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First-principles investigation of ferroelectricity in perovskite compounds
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We have used a first-principles ultra-soft-pseudopotential method in conjunction with an eKcient
preconditioned conjugate-gradient scheme to investigate the properties of a series of eight cubic per-
ovskite compounds. The materials considered in this study are BaTiO&, SrTi03, CaTi03, KNb03,
NaNb03, PbTi03, PbZr03, and BaZr03. We computed the total-energy surface for zone-center
distortions correct to fourth order in the soft-mode displacement, including renormalizations due
to strain coupling. Quantities calculated for each material include lattice constants, elastic con-

stants, zone-center phonon frequencies, Gruneisen parameters, and band structures. Our calcula-
tions correctly predict the symmetry of the ground-state structures of all compounds whose observed
low-temperature structure retains a primitive five-atom unit cell. The database of results we have

generated shows a number of trends which can be understood using simple chemical ideas based on
the sizes of ions, and the frustration inherent in the cubic perovskite structure.

I. INTRODUCTION

The perovskites are an extremely important class of
ferro electric materials. Generically these compounds
have a chemical formula ABO3 where A is a monova-
lent or divalent cation and B is a penta- or tetravalent
metal. The perfect perovskite structure is very simple
and has full cubic symmetry. It can be thought of as a
lattice of corner sharing oxygen octahedra with interpen-
etrating simple cubic lattices of A and B cations. The
B cations sit at the center of each oxygen octahedra
while the A metal ions lie in 12-fold coordinated sites
between the octahedra. The fascinating feature of the
perovskite structure is the extreme ease with which it
will undergo structural phase transitions; experimentally
the perovskites exhibit a diverse range of phases includ-

ing transitions to both ferroelectric and antiferroelectric
states as well as structural transitions to states involving
tilting of the oxygen octahedra.

In spite of the fact that the perovskites have been
the subject of intense investigation since the discovery
of ferroelectricity in barium titanate in the 1940s, there
is still no complete understanding of the nature of the
transitions in these materials. For example, given the
chemical formula of a perovskite material, there are no
reliable methods for predicting transition temperatures,
whether a transition is first or second order, or even
which phonons in the material will be responsible for
transitions. In principle these quantities can be ob-
tained by calculating the partition function given the
ion-ion Hamiltonian of the crystal. It is well established
that both harmonic and anharmonic phonon-phonon cou-

plings as well as phonon-strain couplings are essential
ingredients for a description of the transitions observed
in the perovskites. However, there is little quantita-
tive knowledge about the interaction parameters of this
Hamiltonian and an accurate determination of these vari-
ables is a challenging theoretical problem.

First-principles density functional calculations o6'er an

attractive approach for enhancing our microscopic under-
standing of perovskites and other ferroelectrics. One of
the earliest successes of this method was due to Rabe and
Joannopoulos who combined conventional pseudopoten-
tial methods with renormalization-group theory to calcu-
late the transition temperature of the narrow-band semi-
conductor GeTe.

More recently there has been a Hurry of activity to ap-
ply these methods to perovskite compounds. Cohen and
Krakauer used the all-electron full-potential linearized
augmented-plane-wave (FLAPW) method to study fer-
roelectricity in BaTi03 within the local density approxi-
mation (LDA). They performed a series of frozen phonon
calculations and demonstrated that the phase with full
cubic symmetry is unstable with respect to zone-center
distortions, in accord with the experimentally observed
ferroelectric transition in this material. They went on
to study the depth and shapes of the energy well with
respect to soft-mode displacement, and to demonstrate
that strain strongly inHuences the form of the total-
energy surface. Later they extended this approach to
the case of PbTi03. Using experimental data as a guide
they were able to show that the observed tetragonal fer-
roelectric ground state of this material is stabilized by
the large strain which appears upon transition from the
cubic structure. Cohen emphasized that the hybridiza-
tion between the titanium 3d and oxygen 2p is necessary
for ferroelectricity in BaTi03 and PbTi03. Singh and
Boyer have also used the FLAP% method to investigate
ferroelectricity in KNbO3. They found that the cubic
structure was stable at the theoretical lattice constant, at
variance with experimental observations, although their
calculations did show weak ferroelectric behavior when

they set the lattice constant to the experimental value.
The FLAPS studies have demonstrated that ferroelec-
tricity in the perovskites reBects a delicate balance be-
tween long-range electrostatic forces which favor the fer-
roelectric state and short-range repulsions which favor
the cubic phase. Thus it has been demonstrated that
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high-quality LDA calculations can shed considerable in-

sight into the nature of the total-energy surface in the
perovskites. However, the work also raises a note of cau-
tion about the validity of the LDA. For example the work
of Singh and Boyer suggests that KNb03 is not a ferro-
electric in this approximation.

Recently we have applied the ultrasoft-pseudopotential
method to investigate ferroelectricity in BaTi03. Pseu-
dopotential methods oH'er a number of advantages over
all-electron methods. They are computationally more ef-
6cient than methods such as the FLAPW, and more-
over allow one to compute forces on the ions analyti-
cally. Methods which provide information on Hellmann-
Feynman forces allow the adiabatic energy surface to be
explored with many fewer calculations than techniques
which only compute total energies. However, the use
of a pseudopotential does introduce further approxima-
tions beyond the LDA, associated with neglect of the
core states and other transferability issues. The results
of our calculation on BaTiOs, " which included Ba and
Ti semicore states, were in substantial agreement with
the work of Cohen and Krakauer. We thus demonstrated
that this approach can attain the level of accuracy nec-
essary to capture the physics of the of ferroelectricity in
the perovskites.

In the present paper we have chosen to apply the
ultrasoft-pseudopotential approach to a series of eight
perovskites, thus greatly increasing the amount of 6rst-
principles data available on these materials. Again, we
include semicore states in the valence shell for all met-
als considered. The compounds selected for study were
BaTiOs, SrTiOs, CaTiOs, KNbOs, NaNbOs, PbTi03,
PbZrOs, and BaZrOs. The properties of these materi-
als are reviewed in Refs. 1 and 8. Experimentally all
of these compounds are observed to have the perfect
cubic perovskite structure at suKciently high tempera-
tures. Three of these materials, BaTi03, KNb03, and
PbTi03, are observed to have ferroelectric ground states
with 6ve atoms in the primitive cell. Both BaTi03 and
KNb03 are observed to undergo the same sequence of
transitions as a function of temperature &om the per-
fect cubic perovskite structure, to a tetragonal phase, to
an orthorhombic phase before becoming rhombohedral
at the lowest temperatures. By way of contrast PbTi03
has a single well-established transition from the cubic to
the tetragonal phase at 493 C. SrTi03 is an incipient
ferroelectric which undergoes a nonferroelectric oxygen
tilting transition at about 105 K. CaTi03 undergoes a
single transition from the cubic state to an orthorhombic
phase with 20 atoms in the unit cell at about 1260'C.
NaNb03 shows at least six transitions as a function of
temperature. Its ground state is a monoclinic ferroelec-
tric phase with four formula units per unit cell. PbZr03
is an antiferroelectric compound with eight formula units
per unit cell. The transition &om the cubic phase occurs
at about 230 C. Finally BaZr03 is the simplest material
considered here and is believed to have the perfect cubic
perovskite structure at all temperatures.

Our approach has been to focus exclusively on the pos-
sible zone-center instabilities of these materials. This re-
striction has a number of important practical advantages.

First, as will be demonstrated in the following sections,
the number of degrees of &eedom of the system in this
case is small enough to allow us to perform a completely
systematic expansion of the energy to fourth order in the
soft-mode displacement vector, without the need for ex-
perimental input which might bias our results. Second,
this simplification allows us to focus on trends in the
total-energy surface with composition even when the ex-
perimental situation may be much more complicated. For
example it is clear from the previous discussion that the
experimental behavior of each compound in the BaTi03,
SrTi03, CaTi03 series is quite di8'erent. By concentrat-
ing on the relatively small number of parameters associ-
ated with zone-center distortions we might hope to begin
to unravel the origins of these differences in these chemi-
cally similar materials. Finally, by choosing to work with
the smallest possible cells we can aEord to use very high-
quality k-point sets for the Brillouin zone integrations.
In the following it will be demonstrated that it is impor-
tant to ensure that calculations are exceptionally well

converged in this respect when studying ferroelectricity
in the perovskites.

The remainder of this paper is set out as follows. In
Sec. II we develop our systematic expansion of the soft-
mode total-energy surface about the cubic perovskite
structure. Section III describes some of the technical
aspects of our work and discusses the convergence of our
calculations. We present the results of our calculations
in Sec. IV, and comment on some of the implications
of the results in Sec. V. We review the main conclu-
sions of this study in Sec. VI. Appendix A contains
some of the more formal parts of the derivation of the
energy expansion about the cubic perovskite structure.
Appendix B describes our conjugate-gradient technique
for minimizing the Kohn-Sham energy functional. Unless
otherwise stated all results in the following sections are
quoted in atomic units (i.e. , lengths in bohrs and energies
in hartrees).

