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Influence of the roughness yrofile on the syecular reflectivity of x rays and neutrons
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For the calculation of specular x-ray and neutron reflectivity from rough surfaces two expressions ex-

ist, which are valid under different circumstances. Another expression is derived using the second-order
distorted-wave Born approximation, which smoothly connects the two existing expressions. The shape
of the reactivity curve depends not only on the average roughness, but also on the lateral correlation of
the roughness profile.
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FICr. 1. Calculated specular reQectivity vs wave-vector
transfer for Cu Ka& radiation on a gold sample with average
roughness o =1.5 nm and four different values of the lateral
correlation length g. From top to bottom: /=0 (NC form,
solid line); /=100 nm (dotted); /= 1000 nm (dashed); and g= ~
(0%' form, dash-dotted).

Specular x-ray and neutron reflectivity measurements
of materials form a well-known technique for determin-
ing density profiles perpendicular to the surface. ' For a
rough surface the reflectivity depends, among other
things, on the root-mean-square surface roughness 0.. If
compared with a smooth surface, the reflectivity is re-
duced and the factor by which the reflection coeScient is
multiplied decreases with cr. For this factor two
forms are in use, which may give somewhat different re-
sults. The first form is the so-called static Debye-Wailer
(DW) factor exp( —2kocr ), where ko is the perpendic-
ular component of the wave vector of the incident radia-
tion. The second from, due to Nevot and Croce (NC), '

is exp( —Zkok, cr }, where k, is the perpendicular com-
ponent of the wave vector inside the material, after re-
fraction. The difference between the two will be seen in
Fig. 1, where in the upper curve the NC factor is used
and in the lower curve the DW factor. Generally, the
NC form is applied in the vicinity of the region of total
refiection, whereas at large ko the DW form may give a
better description.

In this paper we will present a theoretical description,
which exhibits the correct behavior at all angles. It is
found that the NC and DW form are limiting cases of a
more general form. We will show that the exact shape
depends on the lateral correlation of the roughness
profile. Whereas it is known that this lateral correlation
can cause nonspecular scattering (where the parallel wave
vector is not conserved), it is somewhat contraintuitive
that it also influences the specular, where the parallel
wave vector is conserved. The reason, as will be ex-
plained below, is that in specular refiectivity contribu-
tions are possible from two-step scattering via intermedi-
ate states which have a different parallel wave vector and
hence are influenced by the lateral correlation.

As the theoretical framework for scattering from a
rough surface, we will use the distorted-wave Born ap-
proximation (DWBA) as advocated by Sinha et al. ,5 i.e.,
the roughness is considered as a perturbation on the flat
surface. Whereas Sinha et al. go to first order in the per-
turbation, we will show the effect of going to higher or-
der.

We assume that the wave field considered obeys the
wave equation

't)' P+k P —V/=0,
where P is the electric field parallel to the (average) sur-
face for (s-polarized) electromagnetic radiation or the
wave function for particles like neutrons (provided that
spin plays no role); k is the length of the wave vector in
vacuum and V describes the interaction with the materi-
al. For p-polarized electromagnetic radiation the wave
equation is not exact, but is a good approximation for
short wavelengths ( & 10 nm) (cf. Ref. 8).

We will consider a homogeneous material with (com-
plex) refractive index n First we .give the results for a fiat
surface separating the material (at z &0} from vacuum:
V= Vo with Vv=0 for z) 0 and Vo=k (1 n)= k, fo—r-
z (0, where k, is the critical wave vector. Starting with
a plane wave in vacuum with wave vector k, the solution
of the wave equation is then

Pj', '(r}=tt~k(z}exp(ik~t. x),
where kl and x=(x,y) are the projections of k and the
position vector r parallel to the surface, respectively, and
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(apart from a normalization constant)

Pk(z)=exp(ikoz)+rj, exp( ikoz) for z &0,

Pk(z) =tk exp(ikiz) for z &0 .

The Fresnel coeScients for reflection and transmis-
sion are, respectively, rk =(ko —k, )l(ko+k, ) and
tk =2ko/(ko+ki), whereas k, =(ko —k, )' . In the fol-
lowing we also need the "irregular" solution (i.e., a wave
starting inside the material, sometimes confusingly re-
ferred to as the "time-reversed" solution):

gk(z)=tk exp( ik—oz) for z &0,

P& (z ) =exp( ik z—i)+ r& exp( ik, z ) for z &0,
where rk =(ki —ko)l(ko+ki ) and tk =2k, l(ko+ki ).

Next we consider the influence of surface roughness.
For a rough surface with at position x, a height deviation
z(x} from the average surface, one can write

V= Vo+ Vi(r),

where V, (r)=k, for 0&z &z(x), V, (r)= —k, for
z(x}&z &0, and V, (r)=0 elsewhere. We will treat V, (r)
as a small perturbation on Vo. The solutions to the wave
equation can be written as a perturbation series:

y„(r)=y„' '(r)+y'„"(r)+y'„'(r)+

where Pi, '(r) is given above and the higher-order func-
tions can be expressed as:

Pz"'(r)= f dr'G(r, r') V, (r')Pz" "(r') .

