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Exact ground state of the Hubbard model on a double-layer square lattice
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A group of analytical wave functions is confirmed to be the ground state of a Hubbard model on a
double-layer square lattice in the case of half-filling and in the case with one or two doped holes for a
range of parameters. The method is based on the variational principle, and no approximations are ap-

plied. In the case of half-filling, the ground state is a product of local pairs. In the case of one or two

holes, the doped holes are freely moving in the above background. In both cases there exists a long-

range order of the evenness and oddness with respect to the layer parity.

I. INTRODUCTION

Recently, great theoretical effort has been undertaken
in the study of two-dimensional (2D) strongly correlated
fermion models, which have been suggested as the basis
in the description of the properties of Cu02 layers in
high-T, copper-oxide superconductors. Although the
mechanism of superconductivity in these materials
remains the main issue, increasing research has been de-
voted to the understanding of the normal-state proper-
ties, especially the transition from the insulating antifer-
romagnets to the metallic phases by the process of doping
of the carriers. The simplest (but still very complex)
problem is the behavior of a single doped hole in a back-
ground formed by the fermions at half-filling. It is be-
lieved that the solution of this problem may give useful
information on the general properties of the doped car-
riers.

Despite the strongest interest, there still exist
significant difficulties in this study. In general, the Ham-
iltonian of a two-dimensional model cannot be exactly di-
agonalized. At this stage, it seems useful to construct
special analytical wave functions which can be rigorously
verified to be the eigenstates, or even more, to be the
ground states of some models in more than one dimen-
sion. These rigorous results can provide reliable informa-
tion on the general features of strongly correlated sys-
tems, and can serve as benchmarks for approximate
theories. In recent years some progress has been made in
this line. Lieb has proved several theorems on the eigen-
states of the Hubbard model. ' From the analysis of SO(4)
symmetry of the Hubbard model in d dimensions, Yang
and Zhang have specified a group of eigenstates which
are of the g-pairing type and have off-diagonal long-range
order. ' Essler, Korepin, and Schoutens have construct-
ed an extended model in d dimensions, and obtained its
exact eigenstates also by using the g-pairing theory.
From an operator identity, Brandt and Giesekus have ob-
tained the exact ground-state energy for the Hubbard and
periodic Anderson model on a peculiar d-dimensional
perovskitelike lattice at the limit of infinite interaction
strength (U~ oo ). By use of the same method, Strack
has found the exact ground-state energy of the periodic

Anderson model in d =1 and the extended Emery model
in d =1,2 at the limit of U~oo for special parameter
values. At the same time, several analytical wave func-
tions have been specified as the exact ground states for
frustrated Heisenberg models or the extended multiband
Hubbard model on special lattices in d =2 or 3. ' In
these works the eigenstates are constructed from a so-
phisticated selection of the lattice structure and the
values of parameters, and then some of them are proved
to be the ground state by matching their energies to a
lower bound of the ground-state energy, which is usually
determined by the variational principle. " ' The
method of finding a lower bound of ground-state energy
has been further developed in recent years. '

The theory of g-pairing symmetry of the Hubbard
model provides a systematic method of finding a spe-
cial group of eigenstates for finite U. Unfortunately, in
the repulsive case (U) 0) these states are not the ground
state. On the other hand, a set of analytical wave func-
tions have been specified as the exact ground states for an
extended Hubbard model on a double-layer CuOz lattice
with two orbits per Cu site in both the insulating case and
the case with a few itinerant carriers. ' The inclusion of
two planes and two orbits per Cu site in this model pro-
duces a U(2) XU(2) symmetry, in addition to the SO(4)
symmetry with respect to the spins and the g pairs.
Perhaps it is this additional symmetry that creates the
possibility of finding the exact ground states in the case of
finite repulsion. It is interesting to notice that the ground
state of a few carriers doped to the insulating background
is extended, retaining the state of the background almost
unchanged, but their momenta are restricted in two direc-
tions. ' The situation is just like two independent Lut-
tinger liquids, overlapped together, with one-dimensional
momenta in two cross directions.