II. FORMALISM

In order to carry out our investigation of the total-
energy surfaces of the eight compounds in question it
will be useful to develop a systematic expansion for the
energy about the cubic perovskite structure. Our goal is
to compute the minimum energy of con6guration of the
ions in the structure. It is well known that strain degrees
of &eedom play a signi6cant role in determining the ener-
gies of the low-symmetry ferroelectric phases and should
therefore be included in the analysis. ' ' As stated in
the Introduction we shall exclude &om consideration any
distortions which change the number of atoms in the unit
ceQ. At first sight our task of performing a systematic
exploration of the energy surface poses a formidable chal-
lenge, because even if we only include zone-center distor-
tions and strains we are still faced with examining the
properties of an 18-dimensional energy space. However,
we shall show that a manageable scheme for carrying
through this program can be developed provided we re-
strict ourselves to computing the energy correct to fourth
order in the soft-mode displacement. The high symme-
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try of the cubic perovskite structure greatly reduces the
number of calculations which are required. Our expan-
sion of the energy is similar in spirit to that of Pytte,
although it differs in some details.

Formally the energy of the crystal is function of the six
independent components of the strain tensor g;, where i
is a Voigt index (IIl ——ell, II4 ——2e23), and the 15 dis-
placement variables v, where ~ is an atom label and o.
is a Cartesian direction. Thus we may write the energy
per unit cell as

three independent and identical 5 x 5 blocks, each cor-
responding to displacements in the x, y, or z direction.
As a consequence the eigenvalues of the second derivate
matrix fall into five sets of threefold degenerate modes.

I

In the following we will denote the eigenvalues of D '&

as A(j) where j is an index which runs from 1 to 5. Thus
we may write

).D.",p(I3 (j ~) = &(j)( (j ~).

E((~') (~:))= E((~') (-~:)) (2)

Equation (2) follows by virtue of the fact that each atom
in the perovskite structure sits at a center of inversion
upon application of an arbitrary homogeneous strain.
Formally it will be helpful to divide the energy function
into parts arising &om pure displacement, pure strain,
and an interaction term as

E = E'+E'"'((:))+E"'((~'))+E'"'(I~')(:))
(3)

where E is the energy of the perfect perovskite struc-
ture Es".l'((v )) and E' '((It; )) give a description of
the energy to all orders at zero strain and zero displace-
ment respectively. In crystals with cubic symmetry the
strain energy is given, correct to second order in the
strains, by

E'"((l7;j) = B„(rI,' + Ib -+ Ib)
2

+B12(glg2 + 92'g3 + 'g3gl )
1 2 2 2+ B44(94 + '95 + &6)
2

where Bqq, Bq~, and B44 are related by factors of the cell
volume to the elastic constants of the crystal.

We begin by considering in detail the expansion of
E "~((e }). Straightforward Taylor expansion of the
energy implies that the lowest-order term can be writ-

I ) I 8 Eten as 2 p, &
D '& v v& where D '&

I

The second derivative matrix D '& is of course related
to the zone-center dynamical matrix by trivial factors of

I

the ionic masses. The symmetry properties of D '& have
already been discussed in the context of erst-principles
calculations. In the following we shall adopt a coordi-
nate system such that the atoms in our general perovskite
with formula ABO3 in the perfect structure have posi-
tions A at (0,0,0)a, B at ( —,2, 2)a, Ol at (0, 2, 2)a, Oll at

( —,0,—)a, and Olll at ( —,—,0)a, where a is the lattice con-
I

stant. The first point to note is that all elements of D '&
7

for which o. g P are zero (it is intuitive that displacement
of any of the five sublattices in, say, the x direction will
produce no forces in the y or z direction). The 15 x 15
second derivative matrix therefore breaks into a set of

E = E((~*) (~:))
In the following we shall make extensive use of the fact
that

Moreover, it is clear Rom the foregoing discussion that
the eigenvectors, Q (j,P), of the second derivative matrix
can be chosen to lie entirely along x, y, or z and can thus
be labeled by j and the Cartesian direction P. With this
convention we will have ( (j,P) = 0 if o. g P. Two of the
eigenvectors of each 5 x 5 block are determined by sym-
metry. The first mode is the trivial translation mode with
eigenvalue 0. The second mode has I'25 symmetry. The
eigenvector of this mode for displacements in the z di-
rection has the form (0,0, ~, —~,0) where the displace-

ment vector is listed in the order (v+,ug, vo', vo",vo'").
The remaining three modes of each block have I'q5 sym-
metry and their eigenvectors cannot be deduced on sym-
metry grounds alone. Experimentally it is these modes
with I'qs symmetry which are responsible for ferroelec-
tric transitions &om the high-symmetry cubic phase. In
a material such as barium titanate where the experimen-
tal ground state is a five-atom unit cell with rhombohe-
dral symmetry one expects at least one of the three I'q5

eigenvalues to have a negative sign, indicating that the
cubic structure is a saddle point of the total-energy sur-
face. In the following the lowest-&equency mode with
I'l5 symmetry will be referred to as the soft mode.

We can reexpress F "~, correct to second order, in
I

terms of the diagonalized D '& matrix as
7

E'-~=-) ~(j)) u'uI
2 Ck

where u~ are eigenmode amplitudes given by

(6a)

u' =) ( (j, a)v . (6b)

Because of their special role in the following it will be
convenient to introduce a simplified notation to describe
the soft-mode distortions. If j, pt is the index of the soft
mode, then we define

1
K = —A(j,.I,),

2
(7a)

and will suppress the j superscript for the soft-mode am-

plitude so that

rg rgg 8D ft
Ck CX

(7b)

Having decoupled the soft-mode degrees of &eedom to
second order in the displacements we now consider the ef-

fects of higher-order terms in the soft-mode expansion of
the energy. We introduce 4((u )) which is E "I with all
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non-soft-mode eigenrnode amplitudes held at zero. There
can be no third-order terms in the displacement which
contribute to 4((u })by virtue of Eq. (2). Two indepen-
dent parameters are required to describe the fourth-order
terms and we find

4((u })=~u'+ B—) u

4(n+ ~p)
(12b)

Finally there are eight equivalent stationary points in the
(111)directions with positions such as

where

4 ~yy x y (8a)
Ku~: uy = uz

6m+ 2p

with energy

(13a)

84E
B

8u~ p
(8b)

4(n+ s'P)
(13b)

84E
++yy

u~ uy
(8c)

1
(3B „v—B—, ).

12

Substituting into Eq. (8a) we obtain

(9b)

C ((u })= ~u' + o.u~ + p(u u„+u„'u', + u, u ).
(10)

The constant p gives a measure of the anisotropy of the
total-energy surface. In the following we shall be primar-
ily concerned with the case where there are zone-center
instabilities so that K ( 0. Under these circumstances it
can be shown that 4 has four distinct types of station-
ary points. The 6rst of these is the trivial case where
u~ = u„=uz = 0, with 4 = 0. This is always a max-
imum of 4 when e ( 0 indicating that the crystal is
unstable in the cubic perovskite structure. There are
six symmetry-equivalent stationary points of the second
type. They lie along the (100) directions and have posi-
tions such as

and u~ = g uz. It will simplify the notation if we
introduce two new parameters a and p de6ned by

1
o. = —B

24

and

1) B~gy —) B pu up=0.
2 aP

(14)

Necessary conditions for the above fourth-order analysis
to be valid are that n & 0 and p & —3o, . Otherwise the
energy has unphysical divergences to —oo implying that
higher-order terms must be taken into account. Provided
the fourth-order analysis is valid, two distinct ground
states can arise depending on the sign of p. If p & 0, then
Eq. (lib) is a global minimum and the crystal ground
state has tetragonal symmetry. If p & 0, then the global
minima are along the (ill) directions and the ground
state has rhombohedral symmetry with energy given in
Eq. (13b).

