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A numerical model for the dynamics of a classical wave equation in a two-dimensional Anderson
disordered medium is integrated over times of the order of 27000 inverse bandwidths. Excitations by
narrow band sources lead to wave energy densities whose ensemble averages behave diffusively at early
times. The behavior at more general times and distances is, however, not difFusive. The observed trans-

port pro6les are shown to be inconsistent with predictions from a simple hydrodynamical continuum
model of Anderson localization, and to the hypothesis of exponentially slow difFusion. The evolution of
the energy density distribution in systems with varying disorders and microstructures, and over a range
of length scales, is found to collapse to a single function of rescaled space and time well approximated by
e (x, t) =exp( —x /g —(x2+ "/4ppt)r't with n =0.46, p =0.76, where x is the distance from the source, g
is the localization length, and the P is a "residual diffusivity" not equal to the bare diffusivity. Dissipa-
tion is shown to have no delocalizing effect.

I. INTRODUCTION

Classical wave systems resemble their electronic coun-
terparts in many ways. Amongst the significant
difFerences one may count the lack in electronic systems
of a true analog to dissipation, and the lack in most clas-
sical systems of significant inelastic processes in which
waves may change their frequency or lose temporal phase
information. Nevertheless, the purely wave aspects are
very similar. Hence it has been anticipated for some time
now that classical waves should localize in sufBciently
disordered media. ' Indeed because of difBculties con-
trolling electron-electron interactions and in controlling
the rate of inelastic processes, the electronic metal-
insulator transition is now understood to be a poor exam-
ple of Anderson localization. In order to better isolate
the efFects of disorder, and to study the Anderson transi-
tion with less obscuration by electron interactions and in-
elastic processes, a search for localization of classical
waves is in progress. ' ' In such systems one could con-
ceivably better control nonlinearity and inelastic scatter-
ing rates. ' Furthermore, in such systems one potentially
has access to time-domain behavior and to new physical
phenomena related to the different types of wave equa-
tions.

As long anticipated, ' recent experimental work at-
tempting to demonstrate anomalous diffusion and Ander-
son localization of classical waves, in the electromagnet-
ic' ""and acoustic' ' cases, has concluded with vari-
ous ambiguities because dissipation has obscured the
transition. As recently emphasized, however, ' dissipa-
tion does not cause the otherwise localized eigenfunctions
to become extended, but merely enhances the sensitivity
of certain types of measurements to the short-time scales
on which anomalous diffusion may be less manifest. In a
measurement conducted in the time domain, however,
such as that of Ref. 12, or in a measurement of

frequency-frequency correlations such as that of Refs. 10
and 11, the experimentalist can hope to distinguish the
effects of dissipation from those of anomalous diffusion.
Indeed this access to the time domain is one of the attrac-
tions to the study of classical wave localization.

In carrying out such work, however, the experimental-
ist has been put at a disadvantage by the lack of theory
for time-domain behavior. Genack and Garcia's' '"
analysis of microwave transmission through a system of
aluminum and polystyrene balls was based in part upon
the notion that transport in a sufficiently dissipative but
otherwise localizing system would appear fully classically
diffusive. A reanalysis of experiments such as these re-
quires that we replace that model with a correct one. It
is the intention of the present communication to present
evidence for the behavior of anomalous wave transport in
the time domain that could, ultimately, be used to gen-
erate a more precise model and thereby inform the inter-
pretation and reanalysis of experiments like these.

The theory of anomalous wave transport in the time
domain is not well developed. There is very little discus-
sion of generalizations of the diffusion equation Green's
function, or generalizations of the difFusion equation it-
self, appropriate for an Anderson localizing medium.
White et al. ' have presented a few results for one-
dimensional systems. Abrahams and Lee' considered
the electron dielectric function's q and co dependence in
2+ m dimensions near the mobility edge. Presumably be-
cause there is no edge in two dimensions, their expres-
sions become indeterminate at a=0. A simple hydro-
dynamical model of a particle diffusing under the
influence of a restoring force has been shown' to general-
ize classical diffusion to the diffuse transport of a localiz-
ing quantity. As mill be seen in this paper, however, that
model does not describe observations. The goal of the
present project, of which this paper is a part, is to discov-
er the correct function.
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Experimental work in the time domain on Anderson
localization and anomalous diffusion in dimensions
greater than one is confined to the work by Weaver, '

and, inasmuch as measurements of frequency-frequency
intensity correlation functions imply measurements of
time-domain behavior, that of Genack and Garcia. '

Numerical work in the time domain is reported by
Prelovsek, Scher, ' Shore and Halley, Weaver and
Loewenherz, Weaver, ' and Vanneste, Sebbah, and Sor-
nette. None of these studies have been conducted with
suScient detail for the unambiguous determination of the
effective transport behavior. In Refs. 20, 21, and 23 the
sole interest was the evaluation of the mean-square dis-
placement (R (t)) of the diffusing particle. (R (t)) is
related to the second moment of a more fundamental
quantity: the particle (or energy in a classical wave sys-
tem) density e ( r, t ) as a function of space and time.
Weaver' presented numerica1 studies in order to demon-
strate the incorrectness of the usual hypothesis regarding
the effect of dissipation upon e(r, t), but he did not at-
tempt to quantitatively characterize the function. Recent
experiments measuring e in two-dimensional ultrasonic
system' were marred by the action of unknown agents
which seemed to deenhance the localization and made
quantitative conclusions difBcult. One of the few firm
conclusions, other than that the system did exhibit locali-
zation, was that the fit of e(r, t ) to the predictions of the
simple hydrodynamical model' was poor. While time-
domain behavior is implicitly addressed by Genack and
Garcia, ' '" that work measures only one time-domain
parameter, the width of the photon time-of-Bight distri-
bution. Shore and Halley numerically investigated the
time-domain response of the electron current in a small
three-dimensional Anderson model to a step voltage
change. The samples considered were small, however,
and interest restricted to the earliest times. Thus very lit-
tle is known about the time-domain behavior of anoma-
lous wave transport.

This paper will present results obtained from numeri-
cal experiments in an attempt to rectify this lack. In the
following section a numerical model is introduced which
allows the tracking of evolving wave energy density in a
two-dimensional classical wave equation version of an
Anderson model disordered Hamiltonian. The behavior
of the evolving wave energy density at short times and
distances is discussed in Sec. III. The results there are
compared to the predictions of a classical diffusion equa-
tion and used to extract values for the bare diffusivity.
The moderate- and long-time behavior at all distances is
presented in Sec. IV and shown to be independent, within
a temporal rescaling, of disorder, and independent, after
a further rescaling, of distance from the source. An ana-
lytic form is proposed for the resulting general function
of time and distance from the source. Section V intro-
duces a non-Anderson model disordered system for
which the behavior is identical thereby suggesting that
the observed energy evolution profiles have some univer-
sal character. The energy density evolution is shown in
Sec. VI to be incorrectly described by a simple hydro-
dynarnical continuum model, and in Sec. VII to be only
trivially modified in the presence of dissipation. The pa-

per concludes with a summary and some recommenda-
tions for further work.