In the present paper, I will present a set of analytical
wave functions as the exact ground states in a range of
parameter values for a single-band Hubbard model on a
double-layer square lattice. The spin- —,

' fermions fill the
lattice, one orbital per site. The interlayer and intralayer
nearest-neighbor (NN) hoppings, the on-site repulsion,
and the interlayer NN repulsion are taken into account.
This model can be viewed as a double-layer version of the
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primary Hubbard model. ' Such a double-layer lattice
can be used to mimic the structure of two nearest Cu02
planes in the Y-Ba-Cu-0 or Bi-Sr-Ca-Cu-0 high-T, ma-
terials. This structure has a U(2) symmetry with respect
to the layer index, instead of the U(2) X U(2) symmetry of
the model described in Ref. 10. At the same time, a
chemical potential is introduced to specify the filling
status. The ground states are given for the case at half-
filling and for the case with one or two doped holes. In a
range of parameter values, the ground state at half-filling
is a product of local pairs. If a few holes are doped, they
are mixed with this background and can move freely on
the plane with renormalized mass. Unlike the case in
Ref. 10, here the momentum direction is no longer re-
stricted, but their parity, defined here as the evenness or
oddness, in the layers coincides with the parity of the lo-
cal pairs in the background. The parity of the local pairs
has long-range order, but there is no antiferromagnetic
structure. This is because of the special structure and the
conditions under which the ground state is found.

This paper is organized as follows: In Sec. II, we de-
scribe the Hamiltonian and present a set of analytical
eigenstates for a range of parameter values as candidates
of the ground state. In Sec. III, the ground state at half-
filling is specified by the variational principle. In Sec. IV,
the ground state in the case with one or two holes is
specified. In Sec. V, the properties of the system are dis-
cussed from the obtained results. The conclusions are
summarized in Sec. VI.

II. THE HAMII. TONIAN
AND THE EXACT EIGENSTATES

The Hamiltonian of the model can be written as

H= —g t&(a;„a,„+H c . )
—Qt.2(.a, , a;2 +H. c. )

(2)

where H"' is the first sum on the right-hand side of Eq.
(1), and H' ' includes the rest terms. For the system with
only H' ', the pairs of the interlayer NN sites are isolated
from each other, so one can write the eigenstate of it as

~= n~', ~».
where ~0) denotes the vacuum, and P„ is a pair-creation
operator defined as

Pl ['a'1ta'1$ +a ltai2$ '2t '2L +a'2taili ]

The total number of fermions in state 4, is N, the total
number of the sites, corresponding to the case of half-
filling, and the eigenenergy is

E, =E(U/2 —t2 —p, ) .

At the same time, applying H"' on state 4, results in

zero. This can be verified by the relations of the fermion
operators:

[a;„,g, k ] =[a,„,1(ttk ] =0 for iWk

and

g(a,"„a„+H.c. )P„g» ~0) =0 for iWj .

p, o

From these relations, one has

a'"e, =o.
This means that 4& is also an exact eigenstate of Hamil-

tonian H with energy c,
More generally, it can be verified that the states

0) (1=1,2, 3,4)

Unipanip cr p'c g''ni v
lPcT

f po. )&(p'~')

where a;„ is the creation operator for the spin- —,
' fermion

at the ith site of the iu, th plane (iLi, =1,2) with spin o.