Finally we must consider how the above picture is
modi6ed when we permit possible extra relaxations of
the system through coupling of the soft modes to other
phonons and the strains. The basic strategy is to com-
pute the values of g; and u~ which minimize the total en-

ergy as a function of the soft-mode variables. Following
the notation of Ref. 10 we denote these minimizing values
with g;((u })and u~ ((u }) and the corresponding en-

ergy with E((u }).By straightforward differentiation of
Eq. (3) it can be shown that the only term which leads to
renormalization of the soft-mode surface, in the fourth-
order theory, is the lowest-order term in E'"~ xx This term
can be written in the form z~ P,. p B; pg;u up, in an ob-
vious notation. To second order in u, g; is given by the
solution to the matrix equation

u& =uy=0,

with energy

K
u z

2o!
(1la)

There are three di8'erent types of nonzero elements in the
6 x 3 x 3 matrix Bi p. Typical nonzero elements are Bq
B&yy and B4yz The renormalized energy is given by

K

4o.
(11b) E((u-})= &'+@((u-})

The third set of stationary points, of which there are 12,
falls in the (110) directions and has coordinates of the
type

1
u~up Bi~p N,.~ B~~gu~ug)

ij cr.p

K
u~ =0) uy =uz

4o. +p
with energy

(12a) where N;~ =[B ~j. .. The solu. tion of Eq. (14) to obtain

E((u })in Eq. (15) is somewhat tedious, and is therefore
deferred to Appendix A. It is shown there that
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1 (C2 vt2) . 4 1 (C2 v2 v2)
E((u-k) = E'+ I'((u-)) ——

I
+4—'

I ) .u'. ——
l

—2—'+6—" 1(u'.u'+u'u. '+u.'u.'),
24 iB pt) 12 i B y, t y,„) (16)

where B is the bulk modulus,

B = Bgg + 2Bgg) (17a)

pq and p„are shear moduli for tetragonal and rhombo-
hedral distortions,

1
Pt ———(Bii —Bi2),

2
(17b)

pr = B44& (17c)

and C, vt, and v„areanalogously defined quantities ob-
tained &om the strain-phonon coupling constants,

C = Byes + 2Byyy (17d)

1
vt (Biz@ Blyy) ~

2
(17e)

v„=B4y, . (17f)

and

fC' vt20
B.'...=B....—

l
+4—'

l

pt j

(C2 v2 v2 )
Pt P~)

(18a)

(18b)

We therefore conclude that our analysis of the stationary
properties of the total-energy surface can equally well be
applied to the case where phonon-strain couplings are
present, provided we work with renormalized coupling
constants o.' and p' where

and

1 /C2 v21n'=n ——
l

+4—'
24 iB pt)

(19a)

(19b)

Our final expression for E((u )) is simply

E((u })= E +Ku +n'u +p'(u2u„+u„'u',+u,'u').

(20)

Comparing Eq. (16) with Eq. (8a) we arrive at the reas-

suring conclusion that the fourth-order corrections to the

minimum energy E((u )) arising from soft-mode cou-

pling to the strain have exactly the same structure as
the original "bare" fourth-order terms. The net eKect
of switching on the coupling between the phonon and
strain degrees of &eedom can be thought of as a renormal-
ization of the bare fourth-order interaction coeKcients
B and B yy to B' and B'

yy defined by

In the case where e ( 0 there are two possible ground
states in the complete fourth-order theory. If p' ( 0,
we would predict that a phase with rhombohedral sym-
metry has the lowest energy, where as p' ) 0 implies
that the ground state is tetragonal. In the following sec-
tion our objectives are to use high-quality first-principles
calculations to obtain the various expansion parameters
necessary to determine the constants in Eq. (20).

In conclusion we have shown that the minimum total
energy as a function of soft-mode displacement can be
determined correct to fourth order in u in terms of nine
independent interaction parameters ~, Bqq, Bqq, B44,
B]zz & B]yy & B4yz & Bzzzz &

and Bzzyy We have found
that in practice these quantities can be computed using
about 40 self-consistent calculations per material. The
major formal results are that coupling of the soft mode
to the strain renormalizes the minimum energy surface
in our fourth-order approximation, whereas coupling to
other phonons does not. The quadratic coeKcient in the
total energy, K, is unrenormalized by either phonon or
strain interactions.

III. TECHNICAL DETAILS
OF CALCULATIONS

The first-principles calculations presented in this pa-
per were performed using the Vanderbilt ultrasoft-
pseudopotential scheme. Technical details of this
method and its implementation in solid-state calculations
have already been discussed elsewhere. ' A feature of
the present work is the use of a conjugate-gradient tech-
nique for minimizing the Kohn-Sham energy functional,
as described in Appendix B.

The ultrasoft-pseudopotential approach has two ma-

jor advantages. First, it allows us to work with a modest
plane-wave cutoK, despite the presense of both first-row
atoms and first-row transition metal atoms, which are
generally diKcult cases for pseudopotential methods.
This is accomplished at the expense of introducing a gen-
eralized eigenvalue equation containing an overlap oper-
ator, and generalizing the usual definition of the valence
charge density to include an augmentation step. The ul-

trasoft potentials are a little more complicated than the
original Kleinman-Bylander separable potentials. How-

ever, the computational costs associated with the extra
steps in the calculations only add a small &action to the
time required per conjugate-gradient iteration.

Second, it allows for the generation of exception-
ally transferable pseudopotentials, because of its use
of multiple reference energies during the construction
procedure. In essence the scheme allows one to insist
that the all-electron and pseudologarithmic derivatives
agree at two or three energies, instead of at just one

energy. This ensures that the all-electron and pseudo-
atom scattering properties agree over an exceptionally
wide energy range. Moreover, it allows us to treat ex-
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TABLE I. Transferability of the titanium pseudopotential. All-electron 3s, 3p, 4s, and 3d eigenvalues are given in hartrees;

4 is the corresponding dHFerence between the all-electron eigenvalue and pseudoeigenvalue, in mhartree. 4 = 0 in the reference

3s 3p 4s 3d con6guration by construction.

Con6guration

3s 3p 4s 3d
s'3p'4s'

3s 3p 4s 3d
3s23P64s13dl
3s 3p 4s 3d
s'3p'4s'

-2.288023
-2.765159
-3.359884
-3.104766
-4.175466
-3.396932

b, (3s)
-0.2
0.0
0.5
0.1
0.0

-1.8

3p

-1.425332
-1.893377
-2.475773
-2.231605
-3.285763
-2.511765

b, (3p)

-0.3
0.0
0.3
0.1
0.2

-2.1

4s

-0.169049
-0.445220
-0.783472
-0.707960
-1.359890
-0.790393

A(4s)

0.0
0.0
0.0
0.0
0.6
0.1

3d

-0.164012
-0.592621
-1~ 139811
-0.921973
-1.930327
-1.169291

b, (3d)

0.2
0.0

-1.1
0.0
0.3
0.2

plicitly the "shallow" core states in the calculation by
including multiple sets of occupied states in each angular
momentum channel. This helps to improve the chem-
ical hardness of the potential. 2o Moreover, there is ev-

idence that explicit treatment of the semicore levels is
necessary to correctly describe the phonon instabilities
of perovskites and related materials.

Semicore shells have been included in the present cal-
culation for all the metals considered. Specifically, we
include as valence states the 2s and 2p states of Na; the
3s and 3p states of K, Ca, and Ti; the 4s and 4p states
of Sr, Zr, and Nb; and the 5s and 5p states of Ba. We
also include the 5d shell in Pb. Thus, we have been much
more conservative about our choice of what constitutes a
valence state than is generally the case in the pseudopo-
tential method. This is motivated by the need for high
accuracy when studying the ferroelectric instabilities in
perovskites.

Other details are as follows. Relativity was included
by 6rst performing scalar relativistic calculations on
all-electron atoms, and then applying a suitable gen-
eralization of the pseudization procedure proposed by
Kleinman. 4 The oxygen potential used two construction
energies each in the s and p channels. The potentials
for the metals in this study all employed two reference
energies per angular momentum in s, p, and d channels.
The pseudo-wave-functions were constructed using the
optimized potential method proposed by Rappe et al. ,

i~

by minimizing the kinetic energy of the pseudo-wave-

function above the plane-wave cutofF, which we chose to
be 25 Ry throughout our calculations. A variant of the
same scheme was also applied to generate pseudo-charge-
augmentation functions. In this case the cutofF for the
optimization step was chosen to be 100 Ry, because the
cutoK energy for the potentials and densities in plane-
wave methods is generally 4 times as large as that for
the wave functions.