II. NUMERICAL MODEL

where the bold index n runs over the sites of a large
square lattice. The sum is over the four nearest-neighbor
sites m of site n, and k, is 5 plus a random number taken
from the uniform distribution [0, W]. The frequency
domain version of (1) is, neglecting F, precisely equivalent,
to the tight-binding Anderson model. It has identical
eigenfunctions. The eigenfrequencies differ, but in a
smooth fashion. The difference in eigenfrequencies is an
inevitable consequence of going to a classical model. As
described below, and for a narrow-band disturbance, the
difference is unimportant.

Equation (1) represents a forced classical version of an
Anderson model. It may also be understood as an exact
description of the transverse dynamics of a planar array
of masses and random springs coupled by in-plane iner-
tialess strings with uniform tension and driven by an
external force F. Alternatively, (1) may be thought of as
a spatially discrete version of a classical wave equation
for a tensioned membrane on a random elastic founda-
tion.

Equation (1) may be made to look like the Schrodinger
equation by letting v be of the form

v„=Re[/, (t ) exp I i Qt }], (3)

where 0 is a constant equal to the mean frequency of the
narrow-band disturbance and g(t ) is complex and slowly

varying. With this substitution the unforced version of
Eq. (1) becomes

(4)

Neglecting a plat compared to Qaglat, one recovers a
spatially discrete Schrodinger equation:

(5)

The evolution of systems like that of Eq. (5) from
specified narrow-band initial conditions has been studied
previously. ' ' In this work we numerically study the
evolution dictated by Eq. (1) rather than, like Prelovsek
and Scher, ' Eq. (5). While the two systems must have
behaviors under narrow-band excitations that are rough-

ly equivalent, Eq. (1) has a few virtues which recommend
it. Amongst these is its ready generalization to damped
systems, ' its interpretation as a spatially discrete version
of a classical wave equation, and the ef5ciency with
which it can be implemented in a conditionally stable
central difference scheme.

The classical dynamics of an undamped two-
dimensional V=1 Anderson model may be described by
the following equation of motion:

a2v„Iar'+k„v, yv =—F„(r),
or, in matrix notation
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Solutions of Eq. (1) are obtained here for systems with
widths of the order of 100 or more and lengths of the or-
der of 200. These dimensions have been chosen
sufficiently large that the boundaries are expected to be
unimportant. In estimating the required sizes, the con-
clusions of McKinnon and Kramer, in which similar
systems were investigated for their localization lengths,
were employed. In practice a width (or circumference, as
the strip has periodic boundary conditions across its
width) of at least 14 times the localization length was
used, thereby ensuring that the localization lengths in the
strip of finite width are within a couple of percent of the
localization lengths in a strip of infinite width. Con-
straints on numerical resources, therefore, required that
the systems investigated have sufficiently short localiza-
tion lengths. On the other hand, localization lengths
comparable to the mesh spacing do not allow much reso-
lution of behavior on length scales comparable to or
shorter than g. Therefore the following cases were stud-
ied: W/V= 1 1, 10, 9, and 8 with, according to McKin-
non and Kramer, localization lengths of (=4.22, 5.451,
7.296, and 11.07, respectively.

The excitations F(t) were taken to be tone bursts ap-
plied uniformly across the width, on the central row of
the mesh. Boundary conditions were taken to be period-
ic in the width direction and fixed at the far extremities in
the length direction. The systems may therefore be pic-
tured as meshes in the shape of long cylinders with exci-
tations applied to the central ring.

For the most part the data to be presented here are
taken from points well removed from the edges, at dis-
tances greater than 5.5$ from the ends. Thus the
influence of the ends may be expected to be of order
exp( —11) or less. The large system circumferences
( —14$} are such that one would anticipate the minor
contribution from helical ray paths to arrive late, delayed
relative to direct paths by a time of order (14$) /D, and
to be diminished in importance by a factor of order
expt [(x/g) +196]'~ —(x/g) J relative to the direct
path. One would therefore surmise that the effects of the
finite geometry are slight and that the data to be present-
ed are representative of those corresponding to an infinite
medium. This surmise has been confirmed by compar-
ison of results obtained in systems of different sizes.

Equation (1} was solved by central diff'erences with a
time step 6t chosen short enough to ensure numerical sta-
bility and to ensure that the results are in rough approxi-
mation to those that would be obtained if the time step
were infinitesimal.

v ( t +5t ) —2v ( t ) + v ( t 5t )= [ Xv( t ) +F—)(5t ) . (—6)

This difference equation is stable if 2/5t is greater than
the square root of the largest eigenvalue of E. A
sufficient condition is then 5t (2(9+W/V) ' . In the
cases presented here 5t was set to (9+W/V) '~ =0.23.
Inasmuch as the eigenfunctions of the system (the eigen-
vectors of K ) are independent of the temporal
differencing, the precise choice of time step size is expect-
ed to be unimportant; such was indeed found to be the
case. The resulting energy density was averaged in the
width direction (parallel to the line source) and rnoni-

tored as a function of time and distance from the source.
Thus the evolution is quasi-one-dimensional. However, a
presumption of isotropy in the transport properties and
sufficient width in the strips studied allow the present cal-
culations to be relevant to fully two-dimensional evolu-
tions. Furthermore, the use of a line source rather than a
point source, and the averaging of responses along lines
parallel to the source, reduce the need for configuration
averaging. They consequently lower the computational
burden below that which would be needed for a study of
the evolution from a point source.

The calculations were carried out at single precision
(four bytes per floating point number) on a Hewlett-
Packard Apollo 9000/750 workstation. The accuracy of
the numerical implementation of Eq. (6} was checked in
several ways. To within a well understood bounded fluc-
tuation the total energy —integrated over all space-
was found to be independent of time. A few calculations
of responses in single realizations from the ensemble were
repeated at double precision. All other parameters were
unchanged including the random number generator seed.
All differences, at all times and distances of interest, were
found to be confined to less than a part in 10 . The code
was also implemented on a Convex C240. Results on the
two machines differed negligibly. The code on the Apollo
was run with and without the use of vector library sub-
routines that used the multiple processors and with and
without compiler option optimizers, also without notable
differences in the results. One concludes that the numeri-
cal implementation of (6}appears accurate.

