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Selective Rydberg-level population of multiply charged ions (e.g., Z =6, 7, and 8) at solid surfaces is

treated in normal emergence geometry. For the intermediate ionic velocity region (between u =1 and 3

a.u. ) a molecular-dynamics-type model of the electron pickup process from the solid valence band into
low-angular-momentum ionic states (I =0, 1, and 2) is proposed. Specific features of the Rydberg states
and ions (large size, high degeneracy with respect to I, high value of Z) are included in the model. The
electron transition amplitude is calculated as a mixed electron-density flux through a moving Firsov
plane, whose kinematics is determined by a variational requirement. A multichannel character of the

process is taken into account in the framework of a statistical treatment of decoupled channels, based on

the approximation of small transition probabilities. The population probability P„&=P„i(u,Z) of the

(n, I) state is in sufficiently good agreement with available beam-foil experimental data (S VI, Cl VII, Ar
VIII) not only as a function of the principa1 quantum number n, but also as a function of l and u. An
"anomalous" peak at n = 11 in the population probability of Ar VIII is briefly discussed from the stand-

point of the developed formalism. The predicted maxima in the u dependence of P„I(u,Z) in the inter-
mediate velocity region calls for further more refined experimental studies.

I. INTRODUCTION

The Rydberg-level population of multiply charged ions
in the presence of a solid surface has been studied in
many beam-foil experiments. In this paper we discuss the
case of multiply charged ions (e.g., Z =6, 7, and 8) mov-
ing with intermediate velocities (v=few a.u. ).' s This
region of ionic parameters Z and v is characterized by a
selective population of Rydberg levels with principal
quantum number n =Z. Although some relevant con-
clusions about this efFect have been known for a relatively
long time, its basic quantum mechanisms are not yet
well understood.

The selective Rydberg-level population was established
under rather limited experimental conditions. Carbon
foils have mainly been used and only a few kinds of ionic
projectiles (e.g., the hydrogenlike ions S VI, Cl VII, and
Ar VIII, but also the heliumlike species of Kr VIII and
Xe VIII) were investigated in a more or less systematic
way. In all cited experiments the normal emergence
geometry has been used, whereas the relevant relative lev-
el population probabilities were measured exclusively by
methods of optical spectroscopy. Most frequently, the
population probability as a function of the principal and
angular momentum quantum numbers (n and 1) has been
investigated; only one paper reports its velocity depen-
dence.

It has been suggested many times (see, e.g., Refs. I and

7) that the levels with n =Z are populated through elec-
tron pickup from the valence band of the foil, in the out-
going part of the ionic trajectory. This suggestion is
based on both energetic and geometrical reasons. Name-
ly, the electron binding energies of the carbon foil valence
band are comparable with the binding energies of the
formed ionic Rydberg states n =Z, and near-resonant
character of the electron pickup is expected. On the oth-
er hand, the mean radius (r„t ) of the Rydberg state (n, 1)
is large in comparison with mean distances between foil
atoms. So, it was concluded that the Rydberg states can-
not exist in undisturbed eigenstates as long as the ionic
projectile is inside the foil; consequently, the electron
pickup can take place only at the back of the foil.

Attempts ' to calculate the population probability P„I
of Rydberg levels (n, l) around n =Z were done by using
a simple quasistatic quantum model (essentially
developed for thermal velocities of weakly charged ions).
This model is based on a two-step procedure. In the first
step the transition probability per unit time is obtained
for a fixed ion (i.e., by taking the ion-surface distance R
to be constant). In the second step the dynamics of ionic
motion is formally introduced (taking simply
R =vtAconst, t being time), which leads to the formula
P„i(v)= l —exp( —const/v ). Comparison of the predic-
tions of this model with experimental facts' was only
partly successful. '

This consequence could be expected because the quasi-
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static model contains several important limitations,
which can be avoided only in a more consistent quantum
model. Let us note, first of all, that P„I(U), described by
the cited formula, represents the monotonically decreas-
ing function of U, which is (as we shall see) in contradic-
tion with the available experimental data. A more con-
sistent treatment of the electron pickup into a moving
Rydberg state must be based on a dynamic quantum
model. Indeed, at intermediate velocities we are actually
faced with an essentially nonadiabatic phenomenon, so
that the ionic motion must be included from the very be-
ginning.

In addition, because of the supposed resonant charac-
ter of the electron transition the quasistatic model
represents essentially a two-state (or one-channel) theory.
Namely, it is supposed that the electron capture into a
given Rydberg state (n, l) is not affected by the presence
of remaining open channels leading to all other ionic
states. However, in the case of the population of Ryd-
berg states such a supposition is essentially incorrect.
Indeed, the distances between Rydberg levels are small
and all channels participate simultaneously. Thus, a
correct description of their population requires a mul-

tichannel theory.
Some specific geometrical features of Rydberg states

may also be relevant for a more consistent treatment of
the process under consideration. First, the large Rydberg
state can be relevant not only in the discussion of the pos-
sibility of formation of such a state inside the foil but also
in the analysis of its formation at the back of the foil.
Second, in spite of the fact that the electron pickup is a
tunneling process of a strictly quantum-mechanical na-

ture, the formed Rydberg ion possesses some characteris-
tics of a quasiclassical object.

So, it is reasonable to expect that the Rydberg states
are formed preferentially at sufficiently large ion-surface
distances R where stable quasiclassical orbits of captured
electron are possible. Moreover, the heuristic quasiclassi-
cal picture suggests that the eccentricity

2 1/2

e — 1—
nl

We developed a dynamic quantum model describing
formation of low-angular-momentum Rydberg states in
the process of under-barrier electron transitions. Our
model is of a molecular type: the ion-solid system is con-
sidered a "supermolecule" so that the formation of bound
ionic states can be seen as "dissociation" of that molecu-
larlike system, caused by ionic motion. The present mod-
el represents further elaboration of our molecular model,
developed for ground hydrogen state population at solid
surfaces (in the intermediate projectile velocity region). '

Namely, in this paper we shall show that the mentioned
specific features of the low-angular-momentum Rydberg
states can be incorporated in that model.