Our tests suggest that the potentials in this study are
of very high quality. We shall consider in more detail
the case of Ti, which is probably the least transferable of
the ten pseudopotentials required for this study. There
are two main tests of pseudopotential transferability in
common use. The first involves checking that the log-
arithmic derivatives of the all-electron and pseudoatom
agree over a reasonable range of energies. In a previous
publication we showed that our titanium potential does
an exceptional job of matching the all-electron logarith-
mic derivatives over a 4 hartree range of energy. ~ The
second main test is to check that the all-electron atoms
and pseudoatoms have similar eigenvalues when the ion-
ization state of the atom is changed. In Table I we sum-
marize the results of our tests on the titanium potential.
The atom was generated in the 3s 3p 4s 3d configu-
ration and so 6, the difFerence between the all-electron
eigenvalues and pseudoeigenvalues in mhartree, is zero
by construction for all states in this case. The largest
values of 6 of —2.1 mhartree occur when an electron is
removed from the 3p level. However, given the depth of

I

TABLE II. Convergence of eigenvalues and eigenvectors of D p with k-point set in PbTi03. The lower eigenvalues, which
are a measure of potential soft-mode instability, are remarkably sensitive to the k-point sampling; this may be indicative of
delicate cancellations between competing contributions to the force constants. Subsequent calculations use the (6, 6, 6) mesh.

k points

222
Eigenvalues

-0.00918
0.15538
0.16851

-0.8679
-0.0620
-0.2119

0.0246
0.5993
0.6631

Eigenvectors

0.3244
0.1207

-0.4236

0.3244
0.1207

-0.4236

0.1885
-0.7795
0.3955

444

666

888

-0.01824
0.05070
0.15338

-0.02584
0.04422
0.15250

-Q.02720
0.04350
0.15264

-0.6400
-0.6145
-0.1168

-0.5729
-0.6765
-0.1183

-0.5644
-0.6830
-0.1187

-0.4376
0.7801
0.0003

-0.5146
0.7312
0.0027

-0.5237
0.7250
0.0059

0.4062
-0.0285
-0.3655

0.4074
0.0144

-0.3657

0.4066
0.0210

-0.3665

0.4062
-0.0285
-0.3655

0.4074
0.0144

-0.3657

0.4066
0.0210

-0.3665

0.2622
-0.1096
0.8479

0.2732
-0.0843
0.8476

0.2765
-0.0826
0.8468
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TABLE III. Convergence of eigenvalues and eigenvectors of D p with energy cutoff in PbTiO&. Results appear to be well
converged at 25 Ry, which is used as the cutoff for subsequent calculations.

CutofF (Ry) Eigenvalues

-0.02584
0.04422
0.15250

-0.5729
-0.6765
-0.1183

-0.5146
0.7312
0.0027

Eigenvectors

0.4074
0.0144

-0.3657

0.4074
0.0144

-0.3657

0.2732
-0.0843
0.8476

50 -0.02400
0.04493
0.15565

-0.5961
-0.6576
-0.1099

-0.4888
0.7489

-0.0106

0.4087
-0.0055
-0.3645

0.4087
-0.0055
-0.3645

0.2674
-0.0804
0.8497

this state it is extremely unlikely that it could be de-
pleted by anything approaching a single electron in the
ground state of a real solid. The more important data are
therefore the rows connected with removal of the valence
48 and 3d electrons. Typically the values of 6 are less
than 0.5 mhartree in this case. Overall the agreement
between all-electroa eigenvalues and pseudoeigenvalues
appears to be comparable with that achieved by Teter's
recent extended-norm and hardness-conserving (ENHC)
potentials, which represent the state of the art in this re-
spect in more conventional pseudopotential technology.

The solid-state calculations throughout this work were
performed using a (6,6,6) Monkhorst-Pack mesh, zs i.e. ,

6 points in the full Brillouin zone. The unit cells used
here had either cubic, tetragonal, or rhombohedral sym-
metry, which yielded 10, 18, and 28 k points in the irre-
ducible wedge of the zone respectively. This represents
a k-point set of quite exceptional quality given that the
materials in question are all insulators. However, our
tests indicate that this level of accuracy is necessary
when computing the properties of the soft-mode total-
energy surface. For example Table II shows how the

I

I'qs symmetry eigenvalues and eigenvectors of the D
&

matrix converge as a fuaction of k-point set quality in
PbTi03. The second derivative matrix was constructed
using a &ozen phonon approach. The soft-mode eigenval-
ues A(j, rt) = 2z, computed with the (4,4,4) and (6,6,6)
Monkhorst-Pack mesh, difFer by about 30%. The anal-

ysis of the previous section shows that the well depths
depend on ~2. We would therefore conclude that well

depths computed with the (4,4,4) and (6,6,6) Brillouin
zone meshes would disagree by 50% if the anharmonic
terms were unafFected. This unusual sensitivity may be
indicative of delicate cancellations between competiag
contributions to the restoring forces for soft-mode dis-
tortions.

A plane-wave cutoff of 25 Ry was used throughout our
calculations, consistent with the optimization value used
in our construction procedure. We have also tested the
convergence of the I q5 eigenvalues aad eigenvectors of

I

the D
&

matrix with respect to energy cutoff. Results
are s»mmarized in Table III. We find that z changed
by about T%%uo on increasing the cutofF from 25 to 50 Ry.
The higher-frequency A(j) are converged to about 2% at
25 Ry. It would therefore appear that the error due to
incomplete convergence of the basis set is of similar size to
the k-point sampliag error. The exchange and correlation
was calculated using the Ceperley-Alder form.

We conclude that our calculations are fairly well con-

verged with respect to k-point sets and plane-wave cutoff,
although there is room for improvement in these areas. It
should be borne in mind that many previous studies on
the perovskite compounds have used the (4,4,4) rather
than (6,6,6) Monkhorst-Pack meshes. s We think that
this is potentially a significant source of error, particu-
larly when it comes to computing the depths of the fer-
roelectric wells.

IV. RESULTS

A. Lattice constants of the perovskites

We computed the value of the lattice constant which
minimizes the energy of the structure when the ions are
held fixed in the perfect cubic perovskite structure. Our
results, in atomic units, are summarized in Table IV. The
values obtained are in excellent accord with those calcu-
lated with the FLAPW method, in those cases where cal-
culations exist. The first-principles results are generally
1—2% smaller than the experimental values. This mag-
nitude and sign of error are typical of high-quality total-
energy calculations, which tend to underestimate lattice
constants as a consequence of the LDA. For compari-
son we have also computed values of the lattice constant
using Shannon-Prewitt radii. 27 We consider the possi-
bility that the lattice constant is determined either by
interaction of the 12-fold coordinated A cation and oxy-
gen (A-O), or by interaction of the 6-fold coordinated
B cation and oxygen (B-0). The ionic radius approach
clearly tends to overestimate the lattice constant. In their
original paper Shannon and Prewitt2 noted that their
method tends to perform relatively poorly for perovskites
aad other high-symmetry structures. Nevertheless, many
of the trends observable in Table IV can be understood
in terms of this simple picture. For example both the
theoretical and experimental lattice constants are seen
to decrease with decreasing radius of the A cation in the
BaTi03, SrTi03, CaTi03 series. In a similar way we

also find that the lattice constant increases on replacing
Ti with the larger Zr ion in both BaTi03 and PbTi03.

In the final column of Table IV we introduce a quan-

tity, b, which is a length that measures the extent of the
frustration between the competing (A-0) and (B-0) in-

teractions in the cubic perovskite lattice. We define b to
be the difference between the cubic lattice constants pre-
dicted by the Shannon-Prewitt radii assuming that (A-

0) and (B-0) interactions are dominant. Thus a value

of b close to zero, as found in BaZr03 or SrTi03, im-
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TABLE IV. Cubic perovskite lattice constants in bohrs.

Compound

BaTi03
SrTi03
CaTi03
KNb03
NaNb03
PbTi03
PbZr03
BaZr03

This work

7.456
7.303
7.192
7.472
7.396
7.350
7.770
7.853

FLAPW

7.45

7.488

7.35'

Experiment

7.58
7.38
7.25
7.58
7.44
7.50
7.81
7.924

(A-0)

8.02
7.59
7.35
8.02

qe

7.72
7.72
8.02

(B-0)
7.58
7.58
7.58
7.71
7.71
7.58
8.01
8.01

0.44
-0.01
-0.23
0.31

qe

0.14
-0.29
0.01

Ref. 3.
b Ref. 6.
' R.E. Cohen (private communication).

Calculated assuming the same density as the tetragonal phase.
' Value not calculated as tables do not include value for 12-fold coordinated Na+.

plies that both A and B cations are simultaneously sat-
isfied by their oxygen environment. The sign convention
adopted here is such that a positive value of b, as that
found in BaTi03, implies that the hole for the B cation
is stretched beyond its ideal value. In the following we
shall explore the extent to which trends in the behavior
of the perovskite compounds can be correlated with b.
The importance of competing (A-0) and (B 0) interac--

tions in the perovskites has been emphasized previously
and can be traced at least as far back as Slater's work on
BaTiO 28

B. Zero-temperature structures
of the perovskites in the LDA

Having obtained the lattice constant which min-
imizes the energy of the perfect cubic perovskite
structure for each material, we went on to compute
the soft-mode eigenvalues tc and eigenvectors intro-
duced in Sec. II, using the &ozen phonon method.
Three calculations with diferent displacement pat-
terns are sufficient to obtain the modes with I'ps

symmetry. We used displacements in the z direc-

tion of the form (0.002,0,0,0,0)a, (0,0.002,0,0,0)a, and

(0,0,0.001,0.001,—0.002)a, where the displacement vector
is listed in the order (v+,vg, vo', v+",v+"'). Our results
for ~ are summarized in column 8 of Table V.