The cosine-bell tone burst sources were taken to have
their central frequency such that the modes at the band
center would be most excited. This allows comparisons
with the band center localization lengths reported by
McKinnon and Kramer. If one anticipates that the
modes at the band center are the least localized and
therefore the localization length is maximal there, one
would conclude that a narrow band of energies at the
band center would have a nearly uniform set of localiza-
tion lengths, leading to little or no dispersion in transport
properties, and ease in the interpretation of the numerical
results. If one wishes to excite the modes at the band
center, however, one must recognize that the distortion
in eigenfrequencies induced by the finite temporal step
size 5t will cause a mode at the band center with an ei-
genvalue of K equal to (5+ 8'/2) and thus an actual fre-
quency [in Eq. (1)] of (5+ W/2)'~ to have an apparent
frequency [in Eq. (6)] of (2/Bt )arcsin [(5t /2)(5+
W/2)'~ ]. Therefore this latter quantity was chosen as
the central frequency of the tone burst. The band width
of the tone burst source is related to its duration. The
thirty cycle cosine bell tone bursts used have widths (fre-
quency difFerence between half power points) of 5% of
the central frequency. A longer tone burst would more
sharply define the frequency of the disturbance and
presumably correspondingly imply more sharply defined
transport properties, but would also degrade the tem-
poral resolution of the numerical experiments. It would
in addition exacerbate statistical fluctuations across the
ensemble, and in the absence of extra ensemble averaging,
degrade accuracy. Tone burst lengths were chosen at 30
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8.0
9.0

10.0
11.0
31.0

11.07'
7.296'
5.451'
4.22'
6.0

0.584
0.543
0.521
0.490
0.235

0.128
0.105
0.094
0.081
0.207

0.159
0.152
0.145
0.148
0.276

0.51
0.50
0.50
0.51
0.42

0.76
0.76
0.74
0.74
0.74

'Localization lengths taken from Ref. 25.

cycles in an attempt to make compromises between
conflicting requirements. The consequent 5% band-
widths may be compared to bandwidths of the order of
35% in Weaver's ultrasonic experiments' and the order
3% widths used in Genack and Garcia's' '" studies of
time-domain behavior by means of frequency-frequency
correlation functions.

In order to ascertain the modal density of the meshes
considered, small (10X 10, or 100 degree-of-freedom) ver-

sions of these meshes with periodic boundary conditions
in both directions were analyzed for the square roots of
the eigenvalues of the corresponding matrices K. For
each IV/V case the accumulated modal density was aver-

aged over 20 such meshes and fit to a fifth-order polyno-
mial function of frequency from which the slope at the
band center [at co=(5+ W/2)'~ ] was taken. The aver-

age over 25 configurations at W/V=8, is shown in Fig.
1. This process was repeated five times, and the observed
variation takes as a measure of the accuracy of the
analysis. The variations were such that one estimates
these modal densities to be (one o ) accurate to within
about 1%. The slight difference between apparent fre-

quencies in a central differencing realization of a
differential equation and the actua/ frequencies one would

TABLE I. Parameters describing the properties of the five

systems considered, W/V=8 through 11 of the Anderson mod-
el and 8'=31 in the nonAnderson model. The parameters are
localization length g, modal density in units of modes per site
per apparent circular frequency, p, bare diffusivity D0, residual
diffusivity P, and the apparent anomalous dimensions n and p.

D0

find if one used infinitesimal time steps requires us to re-
scale the system spectrum (the square roots of the eigen-
values of E ) to the spectrum relevant to a finite time step
solution of the differential equation. This was done by
converting modal density per actual circular frequency to
modal density per apparent circular frequency by multi-

plying by Bco„,„,~/t)co, „,„,= [1—
t 5t/2] (5+ IV/2)]'~ .

The results are shown in Table I.

III. BEHAVIOR OF THE ANDERSON MODEL
ON SHORT LENGTH AND TIME SCALES

On short-time scales the effective behavior is expected
to be classically diffusive. In order to determine the
effective diffusivity on these scales, the second spatial mo-
ment of the energy: E2(t ) = f e(x, t )x 2dx and the total

energy as well: Eo(t)= f e(x, t)dx are calculated where

e(x, t ) is the average energy density at a distance x from
the source. e is calculated by ensemble and circumferen-
tially averaging a local energy density at site m and time t
defined by

where the sum over n is a sum over nearest neighbors.
Scher ' and Prelovsek and Loewenherz and Weaver
have made similar numerical calculations, defining
R (& ) =E2/Eo, and studying its long-time behavior. In a
localizing system R should asymptote at late times at a
value of order g .

In a classically diffusing system R should grow linear-

ly with time with a proportionality which is essentially
the diffusivity. In this section, therefore, the short time
behavior of E2 and Eo is studied and used to determine
the effective bare diffusivity. At times after the forcing
has ended such that Eo is constant one expects a classi-

cally diffusing system to have an R which is linear in

time; dR /dt =2Do. In Fig. 2 an ensemble average of Eo
and the ratio of ensemble averages of E2 and Eo are plot-
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FIG. 1. The spectrum of a 10X10 periodic boundary condi-
tion Anderson model at W/V= 8 averaged over 25 realizations
from the ensemble is plotted. The eigenvalue number may be fit

to a fifth-order polynomial in frequency, and the modal density
at any frequency near the band center evaluated from the slope
of that polynomial.

time

FIG. 2. The total energy and its second spatial moment are
plotted versus time for the case 8'/V=9. Note that the mean

energy deposition time is at t =30 on this scale. All subsequent
analyses wi11 use this moment as their zero of time.
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FIG. 3. The data of Fig. 2 are replotted in order to better em-

phasize the classical diffusion at early times.

IV. BEHAVIOR OF THE ANDERSON MODEL
ON MODERATE AND LONG TIME SCALES

On moderate- and long-time scales the behavior is not
classically diffusive. To demonstrate this, and with a
view towards elucidating the manner in which diffuse
wave energy is transported, the current work reports the
results integration of Eq. (6) over long length and time
scales. For the four different Anderson systems at
8'/V=8, 9, 10, and 11, solutions were generated for 250,
350, 600, and 1000 configurations of systems of size
299 X 143, 281 X 103, 217X 81, and 171X63, respectively,

ted versus time for the case W/V=9. For this case the
averages were conducted over 100 configurations of sys-
tems of length 61 and width 50. Note in particular the
extended period over which the total energy Eo is rising
while the 30 cycle tone burst excitation operates. R
shows a interesting early growth (near times t =8) which
slows almost immediately; this behavior is ascribed to
ballistic propagation over length scales of order one lat-
tice spacing. One also may note that the rise in R shows
a tendency to slow at times t )60; this is the first sign of
localization which at later times would manifest as an
asymptotically constant value of R of the order of g .
As can be seen in the figure, there is no significant region
in time after which the forcing has ceased, and before
which the localization is apparent. An accurate value for
Do is, therefore, not easily extracted from a plot like that
of Fig. 2. In order to obtain Do, we plot dEz/dt versus
Eo. Classical diffusion predicts a linear slope:
dE&/dt=E02DO at all times. Such a plot is shown in
Fig. 3, and Do is readily determined from it. At early
times, before the localization is felt, the plot is linear, in
accord with the predictions of classical diffusion. Table I
shows the Do values determined from the secant slopes of
plots such as this at moderate times.