The electron transition amplitude is calculated as a
mixed electron-density flux through the central part of
the moving Firsov plane, ' located between a solid sur-
face and projectile. Our evaluation of the transition am-
plitude essentially represents a generalization of the
Demkov-Ostrovskii asymptotic theory" of charge ex-
change in ion-atom collisions at arbitrary velocities. We
generalized the Demkov-Ostrovskii's model by treating
the Firsov plane kinematics in a variational manner. The
multichannel character of the Rydberg state population
process is taken into account in the framework of a sta-
tistical treatment of decoupled channels, based on the ap-
proximation of small transition amplitudes.

As we shall see, the calculations performed in the
framework of the proposed model show that the electron
transitions are nonresonant. The dependence of the ob-
tained population probability P„I=P„,(U, Z) on n (for
fixed I) is in good agreement with experimental data.
Also, the I dependence of P„I (for fixed n) follows the ex-

perimental findings in the region of lower l. The main
advantage of the proposed dynamic model (in compar-
ison to the quasistatic one) lies in the fact that it reveals
velocity dependence of P„I it reprodu. ces P„&(U) maxima

just in the intermediate velocity region, which available
experimental data show. Some additional predictions of
the dynamic model call for further more systematical and
refined experimental studies.

Atomic units (e = i' = m, = 1) will be used through the

paper unless indicated otherwise.

of those orbits plays an important role. Namely, in the
case of lower values of l (e.g. , I =0, 1,2) the eccentricity
e„I will be high and we can expect that the electron densi-

ty distribution of the formed Rydberg state (n, I) is main-

ly localized around the ionic trajectory. However, for
higher values of l the values of e„I will be small, which in-

dicates not only a large size, but almost spherical
electron-density distribution.

Therefore, for lower l it is reasonable to assume that
only the narrow cylindrical region around the direction
of the projectile motion is relevant for the electron pick-
up process. On the other hand, for higher l we can ex-
pect a spreading of active electron "paths" away from the
narrow cylindrical region. In other words, a "tube'* of
relevant paths of active electrons in the pickup process
has different cross sections for different values of l:
whereas for l =0 the "tube" is stringlike; for l = n we can
expect a conelike structure of the electron path set.

II. FORMULATION OF THE PROBLEM

H= —
—,'V + U~(r„)+ UM(z)+ U„~(r,R ), (2.1)

where r z
=r —R stands for the instant position of the ac-

tive electron with respect to the moving system S'. The
ionic core potential U„ is defined by Uz = —Z/rA (out-
side the solid, z &0) and by U„=O (inside the solid,

For the purpose of this paper we set the origin of the
Cartesian coordinate system S at a solid surface IFig.
1(a)]. We consider the ionic core as a structureless, point-
like charged particle. Restricting ourselves to the case of
the normal emergence geometry we assume that the ion-
surface distance R depends on time t according to the
classical law R =Ut. Besides the system S, a moving
coordinate system S' will be used whose origin is placed
at projectile.

The Hamiltonian of the active electron is defined by'
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z &0). For z &0 we take UM= —Up (where Up denotes
the depth of solid potential well in the Sommerfeld mod-
el}, whereas for z )0 we set the electron self-image poten-
tial Ust= —1/4z. For U„M outside of the solid (z)0}
we take the interaction potential of the active electron
with ionic core image,

same holds for nonlinear polarization effects' caused by
a high value of the ionic charge Z.

The electron pickup process is considered' as an elec-
tron transition from a solid eigenstate 4g (at time t =0)
to a moving atomic state qr „(at t ~ ~ ). The initial state

4]a is defined by

Uq~=Z/+x +y +(z+R) 2

{—-'V'+ UM }@'4(r}=— (2.2)

For z & 0 we set U„M =0.
The potentials U„, U~, U„M, and U = UA + UM

+ U„~ along the positive part of z axis {and for
sufficiently large R) are illustrated in Fig. 1(b). Also, in

the same figure we marked the instant position of the Fir-
sov plane Sz. Note that on the right side of the Sz plane
we can roughly take U= UA, i.e., the Coulomb potential

U„ is dominant. However, on the left side of the SF
plane all terms in U participate significantly. Difficulties
with forms of U~ and UA~ in the near surface region,
fortunately, are not essential' for the calculation of
asymptotic population probabilities {for large R). The

where y represents a continuous parameter satisfying the
condition P & y /2 & Up [P is the work function; see Fig.
1(b)]. Besides y, the eigenstates 4g(r) are specified by
parabolic quantum numbers n, ~ and m~. For final state

q "A' we take

V AO
qrz(r t)=4„r (r„)exp iuz i —t+i t

'~AO 2

where 4„r is the hydrogenlike eigenstate of unit norm
'~AO

satisfying the relation

2

1
YAO

( ——,'V +Us)4 a r (ra }=—
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In agreement with beam-foil measurements, the quantum
numbers n and i and the magnetic quantum number m „
will be associated with 4„r . Consequently y gp=Z/n.

The corresponding transition amplitude f (t) at time
t~00 is givenby

f= lim (qr"„'(r, t)!U(0, t)!4Q(r)), (2.5)

VQ(r, t ) = U(0, t )4g(r ),
4"„'(r,t)= U( ~, t)qr"„'(r, ~ ) .

(2.6a)

(2.6b)

The instantaneous position zF of the Sz plane is defined

by

where U{t„t2)denotes the evolution operator of the sys-
tem form time t& to t2. The last expression can be
transformed in a more suitable form by introducing two
important solutions (%Q and %z ) of the time-dependent
Schrodinger equation i(x}%'/Bt) =H%' and using the con-
cept of the moving Firsov plane. ' For %g we take an
evolved initial state 4$ at time t, whereas 4"„ is an elec-
tron state at time t that will evolve in the moving atomic
state p"„at t~ ~,

U/
I zr =R —a(t), (2.7)

lO 10
C
Ol

a
-1.5—

-2.0

carbon
f'otl ionic core

where a = a (t) is the position of the Sz plane with respect
to the moving projectile [see Fig. 1(b)].

