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Dynamical study of graphite and graphite intercalation compounds
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%e propose a very simple model of lattice dynamics of graphite and its intercalation compounds
(GIC's): our model only uses five force constants for graphite, and seven for the GIC. It is used
to calculate the dynamical matrix of the structure, and to obtain by matrix diagonalization the
phonon vibration frequencies for each element of the 6rst Brillouin zone. Making use of available
experimental results concerning graphite as well as LiC6, we may approximate the parameters
introduced in the model. Finally, with the results so obtained, we calculate a great number of
physical properties of these compounds: speci6c heat, Debye temperature 8D, bidimensional or
tridimensional character, as well as elastic constants.

I. INTRODUCTION

Graphite has a layered appearance; this characteris-
tic is due to the great difference between in- and out-of-
plane interactions (the important interaction between the
atoms in the same plane, as opposed to the very weak in-
teraction between atoms in neighboring planes). i From
this quasibidixnensionality comes a large number of prop-
erties: important difFerences between elastic constants
parallel and perpendicular to the graphite planes, differ-
ent conductivities, etc. Graphite and graphite intercala-
tion compounds (GIC's) have been in the past studied
&om a dynamical point of view, but the proposed mod-
els have thus used a great number of adjustable parame-
ters, and the results obtained (phonon dispersion curves
as well as state densities) were not used to estimate the
physical properties of these materials.

We have attempted here to construct a simple model:
only five force constants for graphite and seven for the
GIC. This model has allowed us to evaluate a great num-

ber of physical properties as often as possible which agree
well with available experimental results. It is also impor-
tant to point out that for graphite and LiC6, the results
obts, ined add nothing new to what was already known,
neither for elastic constants, specific heat, nor the Debye
temperature; however, these preliminary calculations al-
low us to test the model's validity for other compounds.
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a i —— a 2 = a = v 2d„=2.46 A. ,

a s ——c = 2d„~= 6.70 A.
(2.2)

a length of d„=1.42 A (the smallest distance between
atoms belonging to the same plane); in addition, graphite
possesses a stacking sequence AB . Indeed, two equiva-
lent atoms in two successive planes are deduced by means
of a double translation (see Fig. 1): a translation per-

pendicular to the graphitic plane ( c axis) and of length
d~„=3.35 A. (the distance between two graphitic planes)

and a translation denoted 4 of length d„.The vectors
of the primitive cell are

II. STRUCTURE OF THE COMPOUNDS

A. Graphite structure

Even though graphite may possess two structures, one
hexagonal ' and the other rhombohedral, the instability
and weak crystallization of the latter is the reason. we

study only the hexagonal phase of graphite. In hexag-
onal graphite, the carbon atoms are organized in plane
form, called graphitic planes, in which they are placed in
the vertices of open hexagons, the edges of which have

Rd

I

I

I
I
I
I

FIG. 1. Structure of hexagonal graphite.
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TABLE I. Position of atoms in a graphite structure.

Atom

A
B
C
D

a y

0
1/3
0

2/3

Position
a 2

0
2/3

0
1/3

~a3

1/4
1/4
3/4
3/4

This cell contains four carbon atoms, denoted A, B, C,
and D (see Table I); these positions correspond to nota-
tions 2b and 2c of the space group P6s/mmm. 4

that there exists between each atom central forces which
depend only on the variation of the distance between two

atoms; angular forces which depend only on the angle
between the line joining two atoms at any given instant,
and the line between the two in equilibrium. The crystal
lattice, made up of N atoms in the primitive cell is con-
sidered as the sum of N sublattices. Each sublattice con-
tains only one atom, and possesses the symmetry of the
crystal. To calculate the equations of motion of the crys-
tal, we take into account the interactions between atoms
in the same sublattice, but also those between different
sublattices. Furthermore, all the atoms of the same sub-
lattice shall be assumed to vibrate at the same frequency.

B. GIC structure Central forces

First-stage GIC studied here are partitioned into two
large families, each composed of two subgroups: MC6
compounds (Li, Ca, Sr, Ba, Sm, Eu, Yb) are present in
the form of one- and two-site compounds; MCs com-
pounds (K, Rb, Cs) exist in the form of three- and
four-site compounds. Furthermore, we study here the
LiC2 compound, recently synthesized, which will allow
us to evaluate the influence of a strong intercalate con-
centration, on the bidimensionality of lithium-based com-
pounds.