The energy deposition acts over a finite time interval,
the peak rate of which occurs at about t =30. All values
of time reported in the remainder of this communication
will correspond to the amount of time since the instant of
peak deposition.

all to about 10 time steps. The computations required
about 7X10' floating point operations at each value of
W/V. The reported energies are averages, in space along
a circumferential line parallel to the line source, and
across the ensemble as well. Inasmuch as the process
studied was a narrow, but not infinitesimal, band process,
they are averages in frequency as well. It is the energies
that are averaged, not their logarithms. There is reason
to believe that transport strengths are not distributed
normally (e.g., Refs. 10 and 11), that geometric means
may be more appropriate, and that arithmetic averages of
energies converge slowly. The experiments of Weaver'
and of Genack and Garcia, ' '" however, have reported
the arithmetic means of energies and so the work here
confines itself to such.

Errors in the reported average energies due to the finite
configuration averaging were estimated by observing
variances across the ensemble. Observed standard devia-
tions were all within 100% of the observed mean energies
except at extremes of disorder and time and distance
from the source where fluctuations occasionally reached
200%. For the smaller values of W/V fiuctuations were
more generally in the 30—80% range. One cr error bars
in the logarithms of the measured average energy densi-
ties may be estimated by dividing the standard deviations
by the square root of the number of configurations used
in the average. This procedure reveals that the data in
the figures corresponding to x ~ 8g may be taken to have
1 o error bars no larger than +0.06.

Time is measured in the units implied by Eq. (1). The
units may be converted to the inverse bandwidth units
that are sometimes used to describe solutions of equations
like (5) by multiplying by 8 (the Schrodinger equation
bandwidth) and dividing by 20=6.5 [from Eq. (5)].
Thus the evolutions reported here over a period of the or-
der of 23000 in the present units correspond to about
27 000 inverse Schrodinger equation bandwidths.

In the following subsection the average energies are
shown as functions of distance in order to reveal length
scales in the energy distribution. R is then examined at
late times in order to compare with theoretical expecta-
tions for conductivity on long time scales. In the remain-
ing subsections the temporal behavior at each of several
distances from the source is studied. In Sec. IVC, the
behavior is studied versus the natural logarithm of time,
and the curves there found to collapse to a single curve
after the application of rescalings in time. In Sec. IV D
the behavior is studied versus the inverse of time in order
to make comparisons with classical diffusion. In Sec.
IVE the behavior is studied versus an inverse fractional
power of time and found to be linear, leading to a simple
approximate form for the evolution of energy density in
an Anderson localizing system.

A. Spatial pro6les

For each of the four different degrees of disorder
(W/V=11, 10, 9, and 8) the average energy density
profiles are shown in Figs. 4(a) —4(d) at each of several
values of time. Most noteworthy in all these figures is the
late time exponential form; e (x, t ) =exp( —

~
x

~ /g) in ac-
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cord with expectations of exponential localization. This
behavior is, though, modified at short distances, where
there appear to be other length scales, and at large dis-
tances for which the asymptotically late time energy den-
sity has not yet been achieved. Estimates for localization
lengths might be constructed by fits to exponentials. In
such a fit it would be necessary to exclude the short dis-
tances on which there are length scales other than g. One
might also exclude the largest distances, for which
asymptotic times have not been reached, but as will be
shown later in this communication, there exist plausible
methods for extrapolation to infinite time. These extra-
polations allow one to estimate the apparent localization
length at all suSciently large x.

The extrapolations reveal that g,b„,„,s, defined as
—lim~I „~(Bine/Bx), varies with x, lengthening at
large x. Near x=2(, one finds g,b„,„,d to be equal
within experimental uncertainties to the localization
lengths reported by McKinnon and Kramer. Near
x =8) one finds that the observed localization lengths
can be as much as 20% greater than those reported by
McKinnon and Kramer. The discrepancy is not convinc-
ingly ascribable to the temporal extrapolation. Nor is it
likely to be explained by the finite circumference, as finite
circumference shortens the effective localization
lengths. The most likely cause is the finite disturbance

bandwidth. In studies not displayed here g has been
found to vary in the frequency regime near the band
center. Frequencies slightly below band center have been
found to be less localized than those at or above the band
center. The hypothesis that g would be a maximum at
the band center is apparently invalid. In disturbances
like the ones employed here consisting of energies with a
distribution of frequencies, and consequent distribution
of localization lengths, the energy density at the larger
distances will be dominated by the components with the
slower spatial decays. For the purposes of the present
work this dispersion in localizations lengths is not prob-
lematic. If future work finds it so it may be advisable to
excite the system at frequencies at which g is stationary.

At distances within one localization length of the
source there is a region of enhanced energy density. An
expanded view of this region is shown in Fig. 5 for the
case W/V=9. Close scrutiny indicates, in all four cases,
that the energy density at the position of the line source
at x =0 is about 3.2 times that which one would antici-
pate based upon extrapolation of the energy density
profiles from the larger x. The width of the region as
characterized by the position at which the energy density
enhancement is only ~3.2 varies with W/V. At
W/V= 11, 10, 9, and 8 the widths are estimated to be
1.8, 2.0, 2.5, and 3.2, respectively. One might wish to as-
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FIG. 4. The spatial profile of the average energy density is exhibited at several different times after the initial energy deposition.

(a) 8'/V=11; (b) W/V=10; (c) W/V=9; and (d) W/V=8.
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global diffusivity. The self-consistent theory of localiza-
tion' makes an explicit prediction that the real part of
that diffusivity is proportional to co . This implies a cor-
responding prediction for the late time behavior of R (t ).
It should be noted that this theory is based upon a pertur-
bative approach appropriate for a weak-coupling regime,
so comparison with measurements in strongly disordered
media such as these may be moot.

Generalized diffusivity is defined as the ratio between
the energy flux and energy density gradient, each evalu-
ated in the q and ~ domains:

2.0 I ' I ' I ' I ' I ' I ' I ' I ' I

0 2 4 6 8 10 12 14 16 18 20

distance from source

o(q, co)iqe(q, co) =j (q, co) .

Equation (8}is supplemented by the continuity condition,

FIG. 5. The energy density profile at W/V=9 at very late
times and short distances shows a region of enhanced energy
density. The energy densities from the numerical simulations
are indicated by small squares; the continuous line indicates a
linear extrapolation from moderate distances to small distances

by means of a slope given by the McKinnon and Kramer locali-
zation length. cr(q, co)= ico/—q +Q(q, co)/Iq e(q, co)] . (10)

icoe(qco, }=iq j(q co)+Q(q co)

where Q is an energy source distribution. By eliminating

j from Eqs. (8) and (9), the generalized diffusivity may be
found in terms of experimental measurements of energy
densities e which are responses to known sources Q.

cribe the peak to a contamination of the disturbance by
energies at frequencies associated with localization
lengths of the order of the observed widths. Such fre-
quencies are near the band edges, however, and largely
unexcited by the tone burst source. The hypothesis is
thus incompatible with the observation that the energy
associated with the enhancement is a major component
(nearly half) of the total disturbance. One might also
wish to associate these short length scales with the mean
free path. The widths are, however, greater than the
mean free path (at all degrees of disorder studied the en-
semble average of displacement responses, (v), to har-
monic forcing has a wavelength of about two lattice spac-
ings and amplitude attenuations of about one power of e
per lattice spacing, corresponding to mean free paths of
about half a lattice spacing). The enhanced energy densi-

ty at short distances may perhaps be identified with ener-

gy correlation lengths other than g such as those noted by
others, e.g., McKinnon and Kramer.