It is convenient' to express the Green's function G(r, r')
as a two-dimensional Fourier integral parallel to the sur-
face:

1
G(r, r')= . . .

„dp~~exp[ip~~ (x—x')]g (z,z'),
IPlll

Strictly speaking, expressions (1) and (2) are not valid in-
side the rough surface layer, but it can be shown that
they still are valid up to O(koz), which will be sufficient
to calculate the T matrix up to O(koo ). As usual, all
higher-order T matrix elements can be expressed in the
first-order elements, for instance,

T'"(k, k) = l dp T"'(k',P)T'"(p, k) .
8~ ~ll

k Pot-
P

Expressions (1) and (2) describe waves scattered in all
directions. Up to n =1, the differential cross section for
diffuse reflection is

~o(p k) IT'"(p, k)l'
16~'

However, we want to calculate the specular reflectivity.
To do this, we have to insert, in Eq. (1),

5k 5k q
=(2m. /L„)5(k„—p„)(2n/L )5(k —py),

where L and L are the linear dimensions of the sample
(which tend to infinity), and we have to take a
configurational average (indicated by ( ) ). Writing the
specular reflection coefBcient from a rough surface as

r(0}+r(1)+r(2}+.. .

we find rk '= rk and

ri', "'=i(T'"'(k, k))/(2L„L ko) for n &0.

To calculate the T matrix, we will approximate the un-
perturbed functions by gk(z)=tk exp(ikiz), also if z &0.
This is reasonable for large ko up to O(k,2/ko), and also
for small ko to calculate the T matrix up to O(koo ).
Then we find

T' "(p,k ) =k, t tkF(pii —ki,p, +k i ),
where

where p=(p},po } is a wave vector with length k. Perpen-
dicular to the surface, the one-dimensional Green's func-
tion is and

(qual q) = i/q f d—x'"p('qual'x)[exp[iqz(x)] —I }

g (z,z')= —g (z )g (z )/IV

where z =min(z, z'), z =max(z, z'), and the Wronski-
an IV =Pdg~/dz P~—dg /dz. Sub—stituting P~ and g
yields 8'~ =2ipot =2ip, t and

T'"'(p, k)exp[i(p x —poz)]

for z&0, (1)

P„'"'(r)=
2 f T'"'(p, k)exp[i(p~~ x+p, z)]Pll (n)—

7' '(k, k) = l cfPll F(p„-k„,k, —»}
4~ ll Po+P i

XF(pii k(i,pi+k, ) .

To calculate the configurational average, we assume
that z(x) is a Gaussian random variable with standard
deviation o.. %e find

(F(qi, q)) = —iL„L 5 o[exp( q tr l2) —1]/—q

and up to O(koo ):

where the so-called T matrix is

for z &0, (2}
with

T'"'(p, k)= fdxexp( —
ip~~ x)

X dz z V, r „'" "r
0

C(q~~)= fdXexp(iq~~'X)C(X),

where C(x—x') —= (z(x)z(x') ) is the correlation function
of the roughness profile.
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Note that the diffuse scattering cross section der /d 0 is

[up to O(kocr )] proportional to C(ql}. The second-
order specular refiectivity can be considered as a sum
(over all p) of (virtual) diffuse scattering contributions
from k to p to k. It is we11 known that if the perpendic-
ular component of either the incoming (k) or the scat-
tered (p ) wave vector equals ~k, ~, peaks are seen in the
diffuse scattering, often called anomalous scattering,
Yoneda wings" or angel's wings. Since contributions
from close to ~k, ~

are also important in ri, ', we may call
these contributions "virtual angel's wings. "

The first-order contribution to the reflection coefficient
[up to O(koa )] is easily found as rf,

"= 2ri, k—pkio (de-
rived in a inore complicated way by Sinha et al. 5 }.

The second-order contribution is

case of small g ("predominance of high spatial frequen-
cies"), the NC form ri, =ri, exp( —2kok, e ) can be ob-
tained from various approaches. ' ' ' The same expres-
sion is also found using the Born approximation for a
transition layer with thickness 2o.) It is seen that, up to
O(koo ), these two expressions are equivalent to those
found by us.

We propose to generalize our results as follows:

rk —rk exp 2kpk ) 0

kok, C(pii
—

kii)
2m. p(( p p+p i

(3)

rk z rkkgko C(pii kl)(2) 1 2 ply

~pii~" pp+pi

To calculate this, we have to know the roughness correla-
tion function C(X). Following Sinha et al. we will as-
sume that it has the form

C(X)=cr exp[ —(~X~/g) ],
where the parameter H (0 &H & 1 }, describing how
jagged the surface is, is connected to its fractal dimension
D =3 H, ' and —the lateral correlation length g acts as a
cutoff length for the (self-afiine)' fractal behavior of the
surface. Note that we implicitly assumed that g is small-
er than the coherence length of the radiation parallel to
the surface. To calculate ri', ', first C(q1) has to be calcu-
lated (which can be done analytically if H =1 or —,

