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Two methods for relating different carbon tubules are described. A single graphene ribbon of
in6nite length but Snite width can be coiled to form an in6nite set of tubules, each of which has a
unique pitch or helicity. This maps in a one-to-one fashion the translation/rotation operations of
the group of each tubule in the set. Within the set all irreducible representations are collected into
the same number of bands. Alternatively, tubules can be imagined to be pressed Bat so that centers
of six-mexnber rings lie along the crease. The direction of their creases on a graphene sheet relate
tubules having the same helicity but different numbers of identical rotationally symmetric subunits
around their circumference. These sets help to reconcile the different expressions for band structure
of tubules. These sets also help sort the various ways to join semi-inanite tubules. A perfect in6nite
tubule is composed entirely of hexagons. Adding one heptagon and one pentagon transforms half of
the tubule into a different tubule. The two ways to group tubules suggest that the least distortion
of neighboring hexagons occurs if the heptagon and pentagon are joined together or are separated to
opposite sides of the tubule. In the latter case, the tubule could be imagined to be Battened so that
the heptagon and pentagon are folded in half, one along each crease. This heptagon-pentagon defect
best connects sets of tubules in a pairwise fashion. The paired sets of tubules have axis vectors that
meet at a 30 angle on a graphene sheet. This analysis and experimental considerations suggest that
the ideal bend in a tubule caused by a heptagon-pentagon pair is likely to be 30'. Because entire
sets of tubules are joined in similar fashion, tailoring of tubule electronic properties can be imagined.

I. INTRODUCTION

Carbon tubules, cylinders whose walls are hexago-
nal graphitelike arrays of carbon atoms, are of intense
experixnental, and theoretical interest, perhaps
because certain tubules promise to be the most metal-
lic form of carbon under normal conditions 0 aad be-
cause they can be made under conditions complementary
to the Kratschmer-Busman process for xnaking icosa-
hedral C60. Recently single-walled tubules have been
made. In the in6nite-axis-length limit all the car-
bon atoms in a tubule belong to six-membered carboa
rings. Each ring can be equivalent by symmetry to all
the rest because no one ring is topologically distinct &om
any other. Each six-xaembered ring can be viewed as a
hexagon, at the vertices of which lie six carbon atoms.
The hexagon xaust be bowed to give the curvature of the
cylinder. In each hexagon there are perpendicular direc-
tions of zero and maximal curvature, thus hexagons can
distort slightly upon being bent to fit the cylinderical
surface.

Each hexagon on the tubule is part of three difFerent
edge-sharing spirals of hexagons. Tubules can be clas-
si6ed by the spiral having least pitch. If this spiral is
unique aad if it has nonzero pitch, then the tubule i.s
either left-handed or right-handed like a machine screw.
Such chiral tubules have two symmetry-equivalent sets
of atoms, members of which alternate as vertices around
each hexagon. In general, these two types of atoms can
have slightly difFerent radial distaace from the tubule
axis. Additional mirror symmetries xnake the two types
of atoms equivalent in the graphene layer as well as in all
achiral tubules. As more and more hexagons are added

to the tubule circumference, strain is relieved and the
properties of the tubule surface more closely approxixnate
those of a single sheet of graphite (a graphene layer). The
strain energy of a tubule is to a good approximation in-
versely proportional to its radius squared.

In reality tubules have a finite length. On occasion
tubules are open at an ends or the ends (and outer walls)
can be reacted away chemicaQy. ' Closed tubules end
in caps that ideally coatain exactly six pentagons, 24 2~ or
they evolve into more complex shapes. A single pentagon
(heptagon) causes the circumference to diminish (grow)
as the axis is extended beyond the defect. A heptagon-
pentagon pair changes one tubule into aaother. Under
the constraint of not changing a tubule into some other
class of object, the heptagon-pentagon pair is the sim-
plest topological tubule defect. By applying Euler's the-
orem to sp carbon systems the number of extra sides
(relative to hexagons) in polygons larger than hexagons
xnust equal the number of de6cient sides ia polygoas
smaller than hexagons if each atom in the tubule or
graphene sheet is to remain threefold coordinated. The
heptagon-pentagon pair introduces a single extra and
corresponding de6cient side.