A procedure explicated in Ref. 10 leads to the follow-
ing expression for f:

f=I I(t)dt,
0 'tp 20 30

distance z[a.u]
40

FIG. 1. (a) Geometry of the process. (b) Energies of the pro-
cess in the stage when the electron capture probability reaches
maximum.

where
qgnl e
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A
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I(t)= I—
2 SF

dQ—2iv 1 — e,

(2.8b)
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is a functional of the Firsov plane position a =a (t).
Let us denote by Tr&(t) the probability of electron tran-

sition from initial states of unit y interval (around given
y) of the foil valence band to the ionic state (n, l). This
probability, determined by

T„'(t)=
If(t)

l

= f I(t)«
0

(2.9}

also represents a functional of a =a (t).
Its asymptotic form (t ~ ~ ) can be used for the deter-

mination of the Firsov plane kinematics by variational re-
quirement. Using the notation Tr, = TJ;( ~ ) we set

is a (mixed) electron fiux through the moving Firsov
plane S„. The unit vector e, is directed along the z axis
of the system S, whereas dS= —dS e, . Note that the
transition amplitude f is determined by the time evolu-
tion of %Q(r, t) and %z(r, t) exclusively on the SF plane.
Also, it is important to note that

I(t)=I a, , t
da

I(t)=e ~'F(t), (2.11)

where the parameter p is real and time independent.
Thus,

T~( =ff '=X(F' eF},
where

(2.12a)

F*4F= F t —7 F 7
0

(2.12b)

denotes the autoconvolution of F. Passing to the electron
Aux convolution I' eI we obtain

TJ(= J I'eI dt .
0

(2.13)

Inserting (2.13) into (2.10) we obtain the Euler-Langrange
equation

a(t)-dependent expression for f must be removed, we
proposed the variational condition (2.10).

In the considered asymptotic case (t ~ ~ ), the integral
in Eq. (2.9}can be seen as a Laplace transform X[F(t}]of
a function F(t) defined by

(2.10)
a

where 5a(0)=0 and 5a(~)=0. A general background
of the determination of the Firsov plane position a =a(t}
by variational requirement is given in Ref. 10. We note
only that the condition (2.10) is more general than
5f/5a =0, used in the theory of the ground hydrogen
state formation. The variational requirement (2.10) does
not exist in the Demkov-Ostrovskii model" of the
charge-exchange process in ion-atom collisions. Since
our evaluation of the transition amplitude f is essentially
based on this model, it will be useful to comment on its
relationship with the present molecular model of charge
exchange in ion beam-foil interaction.

The following facts could elucidate this relationship.
The cited paper" deals with the charge exchange at large
impact parameter b. This circumstance removes the ex-
plicit presence of the kinematic parameter a (t) from the
integrand of the Demkov-Ostrovskii electron flux I ( t )

For the same reason (b ))1) the integral f= Jo I(t)dt is

very simple and can be calculated directly by means of
the stationary phase method. Finally, the applied pro-
cedure of the calculation gives a final expression for f
whose dependence on the SF plane position is weak and
very simple, and can definitely be removed by simple es-
timation.

Obviously, a large collisional parameter does not exist
in the ion beam-foil transmission geometry, which clearly
indicates that the Dernkov-Ostrovskii method cannot be
directly transferred to the present problem. The lack of
the large collisional parameter leads us to the conclusion
that, even in the approximation of large ion-surface dis-
tances R, a more general and more appropriate expres-
sion for integrand of I(t) must explicitly contain the ki-
nematic factor a(t). Accordingly, we derived Eq. (2.8b)
for I (t) and, consequently, determination of the Sz plane
kinematics becomes necessary. Thus, realizing that the
stationary phase method does not operate successfully in
our case, as well as that the nonphysical ambiguity of the

B(I"eI )

isa

d B(I' eI )

dR B(da /dR )
(2. 14)

which will be used for determination of a =a (t).
Some general and natural requirements can be imposed

on the kinematics of the SF plane. In the initial stages
(t =0) of the ion's escape from the solid surface
(R ~O, a ~0) we take

a(R)/R ~1, R ~0 . (2.15a)

As we shall see in Sec. IV A, the physically most impor-
tant time interval (when the population of Rydberg states
predominantly takes place} can be characterized by

a (R ) /R =g =const, (2.151)

where g= —,
' and where R will represent a suiciently

large quantity. Finally, at extremely large ion-surface
distances R (R ~ ~,a ~ ~ ) we take

a (R ) /R ~0, R ~ ao . (2.15c)

T„,(t)= J g n~Tr((t)dy, (2.16)

where n ~ stands for the population number of the
conduction-band states By f an. d g we denote the in-

tegration over y values of the conduction band and the
summation over corresponding quantum numbers n, ~
and m~, respectively. The corresponding final value
(t~ ~ ) of T„&(t) will be denoted by T„~.

In the actual calculation of T„& we will suppose that

The conditions (2.15a) and (2.15c) will be used in the
determination of the wave functions 4"„' and
whereas the expression (2.15b) will be employed in the
transition probability calculations.

The transition probability T~j(t), Eq. (2.9), can be con-
nected with the total electron transition probability T„&(t )

from all states of the solid conduction band to the Ryd-
berg (n, l) state. %"e take
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only one electron transition channel [leading to the given
(n, l) state] is open. However, during the ion's escape
from the solid surface all other channels (leading to all
free ionic states) are also open and they participate simul-
taneously in the electron pickup process. This means
that the actual population probability P„i of the (n, l)
state (measured in beam-foil experiments) will be lower in
comparison with T„i=T„i(ao ). In other words, a con-
nection between T„l and Pnl can be established only in
the framework of a multichannel formalism. Such a mul-
tistage approach, adopted for the population of Rydberg
states, will be developed in our subsequent discussion
(Secs. V A and V B).