The unimportance of the finite geometry was
confirmed by repeating the calculation at 8'/V= 1 1 for a
total of 250 configurations in an 81X211 mesh. The log-
arithms of the energy densities in the systems of different
sizes were found to agree within statistical uncertainties
related to the finite ensemble averaging. Within 8$ of the
source the differences were randomly signed with magni-
tudes of order 0.15. One concludes that the results
presented here are not seriously contaminated by the
finite size of the system.

B. R versus time

Numerical experiments ' ' ' in the time domain
have in the past chiefly focused upon the particle dis-
placement variance R (t}, and in particular upon its
behavior at late times. This quantity determines the
low-frequency limit of what might be called an effective

or

e(q, co)=(Eo/ico)[1 icoq R—(co)/2+ ] . (12)

In the present experiments, the energy is deposited in a
concentrated and nearly impulsive manner; Q(q, co) =ED.
Thus one determines

o(q, co)= ico/q [1——[1 icoq R—(co)/2+ ] '],

or

o(0,co)= —co R (co)/2 . (14)

If, as is claimed, ' the real part of o(O, co) is proportional
to co2 as co~0, then the only low-co divergence of R (co)
must be imaginary. Hence the integral,

(15)

must exist. This requires R to approach its asymptotic
value R ( ao ) at a rate faster than 1/t

To examine this prediction plots of R at late times are
shown in Fig. 6. In all of the cases considered the ap-
proach to the asymptote appears to be slower than 1/t
Finite size effects, if any, would presumably have ac-
celerated the approach. Similar slow approaches have
been observed by others. ' ' ' One concludes that
there is no evidence here for this prediction of the self-
consistent theory of localization.

In order to fully characterize wave energy transport in
localizing media it is necessary to study other quantities
as well as R . Indeed, the simple global quantity, R,

At small q, e is given in terms of R by

e(q, t)= pe(x, t) cos(qx)dx =Eo qE2(t)/—2+

=ED[1 qR (t)/—2+ ],
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FIG. 6. The particle displacement variance R (/) =E2/Ep is

plotted in dimensionless units versus the inverse of time for each
of the four degrees of disorder.

while often studied in numerical experiments, is not
readily ascertained in laboratory classical wave experi-
ments at fixed source and receiver position. In the
remainder of this communication we therefore confine at-
tention to local responses.

C. Temporal behavior versus the logarithm of time

There are a variety of ways in which the temporal
behavior might be displayed. Large dynamic range may
be obtained in plots of the logarithm of energy density
versus the logarithm of time. Such plots are shown in
Figs. 7(a)—7(d) for the four degrees of disorder considered
here and for four different scaled distances from the
source: two, four, six and eight localization lengths. En-
ergy densities were evaluated at fractional distances by
means of linear interpolations of their logarithms.
Perhaps worthy of first note in these figures is that the
transport at large distances is not exponentially slow.
That observation may be quantified by associating a
transport time scale with the arrival of the disturbance at
a position a distance x from the source, and comparing it
to the occasionally hypothesized time scale x /D where
D is an exponentially renormalized diffusion constant.
An arrival time may be identified with the time at which
the first 1/e of the asymptotic value of the energy density
has arrived. At x=6(=43.8, W/V=9 this time is
T=exp(9)=8100 [Fig. 7(c)]. A time scale x /D based
on a hypothesized exponentially renormalized diffusion
rate D =Dc exp( —x /g) =0.00025 would be of the order
of x /D=7. 8X10. No times of that magnitude are
present in the curve. The absence of exponentially long
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FIG. 7. The temporal behavior of the average energy density is exhibited at four different distances, two, four, six, and eight locali-
zation lengths from the source. (a) 8'/V=11; {b) W/V=10; (c) W/V=9; and (d) 8'/V=8.
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times in the energy profiles is consistent with the argu-
ment advanced in Ref. 16 that there can be no time scales
greater than the modal density. That the concept of ex-
ponentially slow diffusion is incorrect has also been ar-
gued by Sornette.

The transport behaviors at the different degrees of dis-
order in Figs. 7 are very similar. Over most of the evolu-
tion they are, furthermore, identical to within a rescaling
of time. Figure 8 shows a replot of the data of Figs. 7 in
which the data from IV/V=8, 9, 10, and 11 are shifted
in (log) time by amounts of 51=1.98, 1.11, 0.47, and
0.00, respectively, in order to collapse the data from
different degrees of disorder to a single set of curves.
These values of 6, were chosen to effect an optimal col-
lapse, but almost equally good collapse is obtainable with
choices for 5, difFering by as much as 0.02. 5, should
therefore be understood to have at least that much error.

Inasmuch as the evolutions at different degrees of dis-
order are identical except for the rescaling of time one
might say that, for example, the transport at IV/V=8 is
exp(1.98) times slower than the transport at W/V=11.
Such a comparison is somewhat inapt, however, as the
distances over which the transport is acting are difFerent.
One may construct dimensional rates by inserting a fac-
tor of some power of the distance scales. In the absence
of theoretical guidance the choice of a power is a matter
of guesswork. The choice of the second power, however,
allows one to identify the dimensional rate as a kind of
residual diffusivity. One defines a dimensional residual
diffusivity relative to the case W/V= 1 1 by
exp( —h, )(g/4. 22) and concludes that the lower disor-
der cases have residual diffusivities of 0.95, 1.10, and 1.04
(for W/V=8, 9, and 10, respectively) times that of the
case IV/V= 1 l. These quantities have units of distance
squared per time but appear to be proportional to neither
of the two known quantities with these units, not the bare
diffusivities given in Table I, nor to the inverses of the
modal densities.

It is remarkable that the evolutions at difFerent degrees

~~)gyves ggg4g+= )r~)4XKh 44
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0

-10

W/V=8
W/Y=9
W/Y = 10

+ W/V=11
o W=31

-20 i

4. 0 6. 0 8. 0 10.0 12. 0

1n t —4&+ &&(x/g)

FIG. 9. Twenty sets of data, from all four Anderson models,
and the non-Anderson model considered in Sec. V, and all four
distances from the source, collapse to a single function.

of disorder scale to each other as well as they do. The
implication is that there exists a universal function
E(x /g, t /T ), where T and g are microstructure-
dependent quantities, which describes transport in An-
derson localizing systems. Furthermore, T does not ap-
pear to be proportional to either of the more obvious
microstructure-dependent quantities which have units of
time.