All the compounds mentioned above have a hexagonal
structure of which the basis vectors are identical to those
of graphite. The structure as well as the different cell
parameters are listed in Table II. Among all of the
first-stage GIC, studied here, the stacking sequence is
no longer AB, but becomes AA, which means that two
successive planes are perfectly superimposed.

III. DYNAMICAL STUDY OF COMPOUNDS

E' o I is the unit vector defining the direction of the
equilibrium position between atoms referenced by the
subscripts 0 and n'. The vectors u p, and V„,~ are
displacement vectors of the atoms 0 and n', respectively.
The force created by such a displacement is of the form

C C

pra'sa' ~copra'sa'

& On'ss' ' & Oe '~ n'e'
(

& On'es' ~).

(3.2a)

(3.2b)

This result is the microscopic expression of Hooke's law
(the force brought about by a displacement is propor-
tional thereto).

The variation of the distance separating two atoms in
a crystal is written as

u p ' ' — c pea'qe' ' (~to p~
—~ta ~'8 e pn ~s . (3.1)S8

A. The De Launay model g. Angular forces

To calculate the dynamical matrix of graphite and
GIC, we use the De Launay model. t2 This model assumes

In the case of an angular displacement, the expression
for Vp„,„,is

Compound

LiC6
LiC2
CaC6
SrC6
BaC6
SmC6
EuC6
YbC6
KCs

RbCs
CsCs

Structure

Ao.An
A(nPp) A(nPp)

Ao.AP
AoAp
AnAp
AaAp
ASAP
AaAP

Ao,ApAp
AnAPAp
AnApA7

Symmetry group

1.435
1.435
1.430
1.439
1.434
1.438
1.437
1.440
1.432
1.431
1.431

3.706
3.706
4.60
4.94
5.25
4.872
4.58
4.573
5.32
5.618
5.928

3dcc
~3d..
2d..~3
2d..~3
2d..~3
2d,.~3
2d..~3
2d..~3
2~ad..
2~3d..
2~3d..

PP

dpp

2dpp

2dpp

2dpp

2dpp

2dpp

2dpp

3dpp
3dpp

3dpp

P6/mmm
P6/mmm
P6/mmc
P6/mmc
P6/mme
P6/mmc
P6/mme
P6/mmc
P6/mmm
P6/mmm
P6/mmm

TABLE II. Cell parameters of graphite and GIC.

d„(A) d (rA.) a c Positions
Carbon Intercalate

6j 1b
2c 1b
12i 2d
12i 2d
12i 2d
12i 2d
12i 2d
12i 2d
24 3
24 3
24 3

This notation signifies that the three sites o., P, and p of the MCs structure are occupied, and not that there are three planes
of intercalate.

The comPounds KCs and RbCs are in fact the comPounds AnAPAPA6.
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u On'sei = 6 On'ee' A u Os u n'8' A 6 On'ss'
B. Graphite

u 08 u n's' (3.3a)

and therefore

—+ &i —+
& On'ss' u Os u n'e'

(

' & On'se'
)

(3.3b)

~CX
On'se' u On'ss'

u Os u n's'

& On SB uOB un 8' & On'ss'

(3.4)

The total force, also called a noncentral force, is writ-
ten as

Hexagonal graphite possesses a primitive cell contain-
ing four independent atoms; therefore let us consider four
sublattices, leading to a 12X12 dynamical matrix. Hav-

ing taken into account the strong interaction between the
carbon atoms nearest each other in the plane (covalent
bond of carbon), we limit ourselves in our study of cen-
tral interactions to the atoms next nearest in the plane
and the nearest atoms in the neighboring plane. As for
angular interactions, we shall limit ourselves to the near-
est neighboring atoms (see Fig. 2). The force constants
used for graphite will thus be the following: nq and o.z

for atoms nearest each other in the plane; n2 for the
next nearest atoms in the plane; o;3 and a& for the near-
est atoms in the neighboring plane. We may therefore
write, taking into account the symmetry of graphite, the
dynamical matrix in the form