In order to complete the formulation of the problem,
we review briefiy the main results of our quantum-
mechanical treatment of the multichannel population
process. To do this, it is suitable to distinguish the (n, l}
ionic state (populated with the probability P„i) from all
other "background" ionic states (n, l'Al ) and (n'An, 1')
We denote by P„i(t) the population probability of the ion-
ic state (n, 1), supposing that only level n exists. The no-
tation P„"i (t) will be used for population probability of
the "background" state (n'An, 1'}in the presence of (n, 1}
state. With the adopted notations, the actual population
probability P„i=P„i( DD ) of the (n, 1) state (in the presence
of all ionic states) will be determined by

r

n' —1

(Sec. V) we shall develop the multichannel theory of the
Rydberg state population (calculating explicitly the back-
ground level population probabilities P„i ), which will
enable us to find the actual population probabilities P„l.

III. CALCULATIONS OF 4"„' AND %Q

The calculations of 4"„' and %g on the Firsov plane SF
are somewhat similar to those presented previously in our
analysis of the population of the ground hydrogen state. '

In this section only specific features of this procedure
(connected with the conditions Z=n, n »1, and 1 «n)
will be discussed in more detail.

A. The 4"A' function

The time-dependent wave function 0'z(r, t ) on the Fir-
sov plane SF can be obtained starting from the energy
eigenproblem of the Hamiltonian H, Eq. (2.1). Namely,
for a fixed (and large) ion-surface distance R we set

[
—

—,'~'+ Ua+(Um+ U~iit)1~'~M(»

=E„(R)4&i'(r,R ), (3.1)

where the molecularlike eigenstate 4„M can be con-
sidered as the atomic eigenfunction 4„r [Eq. (2.4)],
distorted by the potential UM+ UzM. We take

P«=P«1 —& & P."'i
n'An l'=0

(2.17} —sA(rA, R)
@~M(r,R )=4„(r„)e (3.2a)

where P«=P«(~) and P„"I.=P„",'&. (~ }. We point out
that the expression (2.17}holds exclusively in the approx-
imation of small transition probabilities.

Under the mentioned condition, the probability P„l can
be determined directly from the simple rate equation

where s„represents a small correction. In the vicinity of
the ionic core the 4„M function becomes 4„~ . In that

'~AO

region we have

2Z —1
UM+ U~M-

(2.18)

where I „i(t)=dT„i(t)/dt denotes the corresponding
transition rate. Equation (2.18), together with the initial
condition P„i(0)=0, gives

nl (2.19)

where T«=T«(00) is determined by Eq. (2.16). Deter-
mination of the population probability P„n'l of the back-
ground state (n', 1') is more complicated. We realize,
however, that the actual population probability P„i, Eq.
(2.17},does not depend significantly on the details of the
population mechanisms of the background states. This
circumstance will enable us to estimate the value of P„"'l
as a product of the probability P„ l and a statistical factor
p„"'=1/n' (Sec. V B).

From the presented formulation of the problem we see
that our further considerations will go through the fol-
lowing three steps. In the first step (Sec. III) we calculate
the relevant wave functions 4"„(r,t) and 9'g(r, t), ap-
pearing in the expression (2.8b) for the electron-density
fiux. In the second step (Sec. IV) we will use the obtained
functions for the determination of the transition probabil-
ity T„i [Eq. (2.16} for t~ao]. Finally, in the third step

y„(R)E (R)=-
A

2
X~0 2Z —1

2 4R
+ (3.2b)

2
@ni(-„ t) @ (-„R) &&&&a &i ii~2irao&

(3.3)

where R =Ut The func. tion f„ is an appropriate space-
time correction satisfying the following condition at
t —+ oo:

f„(r„,t)~0, t~~ . (3.4)

We reca11 that for t~~ both a =a(t) and R tend to
infinity, but a/R ~0 [see Eq. (2.15c)]. Now, passing to
the fixed coordinate system S we have

@«( t )
qy'nl iuz —i(U /2&tr, — ze (3.5)

Looking at Eqs. (3.5), (3.3), and (3.2a) we see that the
calculation of 'Pz is reduced to the evaluation of sz and

where all terms of order O(1/R ) are omitted. A typical
position of the E„(R)-level is presented in Fig. 1(b).

In the moving coordinate system S' we use the follow-
ing form of the relevant time-dependent wave function of
the active electron:
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2Z —1 a 1 a
s A + ln 1 ——

4r Ao R 4xAO

Z a
ln 1 — +sAO,

rAO
(3.6)

where sAO represents an arbitrary integration constant for
a while. For f„we have (in the same central region of
the Sz plane)

2Z —1a 1 1 1 a—+— ln 1 ——
4VAO R 4 yAO y Ao+iv R

f„. A quasiclassical method' " giving s„and f„ is
briefly reviewed in the Appendix. In the central part of
the SF plane we obtain

S„,(x)=Sn) (4n ) (3.10)

for all x. This approximation allows us to continue fur-
ther discussion on the analytic level. Its validity is sup-
ported by numerical calculations.

The spherical harmonics Y&
" can be simplified too. In

the central region of the SF plane we have p &&a, so that

, 21+1 (1—lm~ I)!
'

d PI(y}
y w

( 1)I
4~ (1+ Im ~ I )' d

pressed in polar coordinates p and )p) must be integrated
over the SF plane [see, e.g. , Eq. (4.2)]. For the most
relevant values of parameters describing the considered
system (Z »1, n =Z, 1=0 and R »1), the mentioned
integration can be simplified by taking

—Z
~AO

1 a
ln 1—

y Ao+2tv 2R
(3.7)

Let us note that the last expression does not contain any
arbitrary integration constant.

The unknown constant s„o in Eq. (3.6) can be calculat-
ed by using the form of )II'z (r„,t ) in the adiabatic limit
(when v~0 and R =const). In this way we obtain (see
Appendix)

2Z —1 a . 2Z —1
s —+i

2yAO R 4v
(3.8)

where the generalized Laguerre polynomial of the radial
part R„I is given by

L '+' (x)= '
( —x)" ' 'S (x)

n +!!
n —I —I x

( 1 1)) nl (3.9a)

In writing the last expression we used the notations
x =2@Aor A and

In the subsequent discussions the imaginary part of sAo
plays the role of an unimportant phase factor, so that it
can be neglected.