There are a number of interesting observations to be
made about the values of ~ obtained in this way. First,
we 6nd that K, is positive only for BaZr03. This result

for BaZrOs is in accord with the experimental observa-
tion that this material is stable in the cubic perovskite
structure at all temperatures. We would also expect the
three compounds BaTiOs, KNbOs and PbTiOs, which
have ferroelectric ground states with primitive five-atom
unit cells, to have negative values of m. This expectation
is confirmed in Table V and Table VI where we summa-
rize which compounds are theoretically ferroelectric, if
we restrict attention to just the zone-center instabilities.
Previous studies on BaTiOs (Refs. 3 and 7) and PbTiOs
(Ref. 4) have found zone-center instabilities at the the-
oretical lattice constant. However, the previous LDA
study on KNbOs, using the FLAPW method, found this
material to be stable at the theoretical lattice constant,
although there was a very small ferroelectric instability
when the lattice was strained to the experimental value.
This discrepancy is discussed further at the end of this
subsection.

The remaining compounds in this study exhibit transi-
tions in which phonons become soft at points other than
I' in the Brillouin zone. Experimental observations there-
fore do not preclude the possibility that there may be an
unstable I' point phonon; another transition may simply
intervene before the I' point instability has a chance to
freeze in. For example, SrTiOs is an incipient ferroelec-
tric and by extrapolating the high-temperature form for
the dielectric response one would predict a transition to a
ferroelectric ground state at 40 K. At atmospheric pres-
sure, however, SrTi03 makes a transition to a structure
with tilted oxygen octahedra at 110 K.

TABLE V. Interaction parameters of eight perovskites in a.u.

BaTi03
SrTi03
CaTi03
KNb03
NaNb03
PbTi03
PbZr03
BaZr03

4.64
5.14
5.15
6.54
6.63
4.52
5.92
5.52

1.65
1.38
1.22
0.96
0.96
1.97
1.37
1.56

B44

1.84
1.56
1.29
1.37
1.07
1.36
1.07
1.47

Bg

-2.18
-1.41
-0.59
-3.01
-1.71
-0.78
-0.22
-0.47

Byway

-0.20
0.06
0.06
0.33
0.50
0.00
0.07
0.07

B4„,
-0.08
-0.11
-0.10
-0.01
0.00
-0.03
-0.01
-0.11

-0.0175
-0.0009
-0.0115
-0.0154
-0.0124
-0.0129
-0.0156
0.0078

0.320
0.150
0.023
0.378
0.168
0.044
0.011
0.016

-0.473
-0.191
-0.006
-0.613
-0.256
-0.045
-0.013
0.000

0.176
0.093
0.013
0.184
0.093
0.022
0.009
0.009

-0.124
-0.010
0.061
-0.111
-0.041
0.025
-0.003
0.054
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TABLE VI. Summary of the theoretical and experimen-
tal ground-state structures of the eight perovskites. Abbre-
viations are ferroelectric (FE), antiferroelectric (AF), antifer-
rodistortive (AFD), rhombohedral (R), tetragonal (T), mon-
oclinic (M), cubic (C), and orthorhombic (0).

BaTi03
SrTi03
CaTi03
KNb03
NaNb03
PbTi03
PbZr03
BaZr03

Theory

FE-R
FE-R
FE-T
FE-R
FE-R
FE-T
FE-R

C

Expt. (primitive)

FE-R

FE-R

FE-T
FE-R

C

Expt. (complex)

AFD-T
0

AF-0

Extrapolated from the phase diagram of PZT.

A direct comparison between the theoretical and ex-
perimental soft-mode eigenvectors can be made for the
cases of BaTi03, KNb03, and PbTi03, using the exper-
imentally measured ionic displacements for the ferroelec-
tric phase. The results are summarized in Table VII.
In all cases the soft-mode amplitude is underestimated by
the fourth-order theory. Typically the error is about 30%.
This size and sign of error is not surprising in view of the
fact that our calculations underestimate the theoretical
lattice constant, and that this and other studied ' ' '

have shown that the soft-mode surface is a sensitive func-
tion of volume. For the case of BaTi03, our results for
the soft-mode eigenvector are in good accord with the
experimental data, a result we found in our previous
work. ' However, the level of agreement is less satisfac-
tory for KNb03 and still worse for the case of PbTi03,
which has the largest spontaneous distortion. We have
tried relaxing the ions in PbTi03 at the experimental
lattice constant and c/a ratio. The displacement vector
obtained in this case is (0.73,0.32,—0.36,—0.36,—0.32),
which is clearly in much better accord with the experi-
mental data. The soft-mode amplitude was also brought
in closer agreement with experiment, coming out to be
0.913 a.u. Thus, we conclude that for the compounds
with the largest spontaneous distortion, the fourth-order

expansion should not be trusted to describe the energy
surface with quantitative accuracy all the way to the dis-
torted equilibrium structure.

The elastic constants for the eight perovskites were
computed by examining the behavior of the total energy
as a function of strain. Data generated in the previ-
ous section were used to compute the bulk modulus by
fitting a third-order polynomial through the energy vs
lattice constant data. A typical example of the quality
of fit is shown in Fig. 1(a) where we show our results
for the case of PbTi03. The two remaining indepen-
dent elastic constants, which were taken to be Bq~ and
B44, were obtained by &eezing in strains which lowered
the symmetry of the cells to tetragonal or rhombohedral
symmetry, and again fitting the energy vs strain curves
with a third-order polynomial. At least five difFerent val-
ues of the strain were employed to obtain each elastic
constant in each material.

The elastic constants we have obtained for the per-
ovskites appear to be in good agreement with previous
theoretical results in the few places we have been able to
make comparisons. Singh and Boyer found a bulk mod-
ulus of 195 GPa in their FLAPW work on KNb03 which
agrees to about 2% with the value of 199 GPa found
here. Cohen, also using the FLAPW method, obtained
a bulk modulus of 215 GPa for PbTi03, which is about
3% larger than our value of 209 GPa. The best available
experimental elastic constants on the cubic phases of the
materials studied here appear to be for SrTi03. The
Landolt-Bornstein tables quote room temperature ranges
of 316—348 GPa, 101—103 GPa, and 119—124 GPa for
c~~, c~2, and c44, respectively, which can be compared
with our own values of 389 GPa, 105 GPa, and 155 GPa.
Overall the level of agreement between theory and exper-
iment is about 20%, which is not as good as one would

generally expect &om an LDA calculation. However, it
must be borne in mind that the cubic phase of SrTi03
is unstable, and that the measured elastic constants are
quite strong functions of temperature. For example ac-
cording to the results of Bell and Rupprecht cqq in-
creases by about 4% as the temperature is lowered from
room temperature to —160'C, before dropping precipi-
tously as the transition temperature is approached. It
is therefore unclear whether a direct comparison of the

TABLE VII. Comparison of theoretical and experimental soft-mode amplitudes and vectors.
Amplitudes are in bohrs, and vectors are normalized to unity.

BaTi03
Theory Expt.

KNb03
Theory Expt. b

PbTi03
Theory Expt. '

(,"(j,.«, z)
(* (j o„,z)
f. '(j..«, «)
(*"(jo«)z6'"('- )
Amplitude

0.20
0.76

-0.21
-0.21
-0.53
0.25

0.22
0.76

-0.23
-0.23
-0.52
0.31

0.18
0.80

-0.31
-0.31
-0.37
0.22

0.32
0.73

-0.33
-0.33
-0.38
0.37

0.57
0.51

-0.41
-0.41
-0.27
0.54

0.72
0.33

-0.35
-0.35
-0.35
0.82

Ref. 29.
Ref. 30.' Ref. 31.
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theoretical and experimental elastic constants for the cu-

bic symmetry structure is valid and in view of these un-

certainties we were satisfied with the level of agreement
obtained.