08n s p ~p, u 08 un 8

I &
O'p, ~~) & On'se' ' u Os u n'e'

(A t."" F. 0 )
D(~k) C B 0 0

E 0 A t."
(0 0 t* B)

(3.9)

X 6 On'ss' (3.5)

8'up„.(~
me

g 2 Osn 8 pOt2
(3.6a)

2—m, u„.uO„—— —O,„u0, —un, O.„—O.
„

n'8'p

p representing the neighborhood in question.
The equations of motion in a crystal are therefore writ-

ten in terms of this force:

To establish this matrix, we used the following properties.
The A and C atoms have the same neighborhood: three
first neighbors in the plane (a type 8 atom for the type
A, and D for C), six second neighbors in the plane (type
A for A and C for C), and two first neighbors out-of-
plane (type C for A and A for C); the 8 and D atoms
have the same neighborhood: three first neighbors in the
plane (a type A atom for the type 8, and C for D), six
second neighbors in the plane (type 8 for 8 and D for

D).
The elements A, B,C, and D of the dynamical matrix

X E n' u08 un'8' 6 n

(3.6b)

This set of 3X coupled differential equations (K being
the number of atoms in the primitive cell of the crystal)
may be rewritten in the form

2 X I
ms ~„-uOB, + g —n„u08 —u n&s' ~O.&

—a
n'8'p,

X 6 n~ uOs un's' 6 n =0; 37

this system admits nontrivial solutions if and only if the
determinant

D( k ) —m. ~. ( k )I = 0 (3.8)

is zero. The resolution of the above eigensystem allows

us to obtain phonon vibration frequencies ur, ( k ) in the
crystal, as well as the eigenvectors or vibration vectors

u„,(k). FIG. 2. Atomic force constants of graphite and GIC.
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D( k ) are themselves 3x3 matrices: the matrices A and
B are expressions of the interaction between the atoms
of type A and C (for matrix A) or B and D (for matrix
B), and themselves take into account the invariance of
the dynamical matrix under the action of a rigid-body
translation:

D„(k)=

( A B' O' D' C F' 0
B A D O F C' 0
C D' A F' O' B' 0
D O' F A B C 0
O' F' C B' A D' 0
F C B O' D A 0

(o o o o o o o

(3.14)

) D~(k = )=) D~(k = 0)=0; (3.1o)
and

C is the expression of the interaction between the A and
B or C and D atoms; E is the expression of the interac-
tion between the A and C atoms.

C. Graphite intercalation compounds

(i
0
0

D.;(k) = o
0
0

0

0
0
0
0
I2

0 0 0
0 0 0

iii 0 0
0 i 0
0 0 ii
0 0 0
I3 I~ I2

0 I~)
0 I2
0 I3
0 Ig
0 I2
iii I3I' Li)

(3.i5)

D( k ) = D„(k ) D„(k ) (3.11)

Primitive cells of GIC are composed of between 3 (LiC2)
and 27 (MCs) atoms. This gives us dynamical matrices
of rank &om 9 to 81.

f. LiCq

Given that the strong graphite covalence only adds
two force constants to those already chosen for graphite,
namely, Pq and Pz for interactions between carbon and
intercalate atoms. To simplify the notation of dynami-

cal matrices D( k ), we shall write them as a sum of two
submatrices, one representing the interactions between

carbon atoms D„(k ), and the other those between car-

bon and intercalate atoms D„(k):.
3. MCq two sitea

Compound of type MC6 two sites contain 14 atoms
per cell, which gives a dynamical matrix of rank 42.

g. MCs tIime sites

Compounds of type MCs are normally divided into two
families: three-site compounds (RbCs); four-site com-
pounds (KCs and CsCs). Four-site compounds have a
pattern composed of 72 atoms which lead to a Hermi-
tian dynamical matrix of rank 216, yet it has not been
possible for us to satisfactorily diagonalize such a sys-
tem. We shall therefore assume &om now on that these
compounds possess a structure of the type MCs three
sites.