In order to include the mentioned specific features of
the problem considered here (Z=n, n »1, and 1 «n),
the hydrogenlike eigenfunction 4A r must be treated

more carefully. [This function appears in Eq. (3.2a) and,
consequently, in Eqs. (3.3) and (3.5).] Expressing 4&„

in spherical coordinates r A, e„,and yA we obtain

mAe„, =%„,(r„)r, "(e„,q„),

X e " [1+O(le) ]e
™"~, (3.1 1)

(3.12)

where 6 o is the Kronecker symbol.

As a sufficient condition for the validity of (3.12) we
can take

d'P, (y )

i.e., taking that e'/ =pla —1 ln,

(3.13a)

(3.13b)

The last relation can serve as rough but sufBciently good
estimation of the validity domain of the approximation.
For example, if n =Z =7 the applicability of our theory
would be restricted to l =0, 1, and 2.

By using the explicit form of the radial part A„I of the
function 4 A and having in mind the approximate ex-'r Ao

pressions (3.10) and (3.12), as well as Eqs. (3.2a), (3.6), and
(3.8), we get

where PI(y) is Legendre polynomial, y=cose&, and
e= (pIa ) « 1. Generally, in the calculation of the
electron-density flux I through the SF plane, all mA sub-
states of the (n, l) state must be included. But from Eq.
(3.11) we see that the population of low-angular-
momentum Rydberg states with mA =0 is dominant

~mA I/2
(since, in this case e " =1). Therefore, instead of
(3.11) we can use the following approximation:

1/2

( 1)I 21+ 1
1 4m. mA, O &

k'
( —1)" (n +1)!(n 1 —1)! 1—

S„,(x)= y k! (n +1—k)!(n —1 —1 —k}! x
Z/r Ao ' —r Ao"A+A~ =&Ao«e , ,o (3.14a)

(3.9b)

Note that in the case of low-lying states (n =1) and far
from the ionic core we have S„I(x)=1+0(1Ix);for
highly excited states (n »1) this approximation breaks
down.

So, for n »1 another approximation for S„I(x) must
be used. As we shall see, in the calculation of the
electron-density flux I (Sec. IV) the function p4z (ex-

2
1 go Z/y~o —) (2Z —))/4ygo

N„OI = 2y„o "' e
~~Z

1/2
2l+1

(n —1 —1)!(n +1)! S„I(4n) . (3.14b}

Note that @A~ states correspond to discrete points of the
energy spectrum of the energy eigenproblem (3.1). Final-
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ly, the time-dependent wave function tIt"A (r, t ) on the SF
plane is determined by (3.5), (3.3), (3.7), and (3.14).

B. The %Q function

(3.15b)

The energy eigenproblem (3.15a) will be solved by tak-
ing

4/A ( r, R ) =CtyM( r )e (3.16a)

where sM(r, R } is the corresponding space-correction fac-
tor of 4]It. In addition,

EM(R)= —
y /2, (3.16b)

where all terms of the order O(1/R ) are omitted. The
time-dependent wave function %']It(r, t ) is given by

t)t "' t'(y /2)t (3 17a)

where R = vt, whereas fM (r, t ) represents a small space-
time correction factor of 4]ItA satisfying the following in-
itial condition:

fM(r, t)~0, t~0 . (3.17b)

We recall that for t ~0 both a =a (t) and R tend to zero,
but a/R —+1, Eq. (2.15a).

For calculations of sM and fM we can use a method al-
most identical with those presented in the Appendix (see
also Refs. 10 and 11). In the central part of the SF plane
we obtain

Z a Z a
SM =—ln —+—ln 2 ——+sMp,

y R y R
(3.18)

where sMp stands for an unknown integration constant.
The function fM is given by (in the central region of the
S~ plane):

In calculating the time-dependent wave function
'Pg(r, t) we begin again with the energy eigenproblem of
the Hamiltonian H at fixed (and large) R,

[——,'V + UM+( U„+UAM )]~']ItA(r, R )

=EM(R )4]ItA (r,R ), (3.15a)

where 4]ItA belongs to the second class of the molecular-
like eigensolutions. (Functions 4AM constitute the first
class of those eigensolutions. ) The function 4]ItA is the
metallic function Ct]It [Eq. (2.2)], distorted by the poten-
tial UA + UAM,

' the eigenergies EM(R) belong to the con-
tinuous negative energy spectrum. We adopt the follow-
ing normalization condition:

XM)j, l~~l/2('Yyj) ~ (3.20a)

where (=r„+z„,yt=r„—z„, and tp denote the parabol-
ic coordinates in the moving coordinate system S'. By
M, i, (x) we denoted Whittaker functions (Ref. 13, p. 505)
whereas

Z ImM I+1
n +M 1M (3.20b)

The R-dependent factor I(. "(R ) is given by

I( MA(R)=g ~ I+ ye y&-

where, denoting by I'(x) the gamma function,

(3.20c)

( ImM I+n iM )'
I('MoI =—

2( ImM I(}'n )M'

2)tt+ i/2y i/4y 2M —(2Z —i)/2y
Xy ~ 2e '2"

Im I+1r —x +

(3.20d)

In the considered electron pickup process, all mM sub-
states of the solid conduction band are not equally
relevant. Namely, from the orthogonality of 4]ItA and

4&M with respect to the angular variable y we conclude
that the transition probability will vanish for mA/mM
[see Eqs. (4.2) and (2.8a)]. On the other hand, consider-
ing the 4„M state we concluded that the ionic substates
with m A

=0 are dominant [see the discussion in connec-
tion with Eq. (3.11)]. Thus, the states 4]ItA with mM =0
give the main contribution to the electron transitions.

