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Analytic results for Mott-Hubbard metal-insulator transitions in N-fold degenerate Hubbard models
are obtained using the Gutzwiller approximation. It is found that for any commensurate filling with in-

teger (x) electrons per site, there exists a metal-insulator transition at the critical correlation energy
U, (N x)= t [v'x {2N x+1—)+&{x+1)(2N —x)]2/{2N —x) I ~e{x)~, where e is the energy per particle
in the absence of correlation. U, increases with x reaching the maximum at the half filling x =N.
Therefore, it is possible for a system to be metallic at half filling and insulating away from half filling.
This provides an explanation for the unusual metal-insulator transitions observed in fullerides A„C60.

The discovery of superconductivity in A3Cso (Ref. 1}
has given rise to great interest in alkali-metal-doped ful-
lerides A„C6p. One of the most puzzling phenomena is
the unusual metal-insulator transitions observed in these
materials: only A3C6p is metallic, all other phases,
A I C6p A 2 C6p and A 4C6p being insulating. This is in
contradiction with band-structure calculations, which
predict all of them to be metallic due to the threefold de-
generacy of the conduction band. This suggests that the
intramolecular electron-electron interaction is important.
The existence of strong correlation in fullerides is sup-
ported by spectroscopy experiments. The estimated
correlation energy U-1 —2 eV (Refs. 3, 5, and 6) is much
larger than the conduction-band width W-0. 2 —0.4
eV. ' Based on this fact, a suggestion has been made
that A3C6o (x =3 corresponds to the half filling of the
conduction band) is a Mott-Hubbard insulator and the
superconducting phase is not stoichiometric. However,
structural, transport, and spectroscopic measurements
show that the superconducting phase is stoichiometric
and there is no evidence of insulating behavior in A3C6p.
Therefore a simple nondegenerate Hubbard model, which
is known to be insulating at half filling when U)) W,
cannot explain the unusual metal-insulator transitions ob-
served. The threefold degeneracy of the conduction band
must be taken into account.

In this paper we report results of a study on the general
N-fold degenerate Hubbard model using the Gutzwiller
approximation. It is found that metal-insulator transi-
tions exist for all commensurate fillings (integer numbers
of electrons per site) The cri. tical correlation energy
U, (x,N) is found to depend strongly on both the number
of electrons per site x and the degeneracy N. The max-
imum U, occurs at the half filling x =N. This demon-
strates the possibility that for a given fixed ratio, U/8', a
system can be metallic at half filling and insulating at oth-

er rational fillings. Our results provide a plausible ex-
planation for the unusual metal-insulator transitions ob-
served in A„C6p.

We consider the tight binding N-fold degenerate Hub-
bard model with an on-site Hubbard U independent of
orbitals and spins,

U
tij jp i,a+ X i,a iP 'a,p

i j,a, p i, asap

Here a=(r, a ) includes both the spin (o ) and the orbital
(r} indices; n; =c; c; is the number operator. The
N = 1 case, which is generally referred to as the Hubbard
model, has been extensively studied in the last three de-
cades. In particular, the pioneer work of Hubbard and
Gutzwiller has lead to significant progress in under-
standing the metal-insulator transitions in strongly corre-
lated systems. In contrast, the degenerate Hubbard mod-
el has received little attention since the early work, ' in
part due to the great diSculty of the problem and the
lack of analytic results.

Let L be the size of the lattice and m =xL/2N the
number of electrons per orbital (a complete symmetry be-
tween orbitals is assumed). By commensurate filling we
mean that the average number of electrons per site x is an
integer. If U is sufficiently large, one expects an insulat-
ing ground state where x electrons are localized at every
site and hopping is forbidden. As U decreases, the
metal-insulator transition sets in at a critical U, . In gen-
eral, the insulating ground state of the degenerate Hub-
bard model can be magnetically ordered. Here we will
consider only the nonmagnetic {or disordered) insulating
state. This makes the analytical calculations tractable.
In addition, for applications to A C6p this is sufficient, as
the insulating state in these materials is known to be non-
magnetic. The absence of magnetic order in A„C6p is
likely due to the nonbipartite nature of the lattice struc-
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tures (fcc or close approximates), which causes frustra-
tion, and to the intrinsic orientational and displacement
disorder existing in these materials. '" Though we be-
lieve that the qualitative results described below are likely
to be valid for a magnetically ordered state, it is clear
that further work is required to address this issue.