This work investigates how tubules can be related to
each other, both in their electronic structure and in the
way in which they evolve to each other via of this sim-
plest topological defect. Section II relates sets of perfect
tubules in two ways and discusses various ways in which
their electronic structure can be grouped into bands. Sec-
tion III describes difFerent heptagon-pentagon connec-
tions between tubules. Section IV argues that the opti-
mal heptagon-pentagon connection beads the composite
tubule by 30 . Sectioa V gives some conclusions.
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II. PERFECT TUBULES

The surface of the tubule can be cut in an infinite num-
ber of ways, including in a direction parallel to the tubule
axis or a along line spiraling with any pitch around the
axis. Every continuous nonintersecting cut &orn top to
bottom allows the cylinder to open and become a pla-
nar graphene ribbon of infinite length. A simple ribbon
results &om cutting the tubule along nearest-neighbor
bonds alternating between two of the generally three
symmetry-distinct bonds. Figure 1 shows the ribbon
resulting &om cutting in this manner a set of different
tubules. This ribbon has an infinite height but a finite
width of I = 10 hexagons.

This same ribbon results &om unzipping an entire set
of tubules that can be characterized by which corner on
the right-hand side fits into which indentation on the left-
hand side. The tubules are labeled (L, M) [or (M, L) if
M is greater than LI. The line OM is the tubule circum-
ference, which is perpendicular to the tubule axis. The
length of this circumference is

OM = a/3(L'+ M'+ LM), (1)
where a is the length of a side of a hexagon or the nearest-
neighbor carbon-carbon bond distance.

The particular ribbon depicted in Fig. 1 could have
come from any tubule of the infinite set (10,0)-(10,oo),
and, by extending M to negative numbers, (5, 5)-(9, 1).
Extending M to even more negative values generates
tubules of the opposite handedness: The set of tubules
M & —5 becomes the set of tubules M & —5 upon ro-
tation of the tubule end to end or upon reQection of the
tubule through a plane parallel to the tubule axis. Except
for the (10, 10), (10,0), and (5, 5) tubules, all tubules in
the set are chiral. In fact, the tubules corresponding to
M —10 and —M are chiral partners, i.e., enantiomers.

This ability to use a single projection to compare an
entire set of tubules can be used to relate the proper-
ties of each member of the set. The group of symmetry
operations of each member in this set of tubules can be
mapped in a one-to-one fashion, thereby defining repre-

FIG. 1. A set of perfect tubules. When the left edge of
the figure is mated to the right edge so that the points O
and M are superposed, the (L, M) tubule is formed. In that
case the line QM becomes a tubule circumference. The figure
should be interpreted to extend infinitely in the skewed up-
down direction.

sentations that are "close to" a given representation in
each group, as "close to" was defined in an early anal-
ysis of cubic crystals. Each hexagon corresponds to
a unique element of the translation/rotation invariance
group of each tubule. The elements of the tubule in-
variance group corresponds to moving a given hexagon,
say the one near 0 in Fig. 1, to each of the remaining
hexagons. The translation/rotation group is Abelian
the order of group operations is immaterial —so that each
group element, corresponding to each hexagon in Fig. 1,
is its own class. The complexity of the tubules groups
can be further simplified. Each can have two generators
that used repeatedly generate every group element, i.e. ,
all elements of the group can be expressed a product of
the first generator raised to some power and the second
generator raised to some other power. Corresponding to
Fig. 1, we can take the first generator to be the step
of a single hexagon to the right and the second genera-
tor to be a single step up to the next row of hexagons.
The irreducible representations of each group are then
labeled by the phases (Oq and O2) associated with these
two generators. If 2m is added to either phase, then the
same representation is obtained, because all other group
operations introduce a phase that is the sum of integral
multiples of these two phases.