For the Whittaker functions appearing in Eq. (3.20a)
we can use corresponding asymptotic forms. In the cen-
tral part of SF plane (p~0) we have (~0; so, taking
mM =0, we have (Ref. 13, p. 508)

Mn, M+ i/2, o(1'4)=+7'0 ~ (3.21a)

remains to determine the explicit form of the function

4]ItA. The expressions (3.16a}and (3.18) suggest that this
problem could be reduced to the evaluation of 4]It and

$Mp. However, we realized that it is more convenient to
calculate the C)]ItA function directly from Eq. (3.15a);
moreover, an approximate solution of that kind is still
known (see Ref. 10 and relevant references therein). In
the cited papers, the 4]ItA function has been obtained by
JWKB method as an analytic continuation of the metallic
function 4]It [Eq. (2.2), for z (0 when UM = —Uo]
through the narrow cylindrical region around z axis into
ionic region.

In the small central part of the S~ plane one obtains

exp( 1m M p )

+(I I+))/2, 1
I/2(rk)

1 1 a
fM =Z —— ln

y y+iv R

1+Z
y

a
ln 2——

R
(3.19)

Therefore, in order to obtain %]It(r, t), Eq. (3.17a), it

1 MMi. ,o(rn)=, (ryt)r( —x +,') (3.21b)

On the other hand, the variable yg-2ya of the second
Whittaker function in Eq. (3.20a) is sufficiently large [for
large R and, consequently, large a, see Eq. (2.15a)]. Thus,
taking again mM =0 we have (Ref. 13)
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where the exponentially small terms are neglected.
Inserting Eqs. (3.21a) and (3.21b) into Eq. (3.20a) we

obtain

Z/y —n iM
—1/2+ 1/4y —Z/y+ n )M

A M a ' e y', (3.22a) where

A M ~(R) —y(R —n) e yAG

(4.4a)

where

1/2y+1/221/2y z/y —1/2(2e)1/4y1
Mo ~2y {3.22b) and

~(R) ~ R
Z/y„—3/2+1/4y

0 (4.4b)

Concluding, the time-dependent wave function %g(y, t)
on the S~ plane is determined by Eqs. (3.17a), (3.19), and
(3.22).

~AD ~ 1M
a

&o =&~P'Mo
L

(4.4c)

IV. CALCULATION
OF THE TRANSITION PROBABILITY Tnl

The functions %z and %3It are, essentially, functionals
of the Firsov plane position a(t). Therefore, our first
task is to find the function a =a ( t ) by means of Eq.
(2.14). After this we can pass to the explicit evaluation of
the transition probability T„&.

da i ere'"' da
N(R) y+y„o+iu 1 —2

rAO

Inserting (4.4) into (4.2) and performing an integration we
get the following explicit expression for the electron-
density flux functional:

A. Kinematics of the Firsov plane SF

—y(R —a) —y ~oaX (1+y boa )e (4.5)

I=I a, , t
da

given by Eq. (2.8b). An asymptotic approach is possible
in the calculations of the terms V'@3It /%g and
V%"„"/'P"„"appearing in Eq. (2.8b): for large R we can
assume that the SF plane is suSciently far from both
solid surface and the ionic core. In that case, in the vi-

cinity of SF plane we have

pig e
—yz 1I1nl y ao"a +'nz

» (4.1)

which simpli6es the calculation of the cited terms. On
the other hand, describing the position of a point on the
SF plane by polar coordinates p and q we have
dS =p d p d 1p and r z =Vp +a . Therefore, having in
mind Eqs. (3.5) and (3.17a), we get

In order to apply the Euler-Lagrange equation (2.14) it
is necessary to have, Grst of all, an explicit form of the
electron-density flux functional

a(R)=g(R)R . (4.6)

As we shall see in Sec. IV B, the electron-capture process
dominantly takes place in a region of ionic trajectory
where the ion-surface distance R is close to the critical
distance R„Eq. (4.23b). In the interaction region we can
assume that the kinematic factor g(R), defined by Eq.
(4.6), represents a weakly R-dependent function.

Having in mind the mentioned approximations, we ob-
tain the following expression for electron-density flux
convolution:

I'4I=C (y+y„o) +v 1 —2
da

2

Ig{g)I,(a)

Xa R2a+2 2(a —a)+1 ~ ~ Ao —yRe e (4.7)

where

where R =Ut.
Now, for an approximate but analytic calculation of

the convolution I"eI, appearing in (2.14), we take

da l daI a» t ——e r+r ~0+lU 1 —2'dR' 2

X f f @~MC'4~e pdpdl'

where

(4.2)

and

Z 3 1+
r~o 2 4r '

2

~&~o~'~&Mo~'fi „,o~ „,
AO

(4.8a)

(4.8b)

(4.3)
Z Z

+n1M
r~o

(4.8c)

The integrand appearing in (4.2) can be simplified since
only the central part of SF plane contributes (in the case
of the population of low-angular-momentum Rydberg
states). Thus, using (3.14a) and (3.22a) we obtain I (g) =exp I 2 Re[f„*(g)+fM(g)] I, (4.9a)

are R-independent quantities. The functions Ig(g) and

I,(a) are determined by
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B(a+2,a+2}I(a+ —,')I,(a}= 2 a+ 3/2

(a+ —') +
2

G(R) + 2(a —a)+I
R

a 1 Ig

R2 I dg

X 1+0—1
a

(4.9b)
2~+2 1 dIa

X y Tao+ +

where B(a+2,a+2) stands for the beta function.
Using Eq. (4.7) we obtain the following expression for

the first term on the left-hand side of Euler-Lagrange
equation (2.14):

a(r'*I)
Ba R Is dg I, da

dIg+-
R I dg

(4.15)

=0 =0
R Ig dg R ' I, da R

(4.16)

The last expression for G(R} can be simplified, since the
interaction region is sufficiently far from the solid surface
(large R -R, ). In that case we have

a
(4.10) so that, for yAy Ao,

On the other hand, by using cited approximations (valid
for the interaction region} we get

d B(I' eI ) B(I' e I ) B(I' eI )

dR B(da /dR ) t}R t}a

G(R)= — =G .y
VAO

(4.17)