(A 8 0~D„(k)= B' A 0
(o o 0)

(3.12)

and

~i 0 I~
D (k)= 0 i I'

I,i )
(3.i3)

LiCe

The primitive cell of I iC6 consists of seven independent
atoms, which gives us a 21x21 matrix:

This compound possesses the simplest structure of GIC
(only three atoms per cell). This leads us to calculate a
dynamical matrix of rank 9:

IV. RESULTS

A. Force constants

With the use of available experimental results of the
Brillouin zone center, labeled I' (graphite and GIC), and
on the zone boundary (graphite), we approximate the
force constants a; and P;, i.e., the parameters introduced
into the dynamical matrix using De Launay's method.
For graphite we made the following decision (see Table
III): two frequencies in the zone center; three &equen-
cies on the zone boundary: one at A and two at M.
To approximate these force constants, we diagonalize the
dynamical matrix until we obtain the desired &equencies.

For MCS compounds, we had to assume, because of
the small number of experimental results, that the force
constants bound to the carbon matrix are only slightly
diferent &om those of pure graphite. To calculate the
force constants, we made use of experimental results
obtained by inelastic neutron scattering (Zabel and co-
workers22 2~) as well as those obtained by Raman spec-
troscopy (Solin and Caswell~s). The whole of the ob-
tained results for the force constants is listed in Table
IV.
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TABLE III. Values of frequencies in graphite.

Prequencies

vr, o(I')

vTo(A)
vr, o(A)
vzA(A)
vTA(A)
vTA(M)

Experimental values

47.64 (Refs. 13 and 14)
47.25 (Refs. 13 and 14)

1.5 (Ref. 15)
26.04 (Refs. 16—18)

3.81 (Ref. 15)

2.70 (Ref. 15)
0.99 (Ref. 15)
14.19 (Ref. 15)

Nicholson
and Bacon
(Ref. 19)

47.25
47.25
1.26
42.21
42.21
42.15
42.15
3.81

47.25
42.18
2.70
0.90
14.28

Theoretical models
Mani

and Ramani
(Ref. 20)

47.28
47.25
1.35
19.32
19.32
18.90
18.90
3.78

47.25
41.91
2.70
0.99
14.19

Gupta
et al.

(Ref. 21)
46.3
46.3
1.3

24.2

24.2
23.7
23.7
3.9
1.3

46.1
23.7
2.7
0.84
16.1

Calculated

values
47.26
47.24
1.35

25.58
25.58
25.27
25.27
3.81
1 35

47,25
25.42
2.72
0.97
14.59

Values used to fit the force constants.

B. Phonon dispersion curves —density of states

Using the previously calculated force constants, we

graph the phonon dispersion curves of these compounds.
These theoretical curves agree with existing experimental
data (see Fig. 3 and Table V).

State density is obtained by diagonalizing many times
the dynamical matrix for the element points of the first
Brillouin zone. It should be pointed out that on the
phonon state density curves (see Fig. 4) the graphitic
character of the compounds studied here stands out: in-
deed, we may observe on all of the curves that the den-
sity peaks at 22 and 47 THz characteristic of graphite
are found on most. But the more the compound is con-
centrated, the more the interaction between carbon and
intercalate atoms takes precedence over those that are
bound to the graphitic structure (as in the case of LiC2).

&max ( l v ) ehv/hsTg(v)
& =ka

o (k~T) (ehv/ sT ])
h, /h T

=ka
i kg) T ) (eh&;/haT ] )

(4 1)

This last relation allows us to calculate the specific heat
of graphite and of different GIC's studied here. The
specific heat of graphite thus obtained might have been
compared with that of experimental measurements per-
formed by De Sorbo and Tyler, and Spencer, as well
as Krumhansl and Brooks; the agreement is good at ev-

ery point (see Fig. 5), and comparable to that obtained
by Young and Koppel.

The development of specific heat in the neighborhood
of 0 K has allowed us to distinguish two zones, the first
for temperatures less than 6 K and the second for tem-
peratures between 6 and 160 K, inclusive.

C. Speci6c heat and Debye temperature

Using the state density g(v), we may evaluate the spe-
cific heat of difFerent compounds. Indeed, C„depends on

g(v) by the relation

Deeeloprnent for T ( 6 K: Calculation of eo

In the neighborhood of absolute zero, we may approx-
imate the specific heat conforming to Debye's theory in

TABLE IV. Atomic force constants (in Nm ).