The set of groups corresponding to Fig. 1 is bicyclic,
with finite quasiperiod, ten, left-to-right and infinite pe-
riod up and down. This imposes conditions on Hq and 82.
The various groups in this set are distinguished by the
phase-matching condition associated with the finite pe-
riod, i.e. , ten steps to the left is the same group element
as M steps up. The requirement that the representation
be single valued restricts the phases associated with the
two elementary generators,

—isq)L (
isq)M

or

I,O, = M82+n2~

for some integer n.
Equation (3) is the only condition on Ot and O2 inde-

pendent of whether or not the tubule is translationally
periodic. An ideal tubule (one having equal bond lengths
and 60' bond angles) has translational periodicity, but a
slight twist of the two ends can dramatically alter or even
destroy the periodicity. This fact has been used to dra-
matically reduce the number of inequivalent atoms in a
calculation that uses only traDslational symmetry, but
such a twist will not alter the phases associated with the
two generators of the specific tubule group. This relation-
ship between Hq and 82 can be visualized as straight lines
on a plot of 82 as a function of 8~. The slope of each line
varies from —2 for M = L/2 through nega—tive infinity
for M = 0 to approach zero as M approaches infinity.
Inside the physically significant square 0 & 8~, 82 & 2m,

there are portions of exactly L + M such lines or bands
of irreducible representations O2(Ot). Shifting this square
to a physically identical square removed by LHq ——vr,

these I + M bands are seen to be simple continuations
of I. different bands. Similarly, by shifting this square to
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for the (L, M) tubule. From this perspective, the sec-
ond group generator is the Mth root of the product of L
operations of the first generator. Other nontrivial factor-
izations are possible. If k (direct or inverse) operations
of the first generator has an integral ith root, then

(I, m)' = (L, M)~ + (1,0)"

for some set of integers j, l, k, and m. If an integral
solution exists then

jM = im, ilM —imL = kM. (6)

This root (l, m) can be used as an the intraband gener-
ator. [In fact any group operation other than N(L, M),
N = 0, 1, . . ., which are mapped onto the identity, can
be used as the intraband generator. ] If i = m there
are k bands per basis function. If k = 1 there are M/i
bands per basis function. Derived geometrically, White
et al. use Eq. (6) when j = m, i = M, and k = +1,
which apparently always has an integral solution and
the corresponding electronic structure a single band per
basis function —if and only if the tubule does not have
rotational symmetry.

All the physical meaningful helical symmetries of the
tubules been characterized and used in electronic struc-
ture calculations, which, however, use different
number of bands. White et al.3~ 33 use as group gen-
erators the smallest rotation perpendicular to the tubule
axis and the smallest corresponding helical operation as
the intraband generator. In this approach the number

physically identical squares obtained by shifting 82 one
and more increments of 2m these L+ M bands are seen
to be simple continuations of M different bands.

These three different ways to band the irreducible rep-
resentations of the tubule groups can be visualized using
Fig. 1. Each of the ten vertical strips containing an in-
finite number of edge-sharing hexagons can be colored
differently. The left and right edges can be joined into
three different classes of barber poles corresponding to
the three different ways of banding the irrepresentations
of the tubule groups. For 0 )M ) L/2 —the (L M, M— )
tubules are formed. In this type of barber pole, constant
colors run out of any hexagon in the (1,—1) direction
when L and M are measured in the (1,0) and (0, 1) di-
rections, respectively. For 0 & M & L the (L, M) tubules
are formed and the constant color direction is (0, 1). For
L & M & L the (M, L) tubules are formed and the con-
stant color direction is (1,0). The three difFerent edge-
sharing directions out &om each hexagon are symmetry
equivalent for the hexagonal lattice, but differ for the
tubule groups. The intraband subgroup generators are
(1,—1), (1,0), and (0, 1), respectively. Plotting the band
structure in these three different directions gives a more
complete picture of the constraints of continuity on the
electronic structure of chiral tubules.

Still other expressions of tubule band structure can be
generated using nontrivial factorizations of the primitive
group operations of each tubule group. Equation 2 can
be written using vector notation for the group operation,

(4)

of bands per basis function is N, where N is the largest
common factor of L and M and is the order of the ro-
tational group of the tubule. Klein et al. s use (1, —1)
as the intraband generator. Saito et at.ss s use (1,0) as
the intraband generator. The number of bands per basis
function is difFerent in all three methods if L g N and
M ) 0. In this case the approach of White et al.
gives the minimum member and the approach of Klein et
al. gives the maximum number of bands.