If y =y„o we obtain that G(R)-a -R.
Therefore, by using Eqs. (4.14) and (4.17}we obtain (for

yAy „o)the following quadratic equation for p =da /dR:
2

(4.11) u'+2GS— +G+ —=0,
2v 4

(4.18)

where p =da /dR and
which leads to the difFerential equation

4u (1—2p)
u(p) =-

(y+y„o)2+u (1—2p)
(4.12) da = —G 1 — 1+ 1

R G

2
3'+X ao 1

2v 4

'1/2 '

The derivative B(I er)/BR, appearing in (4.11), is given
by

J

(4.19a)

a(r *r)
BR

a 1 drs 2(a —a)+1+
R2 I dg R

If y =y zo we have

da 1

dR 2
(4.19b)

X(I'er) . (4.13)

1 pu (p) —
)

u (p)

where

(4.14)

Inserting the expressions (4.10) and (4.11) into the
Euler-Lagrange equation (2.14) we obtain

Note that the last expression can be formally obtained
from (4.19a}by taking G ~ 00. Thus, for our determina-
tion of Firsov plane kinematics Eq. (4.19a) can be used
for both y+y Ao and y y Ao'

Extrapolating the validity domain of Eq. (4.19a) into
the near surface region (0 R (R, ) and using the initial
condition a ~O, R ~0 we get a =gR, where

a(R) y
VAO

yAO

r'

'2
X+r~o

2v
+

r —r~o 4

' 1/2

(4.20)

is an R-independent quantity. In the subsequent calcula-
tions of the transition probability T„& (Sec. IV B) we can
assume that a =gR is valid even for R ))R, [since the
integrand in (4.2} is an exponentially decreasing function
of R].

Finally, let us note that the approximations used in the
determination of Firsov plane kinematics do not affect
the transition amplitude significantly. This is a direct
consequence of the application of the variational require-
ment (2.10) in determination of a =a(R}.- Small varia-

I

tions of a =a(R) around a "true" stationary solution
a =a(R) of the variational equation (2.14} induce only
small variations of the electron flux convolution I*e I.

B. Transition probability T„I

We begin with the calculation of the time-dependent
transition probability Trt(t) defined by Eq. (2.9). Insert-
ing Eq. (4.5), where a/R =g, into Eq. (2.9) we obtain
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X6 o6 (4.21)

TJ(t)=lNol [(y+y„) +v (1 —2g) ]lJ(t)l
'V Ao

where

[y„og(a+1)v+0] +co
A(y, u)=

(II2+ 2)a+2 (4.26a)

The time-dependent quantity J ( t) is given by

J(t)= J (1+yzugR)R e 'e' 'dt, (4.22a)

and

1 'V cog

I (a+1) y„og(1+a)+P
where R =ut. The a parameter is defined by Eq. (4.8b),
whereas

f1=
I y(1 g—)+y ~e lv (4.22b)

Note that the parameter to appearing in (4.22a) is now a
time-independent quantity.

Some evidence about the behavior of the integrand in

Eq. (4.22a) follows from the analysis of its nonoscillatory
part

(4.26b)

In the case of large R, the factor %(R)exp( —PR) ap-
pearing in Eq. (4.25) can be neglected. In this way we ob-
tain the following final expression for the transition prob-
ability Trt = Ti'( ):

2T~, =lN
l [(y+y„) +u (1—2g) ]

~so

j (R ) = ( 1+y „OgR }R exp ——R0
U

The function j (R) has maximum at ion-surface distance
R

Xu I' (a+1)A(y, u) .

For lNol we have

INDI'=g "' IN~01'INMol'~(g),

(4.27)

(4.28a)

R a 1+0 1

y @+y(1—g) CX

(4.23a)

where (in the case of Rydberg states) a=n »1. The os-
cillatory part exp[(irv/u)R ] of the integrand in Eq.
(4.22a) mainly cancels the contribution to the considered
integral from the region around R . Thus, the physically
most relevant R region of the integration in Eq. (4.22a) is
shifted toward larger ion-surface distances, i.e., in the
asymptotic region R & R, where

R, =2R (4.23b)

The relation (4.23b) supports the heuristic, quasiclassi-
cal arguments mentioned in the Introduction. Indeed,
for a rough estimation of R, by means of Eq. (4.23b} we

take y =y„o and g = —,', which g' es R, =2n /Z. On the
other hand, the length a„of the ma~mr axis of the classi-
cal elliptic trajectory (in the direction of ionic motion) is
approximately 2n /Z Thus, w. e have R, =a„, which in-

dicates that the formation of Rydberg states with high ec-
centricity starts at those ion-surface distances R where
the stable "classical" elliptic orbit of captured electron is
possible.

The integral (4.22a) can be expressed (Ref. 13, p. 260)
by the incomplete gamma function y(v, z ):

J(t)=— y(a+2;PR )+,y(a+1;PR )
1 1

13
" 13+'

(4.24)

IJ(t)l'=u"r'(a+1)A(y u)l 1 —&(R)e t"I', (4.25)

where R =ut and P=(Q ice)/u Asymp—totic be. havior
(t ~ oo, or R ~ ao ) of J(t) depends of Re(PR ) &&1; using
the asymptotic forms of y(a+2, PR) and y(a+1;PR) we
obtain

where lN„ul and lNMol are defined by Eqs. (3.14b) and
(3.22b), respectively, whereas

2Z/y&& —2Z/y —2 U /2y&0(y&0+v )

—( Zv /y ~0 (y ~0+4 )

x 1 ——
2

r r ~ i &2Zv /y(y + v2)
—(2Z —1)g/2y ~0

(4.28b)

The kinematic parameter g of the S+ plane is determined
by Eq. (4.20).

From the obtained expression for T„yi we can conclude
that the whole n &M dependence of TyI is contained in the

2' iMfactor g
' . Since the parameter g is approximately

equal to —,
' (or somewhat greater than —,

'
) we see that T„~ is

a sufficiently strong decreasing function of nil. (Numer-
ical tests show that Tyi is nearly exponential function of

~iM
n iM. T~ —e ™.) This means that the conduction-band
electrons with n, M=0 give a main contribution to the
electron pickup process.