The simple Hubbard model has been extensively stud-
ied in the past, particularly in recent years as a model of
high-T, superconductors. At half filling it is known that
(1) in one dimension (1D), exact solution by Bethe ansatz
gives an insulating ground state for any U. ' (2) In 2D,
numerical calculations on a square lattice suggest an anti-
ferromagnetic insulator ground state for large and
moderate U. ' It is not clear whether a finite U, exists
for the square lattice. However, for an extended Hub-
bard model (the so-called Kievelson-Schriffer-Su-Heeger
model)' it has been shown exactly that the Mott-
Hubbard transition exists at a finite U„and the U, found
in the exact solution coincides with that found for the
Hubbard model using the Gutzwiller approximation.
(3) In 3D or higher it is generally believed that a finite U,
exists for the Mott-Hubbard transition. (4) In the infinite
dimension the Gutzwiller approximation is exact. (5) The
Gutzwiller approximation has been shown to be the
mean-field solution of the slave-boson theory, which is a
systematic expansion in 1/N and becomes exact as N
goes to infinity. From these facts, we conclude that the
Gutzwiller approximation should provide a reasonable
estimate of the Mott-Hubbard transition in 3D degen-
erate systems, assuming a nonmagnetic insulating state.

In a nondegenerate Hubbard model each site can be
described as empty, singly occupied or doubly occupied.
Because doubly occupied sites cost energy, the idea of the
Gutzwiller variational approach is to introduce a varia-
tional function in which the weight of doubly occupied
sites is reduced. To accomplish this one starts from the
uncorrelated Fermi sea lPo) =

l lk „a„.. . , k„,a„) ), and
partially projects the doubly occupied site by the varia-
tional factor g. This leads to the Gutzwiller projected
wave function

(2)
i, aWP

For large U, g~O, and doubly occupied sites are forbid-
den. To determine g, one calculates the expectation of
the Hamiltonian in lPG ),

(y, laxly, )

analytically. The results of Gutzwiller were later ela-
borated by Brinkman and Rice who obtained the result
that the metal-insulator transition occurs at U, = 8

l
e'l,

where e is the average energy per particle in the absence
of correlation ( U =0).

For the N-fold degenerate Hubbard model, each site
can be occupied by 0—2N electrons, which can be far
from the average number of electrons per site, x. Howev-
er, very near the metal-insulator transition one expects
the fluctuation of occupancy from x to be small. Thus,
we make the additional approximation that each site can
be only "empty" (x —1 electrons), "singly occupied" (x
electrons), or "doubly occupied" (x +1 electrons). For a
given site there are CzN+'=(2N)!/(x+1)!(2N —x —1)!
possible distinct double-occupied configurations. Using
this and the Gutzwiller approximation, we are able to
calculate analytically the expectation Eq. (3). Elsewhere
we will present details of the derivation. ' Below we sum-
marize the results obtained. Let v «L be the total num-
ber of doubly occupied sites; by symmetry the number of
empty sites is also v. We find that the average energy per
particle, in reference to the paramagnetic insulating state,
can be written as

E(N, x ) =Q(x, v, N)e(x)+ U,
2Nm

(4)

where F(x) is the energy per particle in the absence of
correlations (U=O). The band is assumed to be sym-
metric, e(x =2N) =0. The quotient Q, which reflects the
reduction of hopping due to correlation, " is given by

Q(x, v, N) =
v m — x(2N x+1)—

N

2m N(2N —x)
2

X 1+q
m—

N 2N(2N —x)
v x(2N —x+1) (5)

with the optimal projection parameter
' 1/2

x (x + 1)(2N —x + 1)
4N (2N —x)

Substituting Eqs. (5) and (6) into (4) and minimizing the
energy with respect to v= v/2Nm, one obtains

U
v — 1

4x U,
and minimizes it with respect to g. In general, this can
be done only numerically. Gutzwiller introduced approx-
imations which make analytical calculations possible.
This approach is known as the Gutzwiller approxima-
tion. The many-body wave function lPG ) can be written
as superposition of states with different numbers of dou-
bly occupied sites v. It is assumed that (1) in the thermo-
dynamic limit, the expectation (PG lPG ) is dominated by
the largest term which determines the optimal value of v.
(2) In evaluating (PGlHlPG ) spatial correlations are
neglected; this is equivalent to the mean-field approxima-
tion. Using these approximations E can be calculated

with

U, (N, x )

and

U, (x,N) U1—
8x U, (x,N)

(9)

le(x)l,[v x(2N xI+)+ (v+x1)(—2N —x) j
2N —x

(8)
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As U increases toward U„ the number of doubly occu-
pied sites approaches zero. Thus the Mott-Hubbard
transition occurs at U, .