The Hiickel model applied to carbon assumes one basis
function, the vr orbital, per carbon atom, neglects basis-
function overlap with neighboring atoms, and includes
only a nearest-neighbor hopping matrix element V. The
tubule bands can be symmetrically expressed

s(8i, 82) = +V)l + e' ' + e' ')

about the on-site matrix element. Due to this symmetry
there is no band gap (in these models) if

(8)

for some representation and some integer n. Equations
(3) and (8) can be combined to give the narrow-band-gap
condition

for some integer n, i.e., the difference between L and
M must be a multiple of three. In fact, only the (L, L)
tubules are truly metallic. The others are narrow- or
wide-gap semiconductors depending on whether or not
L —M is divisible by 3.ii' s ss The (6, 0) tubuleis is
narrow gap. The band gaps of wide-gap tubules, inde-
pendent of chirality, are predicted to be inversely propor-
tional to the tubule radius.

The mapping of Fig. 1 groups tubules of different heli-
cal twist angles. Grouping tubules of identical helicities
can be done by imagining them pressed Sat like a pant leg
upon ironing. Each crease of the pant leg can be aligned
on a graphene sheet. When optimally creased and posi-
tioned on the graphene sheet the creases will go through
the center of some hexagons as depicted in Fig. 2. In this
manner the set of all tubules with the same helicity cor-
respond to different distances between the parallel lines
of the same slope. The individual members of this set of
tubules can be labeled by the rotational integer N, where

(L, M) = N(Lii, Mii), (10)

where L~~ and M~~ have no common integer factor. The
tubules are considered Sattened. Only half of their sur-
faces are contained within the creases of Fig. 2. Thus a
(7, 1) dashed line in the upper part of the figure connects
the creases of the N = 2 or (14, 2) tubule.

Tubules with identical helicities have axes and creases
that have the same slopes on the hexagonal lattice. In
fact, this slope is perpendicular to circumferential direc-
tion (L, M) used to label the tubule. For such a tubule
the axial direction (L~, M~) is a function of the circum-
ferential direction,
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along either crease. For a heptagon 7/2 sides lie to either
side of the crease. For a pentagon 5/2 sides lie to either
side of the crease. This result is independent of the ori-
entation of the polygons relative to the crease direction,
it relies only on the fact that the crease went through the
center of the polygon. The two creases running through
the heptagon and through the pentagon are readily de-
picted on a planar suface. The heptagon bends the line
at a 7/6 vr angle and the pentagon bends the line at a 5/6
~ angle. The two creases are parallel in the pure tubule
region far enough &om the defect. These two sets of par-
allel lines can be extended to meet at the pentagon and
heptagon. If the creases are at the opposite sides of the
tubule, then the tubule lies Bat like a pressed pant leg.
In that case the pentagon is at the knee, the heptagon is
inside the knee, and the pant leg bends 30 at the knee.

A 30' connection between pressed tubules joins (L, L)
and (L', 0) tubules2s and is drawn in Fig. 4. The two lines
coming up Rom the bottom represent a (12, 0) tubule.
The first heptagon encountered shows how this tubule
can be connected to the much fatter (12, 12) tubule. The
circumference of the seam indicated by a dashed line,
which runs in a (1,0) direction, is larger than the cir-
cumference of the both tubules. The next heptagon
encountered going up connects the (12, 12) tubule to a
(8, 8) tubule. The circumference of this seam, in the

(1, 1) direction, is equal to the circumference of the (8, 8)
tubule, thus the circumference of an ideal (equal unit
bond lengths) (8, 8) tubule must be larger than that of
an ideal (12, 0) tubule. Skipping a heptagon, the (6, 6)
tubule meets the (12,0) tubule at the latter's circum-
ference, thus the circumference of an ideal (6, 6) tubule
is less than that of an ideal (12, 0) tubule. Joining the
intermediately sized (7, 7) tubule makes a symmetrical
seam that is 15 out of the plane of the circumference of
both tubules. Finally the (3, 3) tubule can be connected
to the (12, 0) tubule, with a very large seam. Thus all

(L, L) tubules can be connected to the (12,0) tubule us-

ing a single heptagon and a single pentagon. Similarly
all (L, 0) tubules can be connected to the (12, 12) tubule.
This (L, L) to (L', 0) connection preserves a mirror sym-
metry of these achiral tubules.