(o' = 1, J, ), t
&

and t2 are the intralayer and interlayer NN

hopping strengths, respectively (the site in a plane is

numbered so that the two interlayer NN sites have the
same index), U is the Coulomb repulsion of two fermions
at one site or on two interlayer NN sites, n,„=a,„a;„
is the number operator, and p, is the chemical potential.
The sum for po. and p'o' in the third term is taken over
all the pairs of different combinations (per ) and (p'o '). In
this model the on-site and interlayer NN repulsion
strengths are the same, the other repulsion terms are
omitted. This optional choice is applied to guarantee the
solubility of the model. The model becomes the primary
2D Hubbard model when the number of planes is re-
duced to one. For such a double-layer structure, there is
a U(2) symmetry with respect to the layer index, in addi-
tion to the SO(4) symmetry for the spins and the rt
pairs. '

The Hamiltonian can be sorted out into two parts:

with

g,+, =
—,
' g v„t(l)v„.t(l)a, „ta,„i

and

1 for iM=1 or l =1 or l =3 and o = 1'

v (i)= or 1=4 and o =1
—1 otherwise,

are eigenstates of H at half-filling with energies

Ei —X[U/2 —
iLi,

—[v2t(l)+v2)(l)]t~l2] . (10)

Here the sign functions v„(l ), l = 1,2, 3,4, reflect the
parity (evenness or oddness) at layer p of the particle. At
the same time, Pi, , I = 1,2, 3,4, can be regarded as the lo-

cal expressions for symmetry generators, which form the
U(2) algebra for the local interlayer pairing.

Now we consider the case with particle number out of
the half-filling. Here we only investigate the states of
hole doping. The situation of electron doping can be ob-
tained by the particle-hole transformation. When a single
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hole with spin ( —o) is doped, the following wave func-
tion

4z" =&IIN +exp(ik r, )

J lWJ

X [aJ., +vz (1)a.2 ]~0 ),
with arbitrary 2D momentum k, is an exact eigenstate of
H with eigenenergy

g~u;„a,„+&c. ) P~;[a, ~~+v~~(i)aJ2~]10&

=l(t& [a;, +v2 (l)o,.2 ]~0) for i'
Thus, we obtain

H"'4'„" =2t, [cos(k„d )+cos(k d )]4'„"

Combining Eqs. (13) and (15), we can prove

(14)

(15)

(16)

+2t, [cos(k„d)+cos(k d)],
where r. is the 2D coordinate of the jth site, d is the site
spacing of the square lattice. This can be verified by ap-
plying the two parts of the Hamiltonian H'" and H' ' on
this wave function. As H' ' is the Hamiltonian of in-
dependent interlayer pairs, we have

By the use of the relations in Eqs. (6) and (7), it can be
proved that applying those terms in H"', which do not
involve the operators of the jth site, on the jth term in
the sum of the right-hand side of Eq. (11),yields zero. At
the same time, for the terms in H'" involving the jth site,
we have the relation

P&; is a creation operator for a local interlayer pair.
Here the parities of two particles of the pair are described
by a single quantum number, /. It can be seen that 4& is

just a background formed by the local pairs with the
same parity number l. The restriction on the parity of in-
dividual pair corresponds to the symmetry breaking
caused by the correlation effect of the model. It is in-
teresting to notice that a single hole is simply imbedded
in this background, and can move freely in the plane with
arbitrary 2D momentum, but its parity is also restricted
by the parity of the background, as can be seen from the
sign factor v2 (l) in Eq. (11). This situation is different
from that of the multiband double-layer model on a Cu02
lattice, where the parity of a single carrier is not restrict-
ed, but the direction of the momentum is restricted in the
principal axes of the oxygen sublattice. '

If M holes (M (N/2) are doped, the following wave
functions are exact eigenstates of the system:

M
=N ~ gg g +exp haik r

Jl J2 Jx JM . x 1 &+J]&J2~ ) J~) ~ ~ ~ ) J~
Pl' g [~ ' +v2. (i)~,' . ] l0 & (17)

with eigenenergies

1 — e( t~ g v~ (1)—M@, —
x=1

M
+2t, g [cos(kr„d ) +cos(kid )], (18)

searching the ground state. In order to find out if one of
them is the ground state, we should first determine a
lower bound of the ground-state energy, and then com-
pare the energies of the candidates with this bound. In
doing this we divide the Hamiltonian into N sub-
Hamiltonians:

where A'M is an ensemble of M different combined
quantum numbers: (k„o,), (k2, o 2), . . . , (kr, o' r), . . . ,
(kM, oM). These eigenstates can also be verified by ap-
plying the Hamiltonian to them. In these states the pari-
ties of all the doped holes are the same as that of the
background. At the same time, the other quantum num-
bers, k and o., are filled by the holes just like a free-
fermion system. As the parity is restricted, a pair of sites
can only accommodate one hole per spin, and the lam-
inate hopping in this double-layer structure is renorma1-
ized to that of a single-layer structure.

III. EXACT GROUND STATE AT HALF-FILLING

N
H= gH

where

H = —g t, (a,"„a„+H c)..
P, cT

—
—,g ~2(a;,~a, 2~+aJ. ,~aJ2~+H. c. )

+ 4
(po )&[@'o')

4@~ g (n;p~+ nJp~),
PcT

(19)

(20)

In the last section we have presented several analytical
eigenstates of the Hamiltonian. These states are far from
complete, but they can be used as some candidates in

here i = [(m + 1)I2],j is such a nearest neighbor of i that
r =r;+xd if m is odd and r.=r,-+yd if m is even, x and

y are the unit vectors along the x and y directions, re-
spectively. It can be seen that all the sub-Hamiltonians
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are the same, except a dummy index m. So they have the
same eigenvalues. If c;„is the lowest eigenvalue of H
for all possible fermion numbers, then Xc. ;„ is a lower
bound of the ground-state energy of 0, in accordance
with the variational principle. " ' c;„can be deter-
mined by comparing all the eigenvalues of H

If X, the fermion number in the subsystem, is zero,
the corresponding lowest eigenvalue of H is also zero,

E (0)=0. (21)

In the case of N =1, there are eight eigenstates, and the
lowest eigenvalue is

E (1)=—
ILt, /4 —it, —

it2 /4 . (22)

After a tedious calculation, the lowest eigenvalues for
E =2, 3,4 are

(2)= —p, /2 —lt2 /2

where x 2 is the smallest solution of the equation for x:

x — x +(U /4 —12t& )x+8t &U=O .5U

c (5)= —5p, /4+ U —
it2i /4

+mint x „—
I t, I

—
I t, I /2I,

E (6)= —3p, /2+ 13U/8
I tp I /2

—(U l64+4t )'

E ('7)= —7p, /4+9U/4 —
lt&I

—It21/4,

(8)= —2p, +3U .

(28)

(29)

(30)

By the use of these results, the lowest eigenvalues in the
cases of N =5,6,7, 8 can be obtained from the particle-
hole symmetry,

—(U l64+4t )' +U/8,

( 3 ) = —3p, /4+ U /4 —
I t z I

/4

+minIx„—it, I

—lt, l/2],

where x, is the smallest solution of the equation for x:

x' —(U/2 —lt, l)x' —(U/2+5lt, l)lt, lx

+t, U+3it, i
=0,

(4)= —p, + U/2+minI —it, l,
—lt, l/2+ U/8

—(U /64+4t )' x

(23)

(25)

(26)

So a lower bound of the ground-state energy of H can be
determined as

cq,„„d=Nmino ~ 8IE (N )} . (32)

lt2I ~ —minI —lt2I/2+ U/8 —(U /64+4t, )',xzl

(33)

It depends on the parameters t „1,2, U, and p, .
In the last section we have found four eigenstates of H

in the case of half-filling, 4&, t =1,2, 3,4. If the eigenval-
ue of one of these candidates saturates the lower bound, it
is the true ground state. From this we can obtain that,
when

25. 0
and

/'

20. 0

15.C-
(c)

1.2

0.. 8

0.0 0.2
I

0.4 0.6
I

0.8

0.4

FIG. 1. The regions defined by conditions (33) and (34) are
plotted in the p, -t, plane. t2=1. Region (a) is for U=2. 5, (b) is
for U=5.0, and (c) is for U=10.0. A portion of the boun-

daries, which is defined by the equalities of (34) and meets con-
ditions (33) and (38), is marked by shady lines.

