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Splitting of the dispersion relation of surface plasmons on a rough self-affine fractal surface
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The surface-plasmon dispersion relation for a statistically rough surface can display a splitting under

specific conditions. Calculations of the dispersion-relation splitting are performed in terms of a correla-
tion model or self-affine fractal rough surfaces with analytic form of the associated roughness spectrum,
G(K) 0- (1+aK2$') ' H. The dependence of the splitting on the roughness exponent H is investigated.

At an ideal Hat metal surface coupling between surface
plasmons and light is not permissible because momentum
cannot be conserved parallel to the surface. However, as
pointed out first by Stern and Ferrell, ' the inability of a
smooth surface to optically excite surface plasmons can
be frustrated by allowing surface roughness to conserve
momentum tangential to the surface, and thus allowing
interaction with the radiation field. The knowledge of
the dispersion relation of surface plasmons is of funda-
mental interest in surface physics as attempts are made to
characterize the roughness of surfaces as well as to en-
counter the roughness effect on various other properties.
There is a wide variety in nature of surfaces and inter-
faces which are described in terms of self-affine fractal
scaling, for example, the nanometer scale topology of va-
por deposited metal films under nonequilibrium condi-
tions. The effect of this kind of surface roughness can be
studied in many cases quantitatively, since roughness
enters through the surface height-height correlation func-
tion or its Fourier transform the roughness spec-
trum

Up to now a quantitative analysis of the effects of sur-
face roughness on the dispersion relation for surface
plasmons has been performed in an older work for a spe-
cial form of the roughness spectrum, G(K) 0-5(K —K„),
which assumes that the surface roughness has a wave-
length which peaks around a given value A,„, and corre-
sponds to a wavy surface. ' Recently, in another study,
the wave spectrum of surface plasmons has been exam-
ined for random Gaussian roughness with G(K )—aE 4~e '~ .4 However, none of the previous cases corre-
spond to rough surfaces that are grown under nonequili-
brium conditions and characterized with self-affine frac-
tal scaling. In this case, the roughness spectrum is
characterized with a power-law behavior over finite
length scales where, apart from the effect of a characteris-
tic length scale, ' the degree of surface irregularity plays
important role. The degree of surface irregularity is de-
scribed by a roughness exponent H. Therefore, an inves-
tigation of the impact of the surface irregularity on the
dispersion relation of surface plasmons is in order. In the
present paper, we shall perform our calculations in terms
of a simple model for the dispersion relation on a rough
surface, since more refined treatments on random rough
surfaces leave largely unchanged the qualitative result of
the model under consideration.

Dispersion relation. The dispersion relation for surface
plasmons on a smooth solid vacuum boundary is given by
n (K)=ek2+K =e(K —1)' +(K —e)' =0, froin
which we obtain e= K(K— 1) '.—At large wave vec-
tors K, e(co)= —1. K is the magnitude of the surface-
plasmon wave vector in units of co/c with co being the
surface plasmon frequency. For a rough surface the
dispersion relation has to be modified in such a way to in-
clude roughness effects. ' ' ' Krestschmann, Ferrell, and
Ashley have shown that in the regime of large wave vec-
tors K (K & 2) the dispersion relation can be simplified to
the form

n„(K)
(1)

Ii(K)
=@+1 — (e —1)

C2 @+1
=0,

2

Ii(K)= I d K'G —~K K'i KK'(—1 —cosP)K') 2 C

(2)

with cosP=K K'/KK'. Equation (1) leads to two solu-
tions for E=E(co) which are given by
[e(co)+i2, ][a(co)+a2]=0, with
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The splitting takes place near the surface plasma reso-
nance where one may observe a double peak. The physi-
cal reason for the splitting in the case of a statistically
rough surface is that nearly all wave vectors of the rough-
ness spectrum can produce interactions in between sur-
face plasmons with different directions of the wave vec-
tors since in the regime of large K (E &2) the dispersion
relation is flat (independent of magnitude and direction of
the wave vector). Surface excitations with dispersion re-
lation, which is wave-vector dependent, do not display
roughness-induced splitting.

Roughness model. The type of rough surface in the
static phase we shall consider here, is the so-called solid-
on-solid model in which the surface is defined by a verti-
cal height profile above a horizontal xy plane, and is

and a2=1/ai. The roots a, and a2 determine the sepa-
ration of the peaks which is given by
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(lz(K)l &= f C(R)e ' '"dR
(2n. )

(3)

with A being the macroscopic surface area. The function
G(E) is related to (lz(K)l & by

4

G(K) = „(lz(K)l'&,

represented by a single-valued random function z(r ) of
the in-plane positional vector r=(x,y). The difference
z(r ) z(—r') is assumed to be a Gaussian random variable
whose distribution depends on the relative coordinates
(x' —x, y' —y) such that g(R ) = ( [z(r ) —z(r ')] &,

R =r ' —r. For an isotropic surface in x-y directions we
may assume that g(R )= AR with 0 & H & 1. This kind
of surface roughness can be attributed to self-affine frac-
tal surfaces as defined by Mandelbrot in terms of frac-
tional Brownian motion. The roughness exponent H
determines the surface texture of the degree of surface ir-
regularity, and is associated with a local fractal dimen-
sion D =3 H. '— For R ~ao, g(R }—+00, and
g(R )/R ~0 (surface asymptotically fiat) which is a rath-
er ideal case since on real surfaces g(R) at large length
scales may saturate to the value 20. . This implies the ex-
istence of an effective roughness cutoff g (correlation
length) such that for R «g, g(R) ~ R ~ and for R &&g,
g(R)=2cr "' . The parameter o =(z(0) &'~ is the rms
saturated surface roughness. The height-height correla-
tion C(R)=(z(R)z(0)& is related to g(R) by

g (R ) =2rr —2C(R ).
We define the Fourier transform of z(R ) by

z(K)=(2n ) f z(R )e ' dR, '

and the height-height correlation by

C(R)=A 'f (z(P)z(P+R)&dP .