If an infinite tubule is cut at some angle 8 relative to
the plane of the tubule circumference, then the circum-
ference of the cut is an ellipse, ignoring any relaxation
caused by the cut itself. For the unrelaxed cut, the mi-
nor axis of the ellipse is the tubule diameter. The major
axis is elongated by a factor of sec(e). Thus the seam
caused by the heptagon-pentagon pair will be most cir-
cular when the seam makes a 15 angle to the plane of
both tubules. In this sense the (12,0)-(7, 7) connection in
Fig. 4 is ideal. Equation (1) predicts the circumferential

FIG. 4. Connecting the (12,0) tubule to the (12, 12),
(8, 8), (7, 7), (6, 6), and (3, 3) tubules with a heptagon-
pentagon pair. The pentagon occurs at the knee to the left
of the figure. The heptagons occur at the inside of the knee
along the right edge of the pressed (12,0) tubule. The hep-
tagon for the (12, 12) connection lies lowest and the heptagon
for the (3, 3) lies higest in the Sgure. The seams between the
half-tubule pairs are indicated by dotted lines.

FIG. 5. Connecting the (9, 3) tubule to the (20, 8), (15,6),
(10,4), and (5, 2) tubules with a heptagon-pentagon pair. The
pentagon occurs at the knee to the left of the 6gure. The hep-
tagons occur at the inside of the knee along the right edge of
the pressed (9, 3) tubule. The heptagon for the (20, 8) con-
nection lies lowest and the heptagon for the (5, 2) lies higest
in the 6gure. The seams between the half-tubule pairs are
indicated by dotted lines.



BRETT I. DUNLAP

mismatch to be about l%%uo for this ideal connection. For
the other connections, the tubule with the largest radius
must Batten perpendicular to the heptagon-pentagon di-
rection as the seam is approached.

If the tubule axes intersect at any angle, then the
planes of the circumferences intersect at the same angle.
Thus the tubule labels viewed as vectors intersect at the
same angle. The condition that tubule (J,K) intersect
(L, M) at 30' yields

(J, K) oc (2L —LM + M, L —LM + M ). (12)

This equation does not appear to have a solution (J, K)
oc (M, L) for some set of four small integers. The ex-
istence of such an L and M would imply that a tubule
could be connected electively to itself via a heptagon-
pentagon pair. A set of four small integers that comes
close to matching this condition is (3, 1) and (5, 2). Fig-
ure 5 shows a 3(3, 1) = (9, 3) tubule coming up from the
bottom and connecting in turn to (20, 8), (15,6), (10,4),
and (5, 2) tubules. By construction, the two sets of paral-
lel lines are both approximately 15' from the vertical, the
lines meet at exactly 30', and the folded heptagon and
pentagon have circumferences of exactly 7 and 5 ideal
(hexagon) sides, respectively. Because the set of connect-
ing tubules N(5, 2) is less dense in the plane, the best fit,
(9, 3) to (10,4), is less ideal than the (12, 0)-(7, 7) con-
nection in Fig. 4. Similarly, any of the N(3, 1) tubules
can be connected via a heptagon-pentagon pair to any of
the tubules above the knee of Fig. 5.

IV. DISCUSSION

The topologically gentlest transitions between tubules
requires only a single heptagon and a single pentagon. If
the pair of polygonal defects are near to each other in
the sense of being surrounded by carbon hexagons that
are locally rather Bat, then there is much local distortion
in the carbon lattice as shown in Fig. 1. The distortion
increases as the heptagon and pentagon are pulled apart
(by inserting transverse rows of hexagons). This distor-
tion can be relieved by curvature. Thus if L is large
enough, then for the entire set of tubules drawn in Figs. 1
and 2, the heptagon-pentagon pair should either abut or
be moved far enough apart that there be significant cur-
vature between them. Otherwise, the tubule joint would
be expected to be relatively unstable.

The heptagon and pentagon defects individually can
be thought of as being formed by adding and remov-

ing, respectively, a 60 wedge of carbon atoms &om a
graphene layer. These defects are negative and positive
60 disclinations, respectively, that require distortion out
of the plane if the elastic constants in the plane are much
larger than those out of the plane as is the case for the
graphene sheet. At a large radius &om each defect
the circumference is one-sixth too large and too small,
respectively, when compared to the unaltered sheet. At
each large radius from the defect a circumference can be
drawn, which can be imagined to be constrained to the
surface of a sphere of the same radius. For the pentagon
the circumference is too smal'l by one-sixth for it to be