0.0 20.0 40. 0 60 0

FIG. 2. The region defined by condition (33) is shown by a
shady area in the t1 —U plane. t& = l, and p, is arbitrary.
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2U+3I&2I+4minIx~, —i&&I-1&21/2I —p, U —3lt21 —4minfx&, I~pi lr21/2J, (34)

then 4, is the ground state for t2 0 and 42 is the
ground state for t2 0, with ground-state energy c, and

c.z, respectively.
For positive t, , t2, and U, we illustrate the parameter

regions which meet conditions (33) and (34) in Figs. 1 and

2. The regions are plotted on the IM,
—t, plane for several

choices of U in Fig. 1, and plotted on the t&
—U plane for

arbitrary value of JM, in Fig. 2. The value of t2 is defined

as the energy scale. Only a portion of the boundaries of a
region, marked by the shady lines in Fig. 1, is the borders
separating the half-filling and the doped areas. These
borders will be discussed later. Conditions (33) and (34}
are satisfactory for 4, or 42 being the ground state, but

may not be necessary. It can be seen that these parame-
ter regions are enlarged if the repulsion strength is in-

creased. At the limit U~ ~, there is no restriction on
the values of t~ and t2 for meeting condition (33), and the
range of p, defined by inequalities (34) also approaches
infinity.

IV. THE EXACT GROUND STATE IN THE CASE
WITH ONE OR TWO DOPED HOLES

and

1 for t2 &0,l='
2 for t2 «0,

(0,0} for t& ~0,

(35)

The method mentioned above can be used to determine
the ground state not only for the half-filling case, but also
for the case with doped carriers. In fact, the lower bound
for ground-state energy given by Eq. (32) is valid for any
filling status. In this section we consider the case with a
few doped holes, which may be of interest in understand-
ing the interplay between the repulsion terms and the
itinerant terms in the model.

If a single hole with spin (
—o) is doped, from Eqs. (11)

and (12), the possible candidate for the ground state is
e„'" with

the bottom-marked boundary of the region in Fig. 1.
Equation (39) specifies the value of chemical potential for
one-hole doping status. At the same time, the top-
marked boundary in Fig. 1 corresponds to the case with
one particle doped.

In a similar way, we can verify that under the same
conditions the state 4~, defined in Eq. (17), with M=2
and %2= t( 1', k), ( J, ,k)I, and I and k given by Eqs. (35)
and (36), respectively, is the exact ground state with the
same energy as c&""',and with two holes doped.

In the case with more than two holes doped, we cannot
rigorously specify the ground state. Nevertheless, the
most possible candidates may be selected from the states
described by 4&' . For a given hole number M, the en-

semble RM with the lowest energy is such that the doped
holes occupy the lowest levels defined by the last sum on
the right-hand side of Eq. (18) and form a pseudo-Fermi
sphere. Meanwhile I is given by Eq. (35}. Although the
energy of this pseudo-Fermi sphere does not saturate the
lower bound of Eq. (32), the per-site energy increment
with respect to this bound is only a quantity of the order
of M/N:

5e(R~)/N=@ iti iM/N . (40)

V. SOME REMARKS ON THE PROPERTIES
OF THE STATES

In this section we qualitatively discuss some properties
of the states obtained above. This is far from complete,
but may be useful for further investigations.