The curves governing the transport process may be fur-
ther collapsed by applying an additional x/g dependent
shift in (log) time, again chosen in order to effect an op-
timal collapse. A factor of exp(x /g) is also applied in or-
der to reconcile the different amplitudes at different dis-
tances. The choice of shifts: b,2

=0.0 for x =8$,
52=0.67 for x =6(, 62= 1.7 for x =4/, and b,&=3.4 for
x=2/ successfully collapses all the data, from four
different distances from the source and all cases of disor-
der considered, as shown in Fig. 9.

Most interestingly these choices for the further tiine
shift, made in order to effect an optimal collapse, appear
to scale with a fractional power of x/g as may be seen in
Fig. 10, leading one to hypothesize a general, universal
character to the transport of an Anderson localizing
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FIG. 8. The data of Figs. 7 are collapsed to a single set of
curves, one for each scaled distance from the source, by choos-
ing an optimal rescaling of time for each degree of disorder.
The energies from the non-Anderson model at &=31 are also
found to collapse to the same set of curves.
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FIG. 10. The collapse shown in Fig. 9 was e8ected by a time
shift proportional to the —2.46 power of x /g.
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quantity of the form

e (x, t ) =exp( —x /g)F((x I() +"exp I b, , I It ),
where n is an anomalous dimension for the diffusivity and
appears to be about 0.46 and 6& depends on the micros-
tructure but not on x or t.

D. Temporal behavior versus inverse time

The data may also be plotted versus the inverse of time
to reveal an interesting behavior. Such a plot is shown in
Fig. 11 for the case W/ V= 9, x =6( in which the abscis-
sa is the distance squared over four times the product of
time and bare diffusivity.

Classical diffusion from an instantaneous point deposi-
tion of energy would behave nearly linearly on such a
plot.

lne(x, t ) =InE«t» x /4—Dt —(1/2) 1n(4mDt ) . (16)

However, for depositions such as the present one which
are distributed in time, one must convolve the Green's
function, Eq. (16), with the known deposition profile.
This has been done and is also plotted in Fig. 11. D has
been set to the bare diffusivity, 0.105. One can see here
that the energy density at the earliest times is approxi-
mately classical. Statistically significant deviations from
the classical prediction occur at the earliest times (not
shown in the figure) and may be ascribed to dispersion-
due to frequency dependence —in bare diffusivities. At
early times and large distances Eq. (16) is very sensitive to
variations in D. Equation (16) averaged over a range of
values of D is much greater than Eq. (16) evaluated at the
mean D, hence, the discrepancy. A detailed comparison
with classical diffusion theory may require the use of a
tone burst source with a central frequency at a point such
that Do is stationary.

By times of the order of 2g /4DO (or x /4Dot =18 if
x =6() the localization is apparent as the energy density
falls below the classical value. At much later times

-0. 8
:
, (a)

-1. 0 .

~ ~ ~ I

~ W/Y=8;:
o W/Y=9 ':

~ W/V=10::
D W/V=11;:.

-1.2 .

-1.8
0. 0 0. 1 0. 2

x /WD

0. 3 0. 0 0. 5

(x'/4Dot &4) (t &3000) the behavior approaches a line
parallel to the classical line but weaker than it by a factor
of the order of exp( —x/g). In this region one may
roughly approximate the energy density by the very sim-

ple formula: e(x, t ) =exp( —x lg —x /4Dot ). It is

noteworthy that time scales at moderately late times and
large distances are comparable to classical time scales
determined by the diffusivity on the microscale. In this
parameter range the transport behavior of an Anderson
localizing quantity is approximately that of the corre-
sponding classical quantity except for an exponential di-
minishment of strength: exp( —x lg).

At the later times the plot in Fig. 11 shows a steepen-
ing slope. This behavior is seen also at other degrees of
disorder at the larger distances. Such late times may be
of only academic interest because in practice, laboratory
disturbances at late times will have suffered too much dis-
sipation to be observable. Nevertheless the steepening is
intriguing, in part because it suggests that the form
exp( —x /g x /—4DO t ) is not the correct asymptotic
form. In Figs. 12 the very late time behavior at x =6(
and x =8) is shown on an expanded scale for all degrees
of disorder. Statistical fluctuations are more apparent on

0 : (b)
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FIG. 11. The observed energies are plotted versus the inverse

of time for the case 8'/V=9 and at a distance of six localiza-
tion lengths from the source (x=43.8). Also shown are the
predictions of classical di6'usion and of the simple continuum
model for the transport of an Anderson localizing quantity.

FIG. 12. At x =6( (a) and at x =8( (b) the average energies

are plotted versus the inverse of time at late times for all degrees
of disorder.
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this expanded scale. Nevertheless it appears as if the
slopes are significantly greater than unity for all degrees
of disorder and for both distances portrayed.

A hypothesis that the transport is governed at the lat-
est times and larger distances by, not the bare diffusivity,
but by the modal density, is not supported by this data.
The hypothesis that these energies are functions of time
solely by means of the dimensionless quantity
px /t=4pDo(x /4Dot) would imply that, given that
this limit exists, the asymptotic slope would be steeper at

the lower amounts of disorder by a factor of the ratio of
the products of the pDo's, or about 85% steeper at
W/V=8 than at W/V=11. The observed behavior is
not consistent with this hypothesis. An hypothesis that
the steepening at the latest times is due to domination by
components with particularly slow bare diffusivities is
also dif5cult to maintain. The asymptotic slopes shown
in Fig. 9 are twice unity. The alternative hypothesis
would therefore have to assert that components with bare
diffusivities half that of the band center dominate at late

0-

-10-

x=2(

0-
x=2(

s1ope=86

-20-

-30-
C

-00-

-50-

" -10-
C

-15-

-60-
-20-

-70
0. 000

I I I I I

0. 000 0. 008 0. 012 0. 016 0. 020
-25

0.0000
I I

0.0050
I

0.0100
I

0.0150

LJ

slope=41. 1 0-

-5-

n

-10-

-10-

-15-

C -20-

-25—

-14—
-30-

-35-

-18
0.000

I

0.004
I

0.008

)-.74

I

0.012 0.016
-40

0.00
I ' ' ' ' ' ' ' ' ' I ' ' ' ' ' ' ' ' '

I
' ' ' ' ' ' ' ' ' I ' ' ' ' ' ' ' ' '

I

0.01 0.02 0.03 0.04 0.05 0.06

)-.74

3-
x=2(

2.8-

0-

-2-

-3—

WzY =8
(e)

x= 8&

x=4(

x= 6(
2.4—

2.0—

wrY=Q

-6
0.0000 0.0002 0.0004 0.0006 0.0008 0.001 0t" 1.6

0.000
I

0.005
I

0.01 0 0.015

FIG. 13. The logarithms of the average energy densities are found to fit well to linear functions of an inverse fractional power of
time. (a) 8'/V=8; (b) 8'/V=9; (c) 8'/V=10; (d) 8'/V=11. The late time behavior is shown on an expanded horizontal scale in
(e), and in (0 the behavior at x =2/ is shown on an expanded vertical scale.
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times and large distances. However, components with
slow diffusivities are far from the band center and are
consequently weakly excited; they, furthermore, presum-
ably have short localization lengths and therefore should
not be expected to dominate at large distances.

