge into the derivation that the final projected
structure should consist of only squares and triangles.

However, although the pinwheel construction im-
proves the packing fraction for an icosahedral b-c net-
work over that obtained from a connected atomic sur-
face, it does not produce the icosahedral b-c network of
highest density. The existence of nonconnected atomic
surfaces in the decagonal and icosahedral cases which do
not arise from the pinwheel theorem leaves open the pos-
sibility that the pinwheel theorem is a special case of a
more general technique that can be used in determining
the highest-density quasicrystalline sphere packings.
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