The phonon strain interaction parameters Bq, Bq»,
and B4~, were found by freezing in a small amount of
the soft-mode vector (typically we used u = 0.005a) and

computing the changes in the forces on the ions for five

difFerent strains. Results for our calculation of Bq in
the case of PbTiOs are shown in Fig. 1(b). It is appar-
ent &om Table V that the most important strain-phonon
coupling arises through the term Bq terms which tend
to be large and are always negative. Physically Bz
measures the extent to which the x-polarized soft-mode
eigenvalue changes on application of an gq strain. The
negative sign of this coupling constant is reasonable, be-
cause compression of the lattice in the x direction (appli-
cation of a negative rjq) will tend to increase the ion-ion
repulsions and hence raise the soft-mode eigenvalue. In
Fig. 2 we plot Bq as a function of the soft-mode an-

gle. It is apparent that Bz shows a marked tendency to
become more negative as the soft-mode angle decreases.
Given that a small soft-mode angle implies large motion
of the B cation, this suggests that Bq is most sensitive
to the B-0 interactions in the cell, and that the B-0
bond stifFens rapidly as it is compressed.

Finally o, and p were obtained by &eezing in the soft-
mode distortion for a range of values of u in the [100]
and [ill] directions and fitting the resulting energy vs
displacement curves with a quadratic polynomial in the
square of the soft-mode coordinate. Typical results for
the case of PbTiOs are illustrated in Fig. 1(c). The re-
sulting sets of parameters are summarized in Table V.
The final two columns of this table give the values of o.'

and p' as defined in Sec. II.
Perhaps the most successful aspect of Table V is that

it correctly predicts the symmetry of the ground-state
structures of all the compounds with primitive five-atom
unit cells. For clarity we have summarized the theoret-
ical and experimental results in Table VI. p' is neg-
ative for BaTi03 and KNb03, and so these materials
should have rhombohedral structures as their lowest-
temperature structures according to our fourth-order the-
ory. PbTi03, on the other hand, has a positive value of
p' and is thus correctly predicted to have a tetragonal
ground state. A further interesting case is provided by
PbZr03. While pure PbZr03 has a rather complicated

QS

5x10—3

QQ

N

0
I i I i I

0.2 0.4 0.6

u (Bohr)

0.8

0
BaTi03

0
KNb03

kbZr03~

BaZr03
Q CaTi03

PbTi03

SrTi03

FIG. 1. Sample Sts used to obtain interaction parame-
ters of PbTiOs. (a) shows fit of energy vs lattice constant.

8 E
(b) depicts as an gq strain is frozen into the cell. (c)

Ou~
shows the variation of the energy as the soft-mode amplitude
is increased for the case u = u, u„=u = 0.

I s I i I s I

0 20 40 60 80

sof t—mode angle

FIG. 2. Strain-phonon interaction parameter B~ in
hartree/bohr against soft-mode angle in degrees.
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ground-state structure, it is found that the solid solution
PbTi Zrq Os (PZT) has a simple ferroelectric structure
in the range 0.1 ( x ( 1.0. The ground-state structure
undergoes a transition &om a tetragonal to a rhombohe-
dral phase at a composition of x about 0.5 as PbZr03 is
added to PbTi03. It is therefore also reasonable that p'
should be negative for PbZr03 as observed in Table V.

We return now to discuss the discrepancy between our
results and those of Singh and Boyer. As noted earlier,
these authors found that KNb03 is stable in the cubic
structure at the theoretical lattice constant, whereas the
current work predicts K & 0 and a rhombohedral ground-
state structure. The origins of this discrepancy are un-

clear at this time. Part of the explanation may lie in the
higher-quality k-point sets used here, as the trends ob-
servable in Table II suggest that incomplete convergence
of the Brillouin zone integrations leads to an overestimate
of K Our e. xperience has been that the calculation of the
soft-mode eigenvalue in a ferroelectric is a much more
difBcult calculation than the apparently similar problem
of obtaining the phonon &equencies of a semiconductor
such as Si. In the previous section it was demonstrated
that this quantity is unusually sensitive to k-point sets
and plane-wave cutoff. However, this probably does not
account for the whole difference between our results, and
we think it is too early to decide whether the present work
or that of Singh and Boyer is closer to the "exact LDA"
answer. On the one hand, we are clearly in closer agree-
ment with experiment than the FLAPW calculations; on
the other hand, it is to be admitted that the pseudopoten-
tial method makes an additional approximation over the
FLAPW method. This uncertainty highlights the need
for further high-quality calculations by other groups us-

ing independent codes and methods to more accurately
quantify the size of the LDA errors in these materials.

C. Band structures

We have calculated the band structures for each per-
ovskite. In each case we worked with the unit cell with
full cubic symmetry at the theoretical lattice constant.
Figure 3 shows our results for PbTi03. The energy scale
is in eV, and the origin of energy was arbitrarily set to
be at the valence band maximum. A visual comparison
of our results for this material against those of Cohen

X S R ~ raXZM Z r

FIG. 3. Band structure of cubic PbTi03 for selected high-

symmetry directions.

BaTiO& SrTi03 CaTiO& KNb03 NaNbO& PbTiO& PbZrO& BaZr03

—10
4l

33a 5P Sr 4p
K 3p Pb 6s

Pb 5d

pb 6s

Pb sd P

—20
Ca 3p

Na Bp

FIG. 4. Comparison of the band structures of eight per-
ovskite compounds in the cubic structure from I' to X.

and Krakauer4 shows almost no discernible difference. In
Fig. 4 we show the results of our calculation for all eight
materials between I' and X. In each material there is a
fairly narrow set of oxygen 2s bands between about —16.0
and —18.0 eV, and a group of oxygen 2p states between
0.0 and —5.0 eV. Also visible on this scale is a number of
shallow core states associated with the A cation, which
we have labeled individually in Fig. 4. It can be seen
that these shallow core states have the most influence on
the upper valence bands and lower conduction bands in
the case of the lead compounds.

Our band-structure calculation for SrTi03 is also
in good agreement with the LAP W calculation of
Mattheiss; the small differences that do occur presum-
ably reflect the neglect of relativistic effects in the latter.
Our calculations for all eight materials show the same
characteristic Hatness of certain bands (e.g. , the lowest
conduction band along I' to X) as was found by Mattheiss
for SrTi03 and several other cubic perovskites. The Gt-

ting of the perovskite band structures to tight-binding
models has been discussed by Mattheiss, Harrison,
and Wol&am and Ellialtioglu. The latter authors relate
the observed flatness of the bands to certain unusual fea-

tures in the density of states and optical response which

appear to be characteristic of two-dimensional systems.

D. Analysis of structural trends

Here, we discuss whether the results obtained above
can be understood on the basis of simple models and
chemical trends. As discussed in the previous subsection,
it is clear that band-structure features are best discussed
in the context of a tight-binding description. Here,
our emphasis is on structural energetics.

A number of trends in our soft-mode data can be un-

derstood in a qualitative way in terms of b, the parameter
introduced in Sec. IV A to reflect the frustration in the
ionic radii. Intuitively we might expect that those mate-
rials with the values of b which are closest to zero should
be the most stable materials in the cubic perovskite phase
and might therefore tend to have the largest values of
soft-mode eigenvalue. In Fig. 5 we plot K in a.u. against
b in a.u. In order to slightly increase the database of
results we have also included in the plot values obtained
for SrZrO~ and CaZrO3. There does appear to be some

tendency for r to peak around b = 0. The trend is per-
haps most convincing if one focuses on groups of chem-
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FIG. 5. Soft-mode eigenvalues (hartree/bohr ) against
frustration (bohrs) for nine perovskite compounds. Materi-
als with primitive 6ve-atom ferroelectric ground states are
plotted as circles. All other cases are shown as triangles.

FIG. 6. Soft-mode angle in degrees vs frustration (bohrs).
Symbols as in Fig. 5.

ically similar compounds, such as the BaZr03, SrZr03,
CaZrOs series where e decreases steadily as b decreases
&om about 0.0 a.u. to about —0.7 a.u. , or the BaTi03,
SrTi03, CaTi03 series, which is peaked at SrTi03 with
b = —0.01.

Interestingly, the three compounds with ferroelectric
ground states with five atoms in the primitive cell (de-
picted with circles in Fig. 5) are the compounds with
significantly positive values of b. While we think that
the above observations form a useful point of view for
analyzing our data, it is important to point out that a
simple analysis in terms of our frustration parameter b
has its limitations. For example the compound KTa03
has exactly the same value of b as KNbOs according
to the Shannon-Prewitt tables. However KTa03 is be-
lieved to be stable in the cubic perovskite structure at
all temperatures. ' Thus we have an example of a ma-
terial with a substantial positive value of b' which is not
ferroelectric and must have e ) 0.