Compound Carbon-carbon interactions Carbon-intercalate interactions

Graphite
LiC6, LiCg

CaC6, BaC6
SrC6, SmC6
EuC6, YbC6

CsC8
KCs

RbCs

505.1
568.7
486.0
486.0
486.0
491.5
491.5
491.5

Cly

84.4
21.5
81.4
81.4
81.4
83.6
83.6
83.6

A2

73.7
68.2
66.4
66.4
66.4
66.7
66.7
66.7

413

5.92
2.13
3.51
3.51
3.51
3.51
3.51
3.51

0!3
0.72
0.245
0.295
0.295
0.295
0.242
0.242
0.242

27.95
3.2
3.2
3.2
5.6
3.5
4.2

3.47
0.15
0.15
0.15
0.35
0.25
0.28
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Compound
LiC6

LiCg

Experimental values Gupta et aL Calculated
50.4 50.5
47.25 46.2 47.5
45.09
34.8 39.1
32.4
24.3 22.5
19.5 20.8
13.5 12.9 13.6
12.45 12.0
49.8
47.4 47.4
35.1
30.9
26.4
24.3
19.8
13.8
12.8

25.2

14.0
10.0

the form of a T law:

C„=pT +aT, (4.2)

the p being related to the Debye temperature by the

TABLE V. Values of frequencies in lithium intercalation
compounds.

relation

(12m Nkgyi
(4.3)

Results thus calculated are presented in Table VI.

2. Deeelopnserst fm T 6 (6, j.80J R': Graph&te
and GIC anieotropy

Graphite is characterized by an abnormal specific heat:
indeed, we observe a variation of the speci6c heat C in
the form of a "T " law, instead of the classical "T "
law that holds for three-dimensional crystals. This be-
havior is due to the great anisotropy of graphite: the
interactions between atoms belonging to the same plane
(covalent bonds) are extremely strong compared to those
existing between planes (m'-type orbital bonds). This be-
havior may be observed in the force constants: o,q, the
force constant corresponding to in-plane Grst-neighbor
interactions, is about 100 times more important than as,
which corresponds to out-of-plane first-neighbor interac-
tions. To show the dependence on "T " of the speci6c
heat, we approximate C„(fortemperatures between 6
and 160 K, inclusive) by an exponential law of the type

50— I.'001.'j /1oog
M T'A T

I. 11o)
50

A

('oo1$ f'10oj
M T'K T

~ g 110$

-/0 40

$0 w Qo

20—

10 10—

1.0 0.5 0.0 0.5
It reduced

1.0 0.5 0.0 1.0 0.5 0.0 0.5
k reduced

1.0 0.5 0.0

Tliearrnrni rn&~ cs
Znbri's ezperimr»(at ~ aloes

poo1 j I100$
M T'K T

~P1/0$ 50— f.'OO1$ /'10O, )

-lo

.30

&0

10 10

1.0 0.0 0.5
~reduced

1.0 0.5 0.0 00.50 0.00 0.25
+reduced

0.50

FIG. 3. Phonon dispersion curves of (a) graphite, (b) LiCs, (c) LiCs (dots represent Zabel s experimental values), (d) KCs.
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1 I

li lllll Iltl 11111ITII f ..„,, l IIIIIM
1 0 15 20 25 .'30 .'f5 40 45 50 1O 1 & &0 ~.

& &O & /O / & . &rr

. „„ i rii&ii)i))l(ll'Illllli IIIIIII „ lr. ;, , '))(ti)n), .miill Ibad'IIIIIIllllll

10 1 5 ~0,'~') .') 0 '75) -l0 -l 5 50

( { '/'//= )

(illllililill Iiill „ l»..„,, ~ )iIII(liIIII)m(ill lill

0 5 10 1;) 20 25:70,.'35 40 15 5)0

(
/'//= )

FIG. 4. Phonon density of states of (a) graphite, (b) LiC2, (c) BaCs, (d) KCs.

C„=/3T". (4 4)

The best approximation (for )t~ criterion) allows us to
obtain the parameters introduced in this expression (see
Table VII). This table reveals the following facts.

In agreement with experimental results, graphite pos-
sesses a marked bidimensional character (n = 2.01 2).