The roughness spectrum is given by

restrict our study to the case of o «g.
Selected numerical results —discussion .The plot of the

response function lK/n„l [given by Eq. (1}]versus Re(e)
possesses maxima (peaks) at which their positions give
the values of e(ro), at which surface-plasmon excitation is
possible. The plots of the response function have been
performed with Im(e) =0.1, a surface-plasmon wave vec-
tor K( =K )= 10.0 (in units of ro/c), and a wavelength of
electromagnetic waves in vacuum A, =4000.0 A, which
implies Az =400 A. Therefore, the present calculations

0

correspond to k =400 A, as well as the other parameters

[ oc/ c, and Im(e)] are the same as for potassium (Ref. 3).
In our study, we shall focus mainly on the dependence of
the dispersion relation splitting on the parameters H and
g. The effect of o with respect to g has been investigated
in previous studies. ' In Fig. 1 we plot the response
function for various values of the roughness exponent H
in the regime 0.0&H &0.8 for fixed values of g and o,
and it becomes clear that the higher the degree of irregu-
larity (smaller H) the larger is the splitting. Alternative-

ly, this can be explained from the fact that as H is de-
creased with fixed cr, the amplitude of the correlation
function g (R } [and equivalently G (K)] increases. In Fig.
2 we plot the response function for various values of the
correlation length g with H and rr fixed. As the correla-
tion length increases the splitting becomes weaker, and
behavior observed for a smooth surface boundary is ap-
proached. This can be explained from the fact that as g
increases with fixed o the ratio o /g decreases, resulting
in an increasing surface smoothness.

However, in order to gauge which parameter between
H and g has the dominant effect on the splitting of the
dispersion relation of surface plasmons, we calculate the
response function for the case of logarithmic roughness
(H =0) since for a given value of g the splitting is max-
imum (Fig. 1}, over a wide range of correlation lengths

and is normalized such that f G(K)dK=rr . There is a
specific class correlation functions for self-affine fractals,
called K-correlations, with an analytic form of roughness
spectrum,
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The parameter a is given by

a=1/2H[1 —(I+an g /ao) ]
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with a0 being the atomic spacing of typical size ap 3 A.
In the limit H~0, Eq. (4) lead to correlations related to
logarithmic roughness which are encountered in various
roughening transition systems, ' ' where the parameter a
in this case takes the form, a =

—,
' In(1+agg /ao). The

correlation functions associated with Eq. (4) have the
general form

C(R)=
r 'H

CT R K R
a I (1+H) 2gv'a

Since the history related to the dispersion relation of sur-
face plasmons is valid for slight rough surfaces, we shall
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FIG. 1. Schematics of the response function for a0=3 A;
o =20.0 A; (=400.0 A, for various values of the roughness ex-

ponent H'. The inset shows the splitting for the case of loga-

rithmic roughness, o =20.0 A; H =0; /=400. 0 A: dots;
/=800. 0 A: solid line; /=2000. 0 A: small dashes; )=5000.0
A: large dashes; smooth surface boundary: dot dashes.
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400.0~/~5000. 0 A, inset Fig. 1. The schematics show
that even for large correlation lengths, the splitting
remains significantly large. Therefore, we can conclude
that the dominant factor in the splitting of the dispersion
relation for surface plasmons on self-aSne rough surfaces
is the degree of surface irregularity which is expressed
through the roughness exponent H. Furthermore, our
calculations reveal an interplay between correlation
length g and local fractal dimension D =3 H, where a—n

Re[e]
0

FIG. 2. Schematics of the response function for ap=3 A;
o =20.0 A; H =0.7, as a function of the correlation length g,0
smooth surface boundary: solid line; /=200. 0 A: dot dashes;
/=400. 0 A: large dashes; (=800.0 A: small dashes; /=2000. 0
A dashes; g= 5000.0 A dots.

incremental behavior of both parameters has an opposite
result regarding the splitting of the dispersion relation
(peak separation). Furthermore, it should be pointed out
that with decreasing H (which results in larger splitting),
the height of the first peak is increased while the height
of the second peak is decreased significantly. This point
is of crucial importance, since it is relevant to the experi-
mental detection of the splitting of the dispersion rela-
tion. '

In conclusion, the aim of this report was to correlate
known information concerning the dispersion relation of
surface plasmons for a particular model of surface rough-
ness, the self-a5ne fractal roughness, which is widely ob-
served to develop during thin-film fabrication under
nonequilibrium conditions. It came out through this
study in a qualitative level that the local fractal dimen-
sion D =3—H plays a dominant role on the splitting of
the dispersion relation for a wide range of correlation
lengths g which their magnitude has been observed in
various surface roughness studies. "" The splitting of
the dispersion relation has been experimentally observ-
able, and possibly can be used as an alternative probe for
surface roughness studies in terms for example of ellip-
sometric methods in cases where other techniques are not
applicable [x rays, scanning tunneling microscopy (STM),
etc].' Furthermore, the observation of surface plasmons
experimentally also with the STM can open new perspec-
tives in this field, ' as well as to various other related
fields, ' since Eqs. (4) and (5) offer a general way to model
surface roughness observed in nature.
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