We have also considered the behavior of the soft-mode
eigenvector, ( (j, ft, n) as a function of b. For positive
b the B ions are likely to be "loose" in their sockets be-
cause the A-0 interactions expand the lattice beyond the
ideal B-0 value. It is reasonable to expect that the mag-
nitude of (g(j„n)will be greater than (+(j„n)in these
circumstances. The converse should hold true for the
situation where b ( 0. In Fig. 6 we have plotted the
soft-mode angle defined as tan ( (j„n)/f (j„n) in
degrees against b in bohrs. The first point of note is that
all the angles are positive, which implies that in all cases
the A and B cations move in the same direction in the
soft mode. As expected, there is a convincing trend for
the A cation motion to decrease with increasing b.

Of course, b is a purely "classical" measure of ionic
radius. However, the perovskites are only weakly ionic.
For example, the hopping V„g between nearest-neighbor
0 2p and Ti 3d orbitals is found to be on the same order
as the energy separation between these levels, about 3
eV. Thus it is clear that p-d hybridization must make

a contribution to the crystal cohesion and must play a
role in the ferroelectric instabilities. One is therefore led
to look for correlations of computed structural proper-
ties with chemical trends and isoelectronic relationships.
However, such trends are not very evident in Table V.
Focusing just on the elastic constants {the only quanti-
ties which do not involve the soft mode), one does see
that the two compounds of the form I-Va-Os (NaNbOs
and KNbOs) have larger values of Bii and smaller values
of Bq2 than the other six materials. This is most likely
due to the difference in Madelung energies. However, a
systematic dependence of computed quantities upon the
species of the B cation, as might be expected &om the
role of the latter in hybridizing with the oxygen, is not ev-
ident. For example, while NaNb03 and KNb03 might be
expected to behave similarly on chemical grounds, many
of the quantities listed beyond the third column of Ta-
ble V are quite different. This is because these quanti-
ties all depend indirectly upon the soft-mode eigenvector,
which is quite different for the two materials (for which
the soft-mode angle defined above is 36' and 13' respec-
tively). Thus, despite the expected importance of p-d
hybridization, it appears that simple arguments based
on ionic radii are surprisingly effective.

V. DISCUSSION

Here, we comment briefly on some of the implications
of our results.

We find that the sign of the effective fourth-order cou-
pling is positive in all directions in all eight materials.
(As can be seen from Sec. II, this efFective fourth-order
coupling ranges from n' to n'+ p'/3, depending on direc-
tion; Table V shows that this quantity is always positive,
even after renormalization by strain coupling is taken
into account. ) In the Landau-type theories of the fer-
roelectric phase transition, the sign of the fourth-order
term in the order-parameter expansion of the &ee energy
determines whether the transition is of first or second
order. Of course, at T ) 0 the &ee energy is renormal-
ized by anharmonic coupling of the soft-mode variable to
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other phonons, which is not included in our calculations.
Thus, at least for the compounds studied, we conclude
that coupling to strain alone is insufIicient to drive the
fourth-order term negative as required for a first-order
transition. In those cases where the transition is observed
to be first order, the anharmonic phonon couplings must
be responsible.

The bare coupling constant p is almost always found
to be negative in the materials studied here. The strain
renormalizations were always found to increase the value
of this quantity (i.e. , p' ) p), and in a couple of cases
cause it to switch sign. These observations serve to high-
light the important consequences of strain coupling in
the perovskites, as emphasized previously by Cohen and
Krakauer in their study of PbTi03. Moreover, they pro-
vide a possible explanation for a well-known asymmetry
in the observed sequences of phase transitions: namely,
that those materials like BaTi03 which are rhombohedral
at T = 0 typically pass through tetragonal and some-
times orthorhombic phases on the way &om the cubic
phase, while those materials such as PbTi03 which are
tetragonal at T = 0 usually transform directly from the
cubic phase. In the former case, the sequence of tran-
sitions is usually rationalized in terms of an eight-site
model, in which the order parameter just above the tran-
sition to the cubic phase is assumed to spend most of its
time fluctuating among the eight minima in the (111)
directions. Just below the transition, it freezes onto a
subset of four of these minima, with average (100) orien-
tation and tetragonal symmetry; only at very low tem-
perature does it &eeze into a single minimum and acquire
rhombohedral symmetry. This scenario requires that the
sites along the (111)directions be minima even in the cu-
bic phase, before the strain develops. That is, it requires
that p and p' be of the same sign (in this case, negative).
Insofar as p' ) p, this is automatic for rhombohedral
T = 0 materials, which must have p' ( 0. If both p and
p' were of positive sign, one might imagine a scenario in
which a "six-site model" would give rise to a transition
from cubic to rhombohedral, orthorhombic, and tetrago-
nal, as the order parameter &eezes onto subsets of three,
two, and one (111) minima, respectively. However, for
PbTi03 we have p and p' of opposite sign, so that such
a scenario is not plausible. If this situation is typical
of materials with tetragonal T = 0 structures, it would

explain why the reversed sequence is not observed.
We emphasize that we do not have in hand all the

elements needed to construct a theory of the phase tran-
sition from first principles. Nevertheless, we have ob-

tained many of the ingredients that would enter such a
theory. In particular, we have calculated virtually all
the relevant on-site couplings, including anharmonic and
strain couplings. The most pressing need now is for cal-
culations which will determine some of the intercell cou-

plings, especially those at harmonic order. These can
be extracted &om LDA calculations for phonons away
&om the Brillouin zone center, using either the supercell
&ozen phonon approach or a linear response approach.
Thus it appears that it may not be long before a ther-
modynamic theory of the phase transitions in perovskite
ferroelectrics may be constructed &om first principles.

Of course, the results presented here remind us of a
serious limitation of the first-principles LDA approach,
connected with the extreme sensitivity of some calcu-
lat;ed quantities to the lattice constant. As discussed in
the body of the paper, we find that LDA underestimates
lattice constants by approximately 1% in perovskites, as
is common for other materials. Unfortunately, because of
the proximity to the ferroelectric phase transition in the
perovskites, this 1% error can translate into large errors
in such quantities as the magnitude of the T = 0 dis-
tortion, the spontaneous polarization, and ultimately, in
the ferroelectric transition temperature. However, there
is no reason to expect it to have a radical effect on many
of the other calculated quantities, such as the values of
the anharmonic and strain couplings and the soft-mode
eigenvectors. If and when it becomes possible to cal-
culate pressure-temperature phase diagrams &om first-
principles LDA calculations, we anticipate that the pres-
sure axis may have to be artificially shifted to accommo-
date the 1% lattice-constant error. But we are opti-
mistic that the structure of the phase diagram (sequence
of phases, first-order vs second-order transitions, bound-
aries, etc.) will otherwise be reliable.

VI. CONCLUSIONS

We have performed accurate first-principles pseu-
dopotential calculations on eight perovskite compounds
within an ultrasoft-pseudopotential approach and the
LDA. We have shown that it is possible to devise a com-
putationally tractable scheme to compute the soft-mode
total-energy surface correct to fourth order in the soft-
mode displacement. Our convergence tests highlight the
need for extreme accuracy in the Ic-point sets in these
calculations.

We find that zone-center instabilities in the cubic per-
ovskite structure are very common, and that all the com-

pounds st;udied here which have an experimental phase
transition also have a zone-center soft mode at the the-
oretical LDA lattice constant, even in cases where the
observed transitions are caused by soft modes away from
the I' point. We find that the LDA correctly predicts
the symmetry of the ground-state structures of BaZr03,
BaTi03, KNb03, and PbTi03. The remaining com-

pounds have ground-state unit cells with more than five

atoms, and the determination of their ground states
therefore lies beyond the scope of the present study.
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APPENDIX A
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M = ZA(M) zt,

5841

(As)

Our objective here is to solve the matrix equation for
the strain g; which minimizes the total energy for a given
set of u . The symmetry of the problem becomes most
readily apparent if we de6ne a new vector y, with compo-

2 2 2nents yq
——u, y2

——u, y3
——u„y4——u„u» y5 ——u, u»

ys ——u u„.With this notation Eq. (14) can be written
as

(A1)

where A(M) is the diagonal matrix of eigenvalues of M
and Z is the matrix of orthonormal eigenvectors. The
eigenvalues are just P + 2Q (1), P —Q (2), and R (3),
where the number in parentheses gives the degeneracy. In
terms of the bulk and shear moduli defined in Eqs. (17a)—
(17f) the eigenvalues of B are B, 2pq, and p„,while the
eigenvalues of C are C, 2', and 2v„.The eigenvectors of
a matrix of the form M can be chosen to be independent
of the values of P, Q, and R. For example one simple
choice is

M=

PQQ 0 0 0
QPQ00 0
QQP 0 0 0
OOOROO
0000RO
00000R

(A2)

where 8 and C are both 6 x 6 matrices with the structure 1
~3 '
1 1

~3 ~2
1 1

~3 ~2
0 0
0 0
0 0

-~ 000-
000
000

0 100
0 010
0 001

(A4)

For the B matrix P = Bqq, Q = Bq2, and R = B44, while
for C we have P = Bq, Q = Bq„„,and R = 2B4„,.
Because M is a symmetric matrix it can be written as

It is clear that the expression for E given in Eq. (15) can
be written as

E((u )) = E~ l+4((u )) ——) y, ZA(C)ZtzA (B)ZtZA(C)Zt . . y~. (A5)

For a symmetric matrix we have ZtZ = 1 and thus it is
obvious that the matrix in square brackets is just another

C2 v~2
matrix of the form M with eigenvalues, 2—,andB ' pg'

2

4—".Given the relationship between the eigenvalues and
p~

P, Q, and R the components of this matrix are just

1 (C vga+
3 EB

(A6a)

and

1 C' vs'
3EB &~)'

2

R =4—"".