For MC6 two-site compounds, we observe that the
larger the mass of the intercalate, the more the com-

pound is bidimensional (see Fig. 6). We may explain this

by the fact that when the mass of the atom increases

(up to 173 for ytterbium), the inertia of the intercaiate
planes also increase, and therefore the vibrations of the

TABLE VI. Values of 8D for graphite and intercalation

compounds.

Compound

Graphite

LiC6

LiCg
CaC6
BaC6
SrC6
SmC6
EuC6
YbC6
KC8

RbCS
CsCs

8.85 x 10 603

6 93 x 10
9.70 x 10
1.08 x 10
2.10 x 10
1.77 x 10
1.85 x 10
1.84 x 10
7.79 x 10
6.23 x 10

10

652
585
565
452
479
472
472
292
314
321

Calculated values

p (Jmol 'K ) er) (K)
2.521 x 10 423.6

Experimental HD

413 (Ref. 32),
421 (Ref. 33)
590 (Refs. 34

and 35)

235 (Ref. 33)

341 (Ref. 33)

/0

( )
)' '&r (r u(n lc(t

( ) ) .rr)('I )&l)r n (&)(

0
0 (&'00 1 ~0(? 1800 .'1000

FIG. 5. Comparison of graphite experimental and theoret-
ical specific heat |
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TABLE VII. Anisotropy of graphite and its intercalation
compounds.

with C66 ——
2 (C11 —C12). The equations of motion for

an elastic crystal are of the form

Compound
Graphite

LiCe
LiCg
CaCe
SrCe
BaCe
SmCe
EuCe
YbCe
KCS

RbCS
CsCS

Exponent
2.01
2.83
2.97
2.82
2.26
2.06
2.03
2.02
2.03
2.98
2.52
2.49

0 tC 19(7 80 00'

gg2 gZ gy gz
(4.6)

6
O.; = C~E~.

j=l
(4.7)

The constants 0;z are the components of the constraint
vector, and u is the x component of the displacement
vector. Two similar differential equations exists along
the y and z axes, also. The elastic constant tensor may
be introduced by using the relation between stress and
strain:

D. Elastic constants

Another property related to the phonon dispersion
curves is the knowledge of the elastic constants of a ma-
terial. Indeed, this depends on the velocity of the sound
in the crystal; now, this velocity is a function of the slope
of the dispersion curves for the acoustical branches [those

for which ~( k = 0 ) = 0].
For hexagonal crystals, the elastic constant tensor [C;~]

contains only f1ve constants instead of 21 in the general
case:

[c;2] =

C11 C12 C13
C12 C11 C13
C13 C13 C33 0 0

0 0 0 C44 0
0 0 0 0 C44
0 0 0 0 0

0
0
0
0
0

C66

(4.5)

3.0

graphitic plane may not be transmitted. This gives us a
system of graphitic planes that vibrate independently of
one another, and therefore the system is quasibidimen-
sional.

For MC8 three-site compounds, we may observe in a
lesser fashion the same properties as previously shown.

The subscripts i and j represent the six unequal combi-
nations of the three axes (see Table VIII).

The combination of these two equations leads us to the
following determinant:

with

+13
+23

+1S +23 +33

G11 = C11k1 + C66k2 + C44ks —pu
+12 (C12 + C66) klk2
a12 = (C12+ C4, ) k,k„

~22 —C66k1 + C11k2 + C44k3
623 —(Cjs + C44 ) k2 ks,

Gss —C44k1 + C44k2 + C33k3 p~ ~

(4.8a)

(4.8b)

For the direction [100] (k1 ——k, k2 ——ks ——0) this
determinant becomes

C11k2 ~2
0
0

0
C66k —pcs

0

0
o = o. (4.9)

C44k —pd

LA[1OO]
Q)

2

11 P
1

for a transversal wave along the y axis:

(4.10)

If, in addition, we consider the case of a longitudinal
wave, we obtain

QJ
2
TAg [1OO]

~66 —p
k1

(4.11)

For waves propagating along the direction [001] we obtain

TABLE VIII. Indexing of the elastic tensors.

Z. O
0 40 80 120 160 200

m, ass of th, e intercatant

FIG. 6. Evolution of the bidimensionality for MCe GIC.
Mass in amu.