K. Temporal behavior versus inverse fractional powers of time

e(x, t)=expI —x/g (x +"—/4ppt)~I, (17)

where n =0.5, p=0. 75, and p is a microstructurally
determined residual diffusivity proportional to neither Do
nor 1/p. The values of n, p, and P corresponding to the
curves judged to best fit Eq. (17) to the data at x =4/, 6g,
and 8$ are shown in Table I.

The data from x=2( was excluded from the fit. At
late times and small distances, as may be seen in Fig.
13(fl, the behavior indicated by Eq. (17) is modified by a
rolloff with a magnitude that may be of the order of a
part in exp(x/g). This correction to (17) will not be ex-

plored here. One may note, though, that similar rolloffs
related to the log(t) term in Eq. (16) occur in classical
diffusion also. As in the classical case, the rolloff here
may correspond to the loss of energy at a position x due
to further energy transport to points beyond x.

It may well be imagined that the dispersion in trans-
port properties implicit in the average over frequencies in
the tone burst source can make precise evaluations of n,

p, and p (and g) difficult. The quantities quoted in Table
I are thus subject to uncertainty. New experiments,
designed with a minimum of such dispersion, may be
necessary before more exact estimations of transport pa-
rameters can be made.

Thus the hypothesis that the asymptotic transport of
an Anderson localizing quantity is of the form
~xp( —x/g x /4—Dot) is, at best, only weakly supported
by the data. From Sec. IVC, however, it is known that
there is a single function of time and distance which de-
scribes the evolution of the distribution of the observed
energy density. Further guidance may be taken from the
observed dependence of time scales on a noninteger
power of distance and from the slight, but persistent, cur-
vature in the plots versus the inverse of t. In an attempt
to ascertain the correct analytic form for e(x, t}, plots
versus various fractional inverse powers of t were ob-
tained. The most striking plots were found when the
abscissa was chosen to be t ~ with p=0.76. Shown in

Fig. 13(a) is the result of that plot for the case W/V=8.
Also shown are linear fits to the data points.

The high quality of the linear fits, over two orders of
magnitude in time and 26 in energy suggests that the
linearity is not an accident. Figures 13(b)—13(d) show
similar plots for other degrees of disorder. The data, and
the fits, at the latest times are shown on an expanded
scale in Fig. 13(e} where it may be observed that the
steepening seen in Fig. 11 has now been absorbed into the
fractional power of time. One is led to a conjecture, sup-
ported by the current data, but in need of refinement and
corroboration. Transport of an Anderson localizing
quantity in two dimensions is given, at times after the
domain of classical diffusion, by the following formula:

Equation (17) cannot be exact, as it neither exhibits
classical behavior at early times, nor conserves the spatial
integral of energy density, nor exhibits the region of
enhanced energy density near the source. Neither does
(17) predict the rolloff seen in Fig. 13(fl. Equation (17)
also violates the constraint suggested by Weaver' that
time scales at a distance x cannot exceed some multiple
of px . It is nevertheless a viable and intriguing candi-
date for an approximate mean energy density propagator
and well supported by the data.

V. BKHAUIOR OF A DIFFERENT DISORDERED
SYSTEM

In order to explore the generality of the behavior seen
above an alternative microstructure was studied as well.
A modification of the system described by Eqs. (1) was
considered which includes coupling to next-nearest
neighbors:

a'v„/ar'+k„v, gv——2g v =F„(t) (18)

slope=29

—12-

—16—

-20
0.00 0.01 0.02 0.03

FIG. 14. The energy densities from the non-Anderson model

are also found to fit to linear functions of an inverse fractional
power of time.

where the first sum is over all nearest neighbors m to n,
the second sum is over all next-nearest neighbors, and k„
is taken to be 13 plus a random number from the uniform
distribution [0, W]. This system has greater coupling
(coordination number equal to 8 now instead of 4 and a
larger value of V) so one expects longer localization
lengths for the same values of W. The forcing was again
a 30 cycle tone burst at a frequency of (5+ W/2)'~,
modified as before by a finite time step
5t =(12.5+ W) '~ . The forcing frequency is not, in this
case, at the band center.

At W=31 the early time behavior in this system indi-
cates a bare diffusivity Do of 0.207. The average spec-
trum of 20 realizations of a 10X 10 version of this system
was found to have a modal density of 0.235 (modes per
site per apparent circular frequency). Extrapolation of
the late time behavior shown in Fig. 14 to infinite time in-
dicates a localization length estimate of (=6.0.

At short distances the energy density at late times is
enhanced above the point which would be obtained by ex-
trapolation of the data from moderate distances back to
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the source. The enhancement is by a factor of about 3.0.
The enhancement is ~3 at x =2.25. Thus this feature in
the profiles from the Anderson model is also found in the
pro6le from the model with a difFerent microstructure.

Figures 7 and 8 in which the Anderson model system
behavior was shown to collapse to a disorder-independent
set of curves also show the collapse of this other model,
after a choice of time shift, 6& = —0.05. This value of 6&
corresponds to a dimensional residual diffusivity relative
to that of the case W/V= 1 1 which is
exp(0. 05)(6.0/4. 22) =2.12 times faster. The linear fits
shown in Fig. 14 indicate that the evolution of energy
density in this system is also well approximated by Eq.
(17}. Values for P, n, and p for those fits are shown in
Table I.
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VI. COMPARISON TO A HYDRODYNAMICAL
CONTINUUM MODEL

Vollhardt and Wolfle' have suggested a simple
efFective continuum description for a diffusely transport-
ed Anderson localizing quantity. In this model one as-
serts an equation of continuity relating particle (or ener-

gy) fiux j, particle (or energy} density e, and a source term

Be/Bt+V j=Q, (19)

being the space-time version of Eq. (9). One also hy-
pothesizes a constitutive relationship,

B j/Bt +aVBe/Bt =( —1 lr)Bj /Bt cooj, —(20)

in which flux is driven by density gradient, and restrained
by an "oscillator strength" tokyo. The term in 1/r
represents a viscous friction and r may be interpreted as a
time scale over which ballistic flux is attenuated.

These equations may be Fourier analyzed in time and
space and the response in an initially quiescent system
found to be

i oi+ 1/r+ coo/i co
e(q, to) =Q(q, co)

to +i t0/r+co—o+aq

(21}

If the time scales of interest greatly exceed r then we may
neglect co& in comparison to unity and approximate e as

e(q, co }=Q(q, )[t1o+ t/oiiiar)

]/[ice+�

( qa+aP())r] . (22)

At late times (co~0) the energy density becomes

e = [Q(q, co)/ia)]/[1+aq /coo],

or, if Q(x, t )=5(x )5(t ), then as t ~ ao,

(23)

e(co, q) =1/(ico+arq ), (25)

e(x, t)~(~a/2coo) expI —~x ~coo/~a] . (24)

At this point one identifies (&a)/coo as the localization
length g. One further identifies the quantity (cour) ' as a
time scale T. At early times (co))1/T }the energy densi-
ty (22}becomes

FIG. 15. The evolution of the energy densities according to
the simple continuum model, Eq. (20).

which may be identified as a classical diffusion propaga-
tor with difFusivity ar= g lT.