(A6b)

(A6c)

It is now simply a matter of multiplying out the matrix
term in Eq. (A5) and using the definition of y; in terms
of u to derive Eq. (16).

APPENDIX 8
In this appendix we describe the conjugate-gradient

(CG) scheme which was employed in the calculations pre-
sented in this paper to minimize the Kohn-Sham func-
tional. Probably the best known CG method for use
in fast Fourier transform (FFT) based pseudopotential
codes is that due to Teter, Payne, and Allan which

has been applied with great success to a wide range of
problems. This method minimizes the total energy in a
band-by-band fashion. Orthogonality is maintained by
projecting out from the conjugate direction h all compo-
nents of the vector which are parallel to orbitals at the
current k point. The algorithm is further improved with
preconditioning based on the diagonal dominance of the
kinetic energy at large reciprocal lattice vectors. Teter
et al. have emphasized the importance of updating the
Kohn-Sham Hamiltonian self-consistently on each itera-
tion in order to control the "charge sloshing" instabilities
caused by the divergent behavior of the Coulomb inter-
action at long wavelengths.

We have chosen to formulate our CG scheme using
a generalization of the Kohn-Sham energy functional to
nonorthogonal orbitals in a manner which is very simi-
lar to an idea which was recently proposed by Galli and
Parrinello. Two major bene6ts arise from this general
functional. First, the CG algorithm does not lend itself
easily to constrained minimization problems, particularly
if one should wish to move away from band-by-band types
of schemes. By choosing to work with nonorthogonal
orbitals, we dispense with the need to impose the or-
thogonality constraint during the course of the minimiza-
tion process. Second, the nonlocal overlap operator S
which occurs in the Vanderbilt ultrasoft-pseudopotential
scheme is easily incorporated into the formalism.

A second major ingredient of our method is to mini-
mize the Kohn-Sham functional with respect to all the
wave-function degrees of freedom simultaneously. In the
one-band-at-a-time approach it is fruitless to iterate any
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given band to self-consistency, because iterating on later
bands changes the total potential, destroying the self-
consistency of previous bands. The sequential approach
limits the number of CG steps which can usefully be per-
formed on any given band to about 5. Within the ap-
proach preferred here, where all bands at all k points are
changed on each iteration, this self-consistency consider-
ation does not come into play and as many CG steps as
desired can be performed before a restart. Our experi-
ence has been that one set of 20 steps of the CG algorithm
is considerably more efBcient that four sets of 5 steps and
that quite substantial gains in performance can therefore
be made.

In the following we shall develop our formulation for
the case where the number of electrons in each occupied
band at each k point is the same. This restriction is not
necessary and the question of how to handle the more
general case of variable occupation has recently been ad-
dressed by Arias et al.s We shall also concentrate on the
case where we have a single k point, as the extension to
the multiple k-point case is trivial. Within the ultrasoft
&amework the Kohn-Sham functional is written in terms
of a set of linearly independent nonorthogonal orbitals

Kleinman-Bylander potentials: This limit is recovered by
setting S to the unit operator and the Ql (r) functions
to zero.

The functional derivative of Et t with respect to P,
*

(Ref. 38) is given by

(B2)

where H is the usual Kohn-Sham Hamiltonian in the
Vanderbilt ultrasoft scheme. 14 Note that since

(Ps I

S
I P ) = 6'I,

z we have (Ps I, ) = 0, which im-

plies that the projection of any occupied orbital on the
gradient direction is zero. Physically, adding any amount
of the state Ps to the state P; does not change the sub-

space spanned by the occupied orbitals and thus leaves
the total energy unchanged.

We start our CG iteration with a set of S-orthonormal

{P;j obtained from a random number generator or a pre-
vious calculation and compute a G-space diagonal pre-
conditioning matrix K following the algorithm of Teter
et al. A standard preconditioned CG algorithm is then
used to minimize the Kohn-Sham functional. Thus on
iteration n+ 1 our gradient is just

g (B3a)1,n(r) n(r')
2 Ir —r'I (Bla)

+E„.[r] +f drV, ',''. (r)r(r) + U({Rr)),

where it is implicit that the gradient is to be evaluated
with the orbitals {P,") obtained from the nth iteration.
The conjugate search direction h"+i is

where the charge density n(r) is given by

nr = 'r ir

+):).q.' (r)(y* I
p')(p.' I y;) (»b)

i nmI

hn+1 K n+1 + nhn

where

(grr+1) t K grr+1

(gn, )t . K . gn

(B3b)

(B3c)

with

(Blc)

and

,, = (0'~ I
~

I &') (B1d)

In Eq. (Bla) VN1, is the nonlocal potential, V1'," is the
local ionic potential, i is an index running over all occu-
pied bands, n and m are indices running over projector
functions

I P) on a given atom, I is an index running over

atoms, and U({RI)) is the ion-ion interaction energy. A

complete discussion of all of the meaning of the terms
in Eq. (Bla) can be found in Ref. 14. Conventionally
the Kohn-Sham energy in the Vanderbilt scheme is writ-
ten in terms of a set of 8-orthonormal orbitals. The
energy computed in Eq. (Bla) is identical to that com-

puted with the conventional expression using any set of
of S-orthonormal orbitals which span the same space as

{P;(r)) Note that . the above expressions are equally ap-
plicable to the more usual plane-wave formulations using

The line minimizations along the conjugate directions are
performed using a variant of the method suggested in

Ref. 37. We assume that the energy functional varies

quadratically in the region of interest. The total en-

ergy and gradient at the point in function space {P,")
are known which fixes two parameters of our quadratic
form. The final parameter is obtained by taking a small

step along the direction h"+ and recomputing the self-

consistent total energy. Typically the size of the trial
step is simply taken to be about the size of step which

minimized the function on the previous step.
In order to illustrate the benefits of iterating on all the

degrees of freedom at once we have performed two cal-
culations on a five-atom unit cell of BaTi03 using ten k

points in the irreducible wedge of the zone. The first cal-

culation proceeded by minimizing one k point at a time

using five CG steps at each k point, where as the second
calculation iterated on all k points at once and used 15
CG steps between restarts. The results are illustrated in

Fig. 7. Each pass through all the bands was counted as
five iterations in the k-point-by-k-point case so compar-

isons could be made. Relaxing aQ degrees of freedom at
once speeds the calculation by about a factor of 2.
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The operation count per band per iteration is better
for a method which updates all the wave-function coeffi-
cients together because the Hartree and exchange corre
lation potential need to be updated much less frequently.
This is of particular importance in the Vanderbilt ultra-
soft scheme, because augmentation of the density would

FIG. 7. Error in total energy per unit cell in hartrees vs it-
eration number using the k-point-by-h-point method (dotted
line) and all-k-points-together approach (dashed line).

become a major cost of the calculation if it were done
on a band-by-band basis. When all the bands are up-
dated simultaneously the augmentation overhead in the
ten k-point calculation discussed above took less than
2'%%up of the time on each CG step. For the size of unit
cell considered in this paper the most efficient scheme
that we have found for computing the regular contribu-
tion to the charge density is to explicitly construct an S-
orthonormal set of orbitals (@,) in reciprocal space which
span the space of (P;). Thus we evaluate P,. P;(r)P;(r)
in Eq. (Blb) as g, Q;(r)g;(r), which can be done with
a single FFT per band.

The major drawback of this scheme is that the amount
of gradient and conjugate-gradient direction information
which must be stored is substantially increased. How-
ever, we have found that it is possible to structure
the codes so this information is read and written to a
disk, without incurring substantial input-output penal-
ties, both on workstations and on the Cray YMP (where
we utilized a solid-state disk). In our current implemen-
tation of the scheme we use one major work array di-
mensioned to all the wave functions at all k points and a
second smaller array which is sufficient to hold the wave
functions at a single k point. Three disk scratch files
were used to store current values of (P;), the gradient
direction, and the conjugate direction.
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