an equator, but it can still be a circle if it drops down to
lattitude of —cos ~(5/6). Connecting the set of circles
for all large radii forms a cone that can be continued to
the apex. The intersection of this cone and any plane
containing its axis is a line that is bent at 67.1 . The cir-
cumference associated with a heptagon is too large to be
a circle on the corresponding sphere. If whatever shape
is assumed by this longer circumference on the surface
of the sphere is rotated on the sphere to minimize its
farthest excursions &om the equator, then the equator
must be crossed at least four times. Assuming the shape
to be four symmetric, connected geodesics the bounding
lattitudes are 6 cos (6/7). Connecting the set of curves
for all large radii a simple creased saddle point is formed
that can be continued to its vertex. The crease lines bend
at the vertex through angles of +62.0'.

This analysis suggests that heptagon-pentagon defect
could perhaps bend a tubule by slightly more than 60'.
On the surface of a tubule, however, there is no curva-
ture in the axial direction and maximal curvature in the
circumferential direction. On its surface, the cone asso-
ciated with a pentagon will distort to have a increased
bend in the circumferential direction and, correspond-
ingly, a decreased bend in the axial direction. The asym-
metry could be quite large, particularly for small diam-
eter tubules. This geometrical analysis is not inconsis-
tent with the optimal bend angle caused by a heptagon-
pentagon pair being 30'. Experimentally, the bend an-

gle associated with both a pentagon and a heptagon on
a small-diameter tubule can be measured to be close to
30' in Fig. 1 of Ref. 3.

A tubule with twelve 30' bends can be brought full
circle to form a torus. On the other hand, an icosahe-
dral C6o can be aligned through two opposed pentagons,
opened up by replacing the remaining ten pentagons with
heptagons, and then closed into a C36o torus by a tire-
shaped segment containing ten pentagons. Similarly all
the icosahedrically symmetric Goldberg polyhedra can
be inverted to form a set of related fivefold rotationally
symmetric tori. The C36O torus can be reduced by abut-
ting pairs of heptagons to yield fivefold symmetric C34o.
In these tori each heptagon-pentagon pair can be asso-
ciated with a bend of 36'. Of course, a finite section of
tubule with zero or any number of heptagon-pentagon
pairs can be bent and joined to form a torus. Tori found
in nature, however, are likely to have optimal joints with
optimal bend angles. While tori have not yet been found,
open ends of tubules that curl over on themselves and
continue on to form an outer wall can be considered elon-

gated half tori. ' These half tori are found to contain six
heptagon-pentagon pairs. In principle, two such half tori
could be joined together in a torus having twelve pairs.
Perhaps the binding energy per carbon atom in the five-
fold symmetric tori ' ' could be increased by adding
a sixth wedge equivalent to the other five and then reop-
timizing the geometry. Of course, one would expect the
same trend with tori that are found in fullerenes, namely,
the more carbon atoms the structure contains the more
stable it is. This e8'ect will add to the energy lowering
obtained by inserting an additional wedge to the fivefold
tori.
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V. CONCLUSIONS

Carbon tubules can be related in a number of ways.
Figure 1 relates the set of tubules that can be made from
a bundle of ten coiled helices. Figure 2 relates tubules
with the same axial direction. The relationships make
transparent certain ways in which electronic states can
be grouped into bands. A heptagon-pentagon pair is suf-
ficient to connect two different tubules. Viewed as a coil
of helical strands, the number of such strands changes
with the number of hexagons joining the heptagon and
the pentagon in a linear, acene fashion. Increasing sig-
nificantly the number of strands requires curvature along
the line of hexagons if the all six-membered-ring carbon-
carbon bond lengths are to remain relatively constant.

Parallel creases in the two semi-infinite tubules that
have been connected can be associated with the heptagon
and the pentagon. The strain caused by these defects is
probably least if these creases are symmetrically placed
behind and in &ont of the knee, respectively. If this is
the optimal connection between two half tubules, then

30' bends should be fairly common and the potential
for modifying the electronic properties of tubules by in-
troducing a small number of defects is great. Figure 4
shows that all the metallic tubules can be connected to
the narrow-gap (12, 0) tubule. Similarly, all the metal-
lic tubules be connected to a wide-gap (14,0) tubule.
The efFect of the wide-gap section can be altered both
by changing its diameter and by changing its length.
More control, still, is possible if concentric tubules with
different electronic properties ' could be modified in
concert.
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