'
) and

next the integral over
p~~

has to be performed.
First we will consider two limiting cases, depending on

the value of (k —
~ki~ )g/2=kog/k. If this value is &&1,

C(pi —
k~~~) approaches a 5 function centered at ki and we

find rP'= 2ri, ko(k—o
—ki }cr,yielding

r =r +r' +r =r(1—2k 0 )k —k k k k p&

For kp&)k, the second-order correction amounts to
rk '-——rkk, a . Hence, in the case of large kp this con-
tribution is appreciable especially for heavy elements. If,
on the other hand, (k —

~k~~~)g is small, then
ri', '/ri, "=O(koV(/k ). Hence, if kov'g/k «1, then
rk

' can be neglected.
It is interesting to compare our results with the exist-

ing expressions. In the case of large g ("predominance of
low spatial frequencies" in the terminology of Croce and
Nevot ), one can consider refiection from a plane at z(x),
yielding a phase factor exp[2ikoz(x)] in the refiection
coefficient. After averaging over all values of z(x) (as-
sumed to be distributed as a Gaussian random variable),
one finds ri, = ri, exp( —2koo ), i.e., the DW form In the.

This expression has the right limiting values for both
small and large kog/k and interpolates smoothly in be-
tween. Although our results are valid for general g and
small koo, the interpolation is not necessarily correct for
larger koo. However, it is correct if both kocr «1 and

ko(/k » 1, i.e., if g »ko' . It is also correct if
kog/k «1 for all ko, i.e., if kg«1, in which case the
second term can be neglected. Hence, Eq. (3) is a
manageable expression which we expect to give a good
overall description for the specular reflectivity from a
large variety of rough surfaces.

Now we turn to the calculation for arbitrary kog/k.
The two-dimensional integral over pi in Eq. (3) can be
transformed into pole coordinates. The angular integral
can be performed both for H=1 and for —,', yielding a
modified Bessel function of the order zero and a complete
elliptic integral of the second kind, respectively. Then
one is left with a one-dimensional integral, which can be
evaluated numerically.

As an example, in Fig. 1 calculations are shown for the
refiectivity ~ri, ~

of Cu Ea, radiation (k =40.784 nm ')
on a gold sample (n =1—4.644X10 5 —i4.922X10 6}
with o =1.5 nm and various values of g. The calcula-
tions shown are for H= —,', but we did not find significant
differences if H=1 was used. As is seen, the reflectivity
is lower for g= ~ than for /=0. The difFerence can be
very large in the total-reflection region. In the case of
large ko, the difference becomes a constant factor of
exp(2k, o ), amounting to about 2. As anticipated, for
finite values of g our theory interpolates between the two
extremes, with the small-g behavior at small ko and the
large-g behavior at large ko, whereas the crossover occurs
at kog/k =1.

For completeness we should mention that in a similar
way the transmission coefficient can also be found. We
have

t'ai,
'=ti, and, using Eq. (2), tz"'=i(T'"'(k, k))/

(2L L k, ) for n & 0. From this we obtain:

2 2 1 2ti, —ti, exp —(ko —k, ) o — —(ko —k, )k, C(p —k )4~2 Jp J kp +p
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For kg/k «1 the second term between brackets van-
ishes and the result tk- t—k exp[(ko —k, ) o /2] is the
same as that found by Vidal and Vincent' (or using
Born s approximation for a transition layer with thick-
ness 2cr). For kog/k))1 the second term approaches
—(kc —k, ) o, yielding tk —t—k exp[ —(kc —k, ) o /2].
The same result is found by averaging the phase factor
exp[i(kc —k, )z(x)] obtained for the transmission
coeScient of a plane at z(x). Note that here the eFect is
less drastic than for the reflectivity, since
(kc —k&) o2=k, o /(2kc) vanishes for large ko.

In this report we only discuss reflection at materials
with a single surface. In layered materials, the
reflectivity can be found by using a Fresnel expression at
each interface. ' For small keg/k, the roughness can be
taken into account by multiplying the reflection
coefficient at each interface by the appropriate NC fac-
tor.s'3' For larger keg/k the situation is more compli-
cated. Often there will be correlation between the rough-
ness of different interfaces. For conformal roughness,
where all interfaces have the same roughness cr, the total
reflected field can be multiplied by a DW factor

exp( —2kctr ). Even if this correlation is absent, the
phase relation between the radiation scattered at the
different interfaces means that the influence of roughness
in a multilayer cannot be described in a simple way.
Work is in progress to quantify this effect with the
method outlined above.

In conclusion, we have presented a theory for the spec-
ular reflection of x rays and neutrons from rough sur-
faces, which predicts a shape that depends on the lateral
correlation of the roughness profile. To permit a compar-
ison with experiments, some problems have to be over-
come. In the first place, one has to subtract properly the
diffuse scattering, which may be larger than the specular
for large o and g. Furthermore, real materials often con-
tain a thin surface layer with a density different from the
bulk, e.g., due to oxidation. In that case, more parame-
ters are needed to describe the sample and, as was indict-
ed above, for such a layered material the calculation can
be complicated. However, it will be clear that in any case
the effects described in this paper should be considered
for accurate surface roughness determination from x-ray
or neutron reflectivity measurements.
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