Index
1
2
3
4
5
6

Dn ection

yy
zz

yz or zy
xz or zx
xy or yx
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TABLE IX. Elastic constants (in 10 N m~).

Compound

graphite (Refs. 36 and 37)
LiC6
LiC2
BaC6
CaC6
SrC6
SmC6
EuC6
YbC6
KCs

RbCs
CsCs

Our calculated values
C33 C44

113 3.74 0.44
74.7 4 ~ 71 1.5

87.71 10.67 8.33
101 9.9 0.85
134 15.0 1.05
166 21.0 1.17
202 19.4 1.36
191 20.8 1.45
223 20 0 149
109 3.57 0.314
138 5.07 0.384
165 6.07 0.405

C66
38.8
39.1
20.57

35
46
57
69
66
77

38.3
48.4
58.2

4.85
4.84
5.83

0.282

0.405

Experimental values

CI I C33 C44
106 3.65 0.40

1.0

C66
44

4) 2
LA [pp1] TA [001]

33 —P 2 ) 44 P
J 2 (4.I2)

V. CONCLUSIONS

As long as we consider only graphite, this work pro-
duces nothing new, but it has allowed us to test the valid-

ity of the model used for GIC. Having presented the par-
ticularity of being layered, graphite has known a great in-

terest during the past fifty years. Even though the model
chosen here is quite simple (only five force constants for
graphite, and seven for GIC), the results obtained for
thermodynamic properties (C„and OD) as well as for
elastic properties are in good agreement with both exper-
imental and theoretical results. In comparison with one
of the most accurate models, previously propounded by
Maeda, Kuramoto, and Horie, which introduced 8 force
constants in the case of graphite and 10 for the GIC.
We also obtain a satisfactory agreement for the frequency
of the A2„mode (at 26 THz) of graphite shown by the ex-

periment of Solin, Nemanich, and Lucowsky. We have
solved the problem resulting from the lack of knowledge
of the interaction between the intercalate atoms, interac-
tions which these former authors were not able to evalu-
ate because of the few experimental results available. In
their model these interactions were supposed to be the
same as those of the potassium metal.

Concerning results obtained for LiC2, we could only
compare them with those proposed by Nalimova et al.
for the vibration frequencies in the Brillouin zone center
I'. These are in agreement for a great number of fre-

TA[ppy] is twice degenerated, which conforms to that
which we may observe on the phonon dispersion curves
of graphite and GIC. Using the previous expressions for
elastic constants as well as for the slopes of the acous-
tic branches, we may calculate C,~ (see Table IX). This
table shows a close agreement between the elastic con-
stants which are calculated and obtained experimentally
for graphite ~ and GIC

quencies. There remains, however, a problem; indeed,
this publication shows nine frequency measurements in
I', but the primitive cell of LiC2 contains only three in-
equivalent atoms, which leads to nine phonon dispersion
branches of which three are acoustic (v=0). We may as-
sume two causes for these three supplementary &equen-
cies. The assumed structure of LiC2 is not correct; there
could coexist two intercalate planes between two succes-
sive graphitic planes. The compound which possesses a
strong instability could be partially decomposed, and
there could exist several kinds of lithium GIC (LiCs,
LiCs, ...). The latter explanation may also explain the
strong similarity between measured &equencies for LiC2
and LiC6.

For MC6 two-sites compounds, there exist today only
a few experimental and theoretical results; we have thus
tried to calculate a great number of constants for these
bodies, to have a first approximation of the properties of
the compounds, especially of their bidimensional behav-
ior. It should be pointed out, however, that the knowl-

edge of thermodynamic properties (of specific heat, for
example) may not be complete without the introduction
of anharmonic components into the dynamical matrix.
Indeed, the harmonic model is not entirely suKcient to
model carbon-intercalate interactions.

Even if the model is not completely satisfactory for
thermodynamical properties of compounds, the prop-
erties at 0 K (elastic constants and phonon dispersion
curves) are not affected by this approximation. We were

finally able to show that the bidimensionality of GIC de-

pends mostly on the mass of the intercalate atoms. This
behavior is explained by the fact that the intercalate
planes become too heavy, and therefore their inertia de-

couples the vibrations between the neighboring graphitic
planes and thus allow us to obtain a system of planes
independent one from the other.
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