Equation 8 is our main result (Fig. 1). Qualitatively, it
can be understood in the following way. Imagine ap-
proaching the transition from the insulating state, where
there are exactly x particles localized on every site. Then
a single particle-hole excitation costs the correlation en-
ergy U, but the gain in kinetic energy due to the mobile
excitation is of the order -x~F(x)~. Therefore, one ex-
pects U, -x ~e(x)~, similar to the value given by Eq. (8)
for x «1V. The difference rejects the Pauli exclusion
principle of fermions. As examples, in Fig. 1 we show the
results for the first several N using a simple Hat band of
bandwidth W, F(x)=[(x 2N)/4N) W. C—learly one sees
that U, depends sensitively on X and x. Several limits of
Eq. (8) are worth discussion. (1) The particle-hole symme-
try is preserved if ~F(x)~ = [x/(2N —x)]~V(2N —x)~; this
is expected because the starting Hamiltonian Eq. (1) con-
tains particle-hole symmetry. (2) For N= 1, the only
commensurate filling is the half filling x =1, and the
Brinkman-Rice result U, =8~e'~ is recovered. (3) For
N=2, x =1, we obtain U, =[(10+4&6)/3]~e~, in agree-
ment with the result obtained by Chao. ' (4) In the limit
of X~~ and finite x, the fermion problem is equivalent
to the boson problem which has been widely studied
in recent years. ' ' Our result, U, = ( &x
+&x + 1) ~e'(x ) ~, is identical to that obtained for the bo-
son Hubbard model using the Gutzwiller approxima-
tion, ' and is very close to that of path-integral quantum
Monte Carlo calculations' and the mean-field results. '

The most important conclusions indicated by Eq. (8)
are (a) U, depends sensitively on both the degeneracy N
and the number of electrons per site. (b) U, monotonical-

2'
FIG. 1. Phase diagrams for Mott-Hubbard metal-insulator

transitions in N-fold degenerate Hubbard models. Critical
correlation energy U, /8", above which the system is insulating,
is plotted against filling x/2N. A flat band with bandwidth 8'is
assumed. Shown are results for N =1,2, 3,4, 5. Note that only
the points corresponding to integer {x)number of electrons per
site, are meaningful. Lines are drawn using Eq. (8).

ly increases with x reaching a maximum at half filling,

U, (N, N}=4(N+1)~F~-(N+1}W. Thus the higher the

degeneracy the more diScult for a system to become a
Mott insulator. For a given degeneracy the closer to half
filling the more diScult it is to be insulating. We believe
that these qualitative conclusions will hold for more ac-
curate calculations of U, . Our results clearly show the
necessity of further quantitative studies on degenerate
Hubbard models.

Now let us turn to the specific application of the above
results to the metal-insulator transitions in A„C6o. In
this system it is known that each alkali metal donates one
electron and that the conduction band is formed by over-

lap of the threefold degenerate t&„molecular orbitals.
For x =1,3,4, structures are known to be rhombohedral,
face-centered-cubic, and body-centered-tetragonal, re-
spectively. For these structures local-density-
approximations (LDA) calculations suggest that all of
them are metals. Experimentally, except x =3, aH

phases with integer x are found to be insulating. It has
been shown that the band structure can be accurately
represented by a tight-binding model; the density of
states is approximately Hat due to the intrinsic orienta-
tional disorder. The bandwidth W determined from
both experiments' and calculations is very small,
W-0. 2—0.4 eV. On the other hand, spectroscopic stud-
ies ' and theoretical calculations suggest that the in-
tramolecular electron correlation energy is around
U-1 —2 eV. The value of U is expected to remain un-

changed with doping because the screening is provided
by the large number of molecular orbitals above t,„,
which are not affected by doping. From Eq. (8) and as-
suming a fiat band one obtains U, (x,N =3)/W
=2.62, 3.65, 4, respectively, for x =1,2, 3. Thus, there
exists a window of parameters ( U, W) in which it is possi-
ble that the family of materials A C60 with x =1,2,4, 5
are Mott-Hubbard insulators, while x =3 is metallic. If
this picture is correct then one expects that A3C60 is a
strongly correlated metal. Palstra et al. have observed
that magnetic susceptibility in Rb3C60 is strongly
enhanced over that of K3C6p (Ref. 20) in comparison with
that expected from estimates of density of states. Recent-
ly a large T term in resistivity at low temperature has
also been observed. ' These characteristics are signatures
of a strongly correlated metal, in agreement with our re-
sults. Our theory also predicts that both A2C60 and

A3C60 are very close to the metal-insulator transition, so
their conducting properties should be very sensitive to
the lattice constant. Finally, we caution that there are
large uncertainties in our calculation of U, using the
Gutzwiller approximation, and in experimental estimates
of U and W; thus only qualitative conclusions are expect-
ed to hold.

In conclusion we present analytical results of Mott-
Hubbard transitions in the X-fold degenerate Hubbard
model within the Gutzwiller approximation. It is found
that for any commensurate filling there exists a critical
correlation energy U, above which the system is a Mott-
Hubbard insulator. U, is found to depend sensitively on
both the degeneracy and the filling; it is maximum at half
filling. It is more dificult for a degenerate system to be-
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come a Mott-Hubbard insulator near half filling. Our re-
sults give a plausible explanation for the unusual metal-
insulator transitions observed in the fullerides A„C60 and
suggest that A 3C60 is a strongly correlated metal.
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