When a finite number of holes are doped into an infinite
lattice, this per-site increment is infinitesimal. This is be-
cause the states (17) do not violate the main structure of
the background. At the same time, those states which in-
volve a change of the background should cause a finite
per-site energy increment. So we can argue that in this
situation the pseudo-Fermi sphere is most likely to be the
ground state.

k
(m;m) for t, ~0, (36) A. Long-range order

having the eigenenergy

eI""'=N(U/2 —it, i

—
JM, )

—
Up+, i+t, i 4iti i

. (37—)

From Eqs. (32) and (37), we can prove that if the condi-
tions

(38)

(39)

and condition (33) are all satisfied, EI" "' saturates the
lower bound of the ground-state energy and the state 4z"
with 1 and k given by Eqs. (35) and (36) is the exact
ground state. The parameter region for these conditions
is just a part of the boundaries of the region defined in the
last section for the case of half-filling. It is illustrated by

Unlike the single-layer model, the ground state at half-
filling 4& (1 =1 or 2) does not exhibit antiferromagnetic
order. However, there is another type of long-range or-
der: the order in the interlayer parity l. In the ground
state, the parities of all the local pairs are the same. Fur-
thermore, when a hole is doped, it also takes the same
parity. For the quantitative description one can define an
order parameter as

(41)

where ( . . ) denotes the statistical average. In the
ground state at half-filling, 6, or h2 is 1 and the others
are zero. A quantum fluctuation occurs only when holes
(or electrons) are doped.
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B. Is the system with doped holes a Fermi liquid?

Although the ground states of one and two doped holes
are found, the question whether the Fermi-liquid charac-
teristics are resumed in the system with more doped holes
is still open. The state of the pseudo-Fermi sphere de-
scribed in the last section, most likely being the ground
state at the limit of M/X~O, behaves like a Fermi sea
containing free holes embedded in a background of local
pairs. The only restriction on the holes is their layer par-
ity. Unfortunately, the states described by Eq. (17)
represent only a little portion of the degrees of freedom.
The other states are still unknown. It can be expected
that they should involve some kind of fluctuations of the
background. Thus, the energy-momentum relation is not
so determinant as that of Eq. (18). As these states may be
involved in a large portion of the low-energy excitations,
the system is not a standard Fermi liquid, even though
the pseudo-Fermi sphere may be a ground state.

VI. SUMMARY

We have defined a Hubbard model on a double-layer
square lattice. In this model, the intralayer and inter-
layer NN hoppings, and the on-site and interlayer NN
Coulomb repulsions are included. It represents some
main features of the 2D strongly correlated system, but is
easy to solve. A set (far from complete) of the exact
eigenstates is presented as the candidates of the ground
state. By the use of the variational principle, the ground
states in the case of half-filling and in the case with one
and two doped holes are specified for a certain region of
the parameter space. In this procedure no approximation
is applied. At half-filling, the ground state is simply a

product of local interlayer pairs, having long-range order
of the layer parity. If one or two holes are doped, they
are simply embedded in this background, and can move
in the plane freely, but their layer parity is restricted by
the background. In the case with a few (more than two)
holes doped, the most possible candidate of the ground
state is a pseudo-Fermi sphere with the background un-
changed, but the Fermi-liquid characteristics are unlikely
to be resumed because of the enormous number of de-
grees of freedom for the low-energy excitations arising in
the background.

A striking difference of these states from those of the
single-layer model is the absence of the antiferromagnetic
order and the accompanying quantum fluctuations. The
structural source of this difference is the additional U(2)
symmetry of the layer index. In the parameter regions
investigated in this paper, the features governed by this
symmetry are dominant over the others. At the same
time, the present model also has the SO(4) symmetry of
the Hubbard models, with respect to the spins and the g
pairs. So it is possible that in the other parameter regions
the system may exhibit the same antiferromagnetic order
as that of the single-layer model. However, at the strong-
est correlation limit (U~ oo), the order of the interlayer
parity is dominant for any finite values of t, and t2, as
has been discussed in Sec. III. It is interesting to investi-
gate the interplay between these different long-range or-
ders in further studies.
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