The inverse to-Fourier transform of (22) may be carried
out analytically by residues: the resulting inverse q-
Fourier transform can the be done numerically. The re-
sults from the inversion are plotted in Fig. 15. The
profiles of Fig. 15 are very clearly not like those of Figs.
7; they cannot be made to collapse to the curves shown in
Fig. 7 by any simple rescaling of time. Nor can this be
done by confining attention to the latest of times for
which the theory' is presumably intended; the observed
approaches to the late time asymptote are far slower than
theory would predict. This was also noted in Sec. IV B.

The energy density at x =6/ as predicted by the con-
tinuum model (22) is also plotted in Fig. 11. The simple
continuum model predicts evolutions that are close to
their classical counterparts until late times of the order of
xg/4Do, thereby resulting in a much more rapid com-
pletion of transport than is observed in the data. The late
deviation may be compared to the early deviation ob-
served in the present experiments, at times no later than

g /4Do. One concludes that the predictions of the simple
continuum model are contradicted by the data. This was
also observed in Weaver's ultrasonic experiments. ' An
alternative continuum model is required.

VII. THE EFFECT OF DAMPING

It has been long believed that dissipation in classical
wave systems provides unique diSculties for experiments
designed to detect localization. For this reason the
effects of dissipation on localization have received
significant theoretical attention. ' ' ' In accord with
expectations, dissipation has complicated the analysis of
some experiments' "and limited signal durations in oth-
ers. It may be inescapable in the laboratory search for
localization of classical waves. Its effect on e(x, t) is
therefore of great importance.

There is a widespread conception that dissipative, but
otherwise localizing, systems will behave diffusively. A
previous communication, ' however, argued and demon-
strated that viscous dissipation has no effect upon energy
density profiles beyond the trivial: e(x, t) gaining a fac-
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tor exp( s—t) where s is a mean energy dissipation rate.
The numerical demonstration there was, however, con-
ducted on systems of small size. In this section the evolu-
tion in large damped systems is presented in order to
determine whether the result found in Ref. 16 is size
dependent.

As in Ref. 16, Eq. (1) is modified to include a viscous
dissipation term

a' (t)/at'+Catv(t)/at+a (t)=I(t) (26)

where C is a diagonal matrix with elements chosen ran-
domly and independently from the uniform distribution
from zero to 2s.

The equation is solved, as before, by an explicit central
difference method. For the case s=DO/g =0.0045 at
W/V=11, e(x, t) is shown in Fig. 16. The exponential
spatial gradient in energy density is maintained in the
presence of damping. Hence the earlier conclusions' are
corroborated: dissipation does not alter the energy trans-
port properties except in a trivial manner. In particular,
introduction of dissipation into a localized system does
not induce classical difFusion.

It is noteworthy that the rate of energy absorption,
—Bine/Bt diminishes at the later times. Behavior like
this was not observed in Ref. 16. It is, however, often
seen in room acoustics and is often related to the pres-
ence of a distribution p(s) of modal dissipation rates: at
late times the less dissipated modes have preferentially
survived and then dominant the decay. One may estimate
the width of the distribution p(s) by assuming s to be
given by P CP where f is an eigenmode. If a typical lo-
calized mode has significant access to only g sites then s
is the sum of the squares of g random numbers. Thus s
should be distributed with a y-square distribution. This
reasoning was found to precisely predict the curvature
seen at x =0. Therefore the curvature is ascribed here to
that effect. It is not a sign of any dissipation-induced
cutoff in a renormalization of diffusivity.

It is interesting that the curves associated with the

larger distances have less curvature. Smaller curvature
implies that the modes responsible for transport over the
larger distances have significant access to a number of
sites greater than g. The modes responsible for the
transport are, perhaps, atypical.

VIII. CONCLUSIONS

Numerical experiments have unambiguously demon-
strated several properties of wave energy transport in
two-dimensional disordered media. Amongst these one
may count the clear evidence that the asymptotic ap-
proach to the condition of simple exponential spatial de-
cay is slower than would have been predicted by a simple
hydrodynamical continuum model or by standard theory
for the weak disorder limit, and much faster than would
have been anticipated by appeal to common expressions
for the renormalization of diffusion rates. It has shown
that dissipation does not delocalize otherwise localizing
systems. The existence of length scales less than the lo-
calization length and important for short source-receiver
separations has also been demonstrated.

At early times e(x, t) is consistent with predictions of
classical diffusion and may be used to define a bare
diffusivity Do. Deviations signaling the onset of localiza-
tion occur by times of the order of g l4DO, even for large
x. The evolution of energy density thereafter is not clas-
sically diffusive, nevertheless, at the moderate distances
and times investigated, the time scale of the transport
process was found to be of the same order as that which
one would have in the absence of localization:
T=x /'4DO.

The evolution has furthermore been found, after a dis-
order and distance dependent rescaling of time, to be in-
dependent of the degree of disorder and of the form of
the wave equation on the microscale. The data suggests
that transport at times beyond g /4DO and distances
beyond 2( is governed by a universal formula approxi-
matable by

e(x, t ) =exp t
—x/g (x +"/4pp—t )t'I, (27)
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FIG. 16. The evolution of the energy density in a damped
system at W/V= 11 for five different distances from the source
{discrete plot symbols) is compared to that of the undamped
case {solid lines).

where P may be termed a residual diffusivity. P is
presumably microstructurally determined but it does not
appear to be equal to the bare diffusivity.

This report has left many questions unanswered and
raised new ones. Amongst those unaddressed one may
count the issue of the isotropy of transport in the Ander-
son model, and the effect of boundary conditions, both
reflective and radiative boundaries being relevant to ex-
periments and unexamined by these experiments. Future
work should attempt to quantify the transition from clas-
sical to localized behavior, as these early times are highly
relevant to dissipative laboratory systems. Greater clari-
ty may be obtained if future numerical experiments are
conducted at frequencies at which Do and/or g are sta-
tionary. Future work should also attempt to evaluate the
detailed quality of the data collapse and the associated
universality: is in fact the behavior independent of mi-
crostructure except inasmuch as the microstruture may
determine two transport parameters —a localization
length and a single residual diffusivity?
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Perhaps the most obvious extension of this work would
be to three dimensions. The present calculations required
a few times 10' floating point operations and a direct ex-
tension to three dimensions would require about one hun-
dred times as much computation. In the absence of
methods for improving computational efBciency an exten-
sion to three dimensions would not be a simple matter. It
may be hoped that computations in two dimensions will
suSciently inform the theorist's search for an effective
continuum model for transport in Anderson localizing
systems that predictions for three-dimensional laboratory
systems may be forthcoming.
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