Further, from the expression (4.27) we can conclude
that the considered process has nonresonant character (at
intermediate velocities). This conclusion stems from the
dynamic quantum model and it was not found in the qua-
sistatic considerations. The appearance of the non-
resonant electron transitions in the intermediate velocity
region is transparent from the expression (4.27). Indeed,
at very small velocities the function A (y, u ) is similar to
Dirac's 5 function (what indicates a resonant character of
electron transitions in the quasistatic case). As u in-
creases, the width of the A(y, v) shape becomes larger
and larger, so that at intermediate velocities the whole
conduction band participates in the process.

Finishing with T„I we use Eq. (2.16) for the calculation
of the probability T„t=T„I(~}of transition from all
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1 Uo oo

T„,=I '
y T„,gy,

n =0
1M

(4.29)

states of the solid conduction band. For the population
number n ~ we shall take n ~ =1,which corresponds to the
absolutely cold metal approximation. Recalling that the
conduction-band state with mM =0 give main contribu-
tion, we have

V. CALCULATION
OF THE POPULATION PROBABILITY P,)

The expression (2.17) for P„i can be obtained in the
framework of a multichannel quantum-mechanical for-
malism. At the same time, this formalism will justify the
use of Eq. (2.19).

A. Multichannel treatment
of the Rydberg state population process

where y& and yU are deterinined by —,'yt, =P and

—,'y~U = Uo. The integration and summation in Eq. (4.29)
0

requires numerical treatment; since T~& is a strongly de-
creasing function of n &M, only a few terms in the sum are
sufficient (we take nil=0, 1, 2, 3, and 4). The non-
resonant character of the process is again evident from
Fig. 2, where the y dependence of the integral QTrt is il-
lustrated for v =2 a.u.

The work function P for pure elemental graphite is, ac-
cording to Ref. 14, about 5 eV. But, in the real experi-
mental conditions (Refs. 1-8) foils contain impurities,
which will result in the lowering of the work function P.
In the first numerical calculations ' based on the quasi-
static model the value /=4 eV was adopted for compar-
ison with experiments. The authors of those calculations
also found some correlation with experiments for lower
values of n, even if / =3 eV. However, strong instability
of P„& values with respect to P have been found for higher
Pl.

In the dynamic model presented in this paper the pop-
ulation probability P„i does not depend strongly on P;
moreover, P„& can be assumed to be a weak function of P.
We found that /=3 eV fits best. In addition, in the dy-
namic model P„l is remarkably stable with respect to U0;
we take U0 = 10 eV as a "best" choice.

g„,(t)= Iirst(t)e "' + g a„,.(t)y"„(t)
l'Al

n' —1

+ X X a'i(t)t~'(t»
n'Anl'=0

(5.1)

Our approach to the multichannel population of Ryd-
berg states will be somewhat similar to the statistical
treatment of the radiative decay in the ensemble of excit-
ed atoms, being initially in a mixed state (see, e.g., Ref.
15}. Our first task, therefore, will be to construct an ap-
propriate time-dependent statistical operator p(t) describ-
ing the statistical mixture of relevant solid and ionic one-
electron states. After that, the population probability P„l
can be related in the standard way with quantum transi-
tions from the mixed state p(t) to the moving ionic state
q"„'(t}at t~~

In order to define the operator p(t), we need, first of all,
an appropriate set of one-electron wave functions that
takes into account the presence of all open transition
channels. Let us note that the set of metalliclike func-
tions %g(t), Eq. (2.6a}, does not satisfy this requirement:
these functions represent states evolved from y eigen-
states 4g, exclusively in the presence of only one ionic
state (n, l }. Contributions of all other open channels lead-
ing to the "background" ionic states (n, l'AI ) and
(n'Kn, 1'}of the state (n, l}, can be taken into account by
using the following wave function:

~~

lO

O
L
CL

O

Ml
C
l5
L

10-'—
n-g
A=S

0=7

10

10

10

- n=5

Z=7
l =1

K= 2 a.u.

( I ~ I I ( I I ~ I i
I I I 1 i I I I I

0.5 0.6 0.7 0.8 0.9

energy parameter l'[s U]

where a~&, (t) and a„~.&. (t) are tiine-dependent expansion
coefficients. The quantity TJ(t) is the transition proba-
bility per unit y from the state %g to the moving ionic
state p"„', Eq. (2.9).

Generally, in the case of the selective population of
Rydberg states, all probabilities are very small so that the
condition Tri(t) «1 will be used. Thus, the first term in
Eq. (5.1) describes the slow decay of the state VIit(t) into
ionic state y„, in the absence of the background ionic
states. All other terms in Eq. (5.1) take into account the
inhuence of the background channels during the rnen-
tioned slow decay of the state %Q(t). For the state %Q(t)
we adopted the normalization

[see Eq. (3.15b)].
The corresponding statistical operator p(t) has the

form

FIG. 2. y dependence of the transition probability g„T~q,
1M

indicating the nonresonant character of the electron pickup in
the intermediate velocity region.

p(t)= J n ~f„,(t))(P„,(t)l&y, (5.2)

where n ~ are the population numbers of the solid
conduction-band states. To simplify notation, in Eq. (5.2)
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we omitted summations g„and g with respect to
1M M

the conduction-band quantum numbers n &~ and m~. In
the adopted notation, the population number n ~ satisfies
the condition f n rdy =I, where I =y U

—
y&. This con-

dition agrees with the absolute cold metal approximation;
see comment followed by Eq. (4.29).

For the actual population probability P„I( t) of the ionic
state (n, l) we have

Tr[p(t)Iq & (t) ) (p&(t) I ]
P„t(t)=

'Trp(t)
(5.3)

where N stands for the total number of the solid conduc-
tion electrons. Of course, the appearance of the denomi-
nator N 'Trp(t) in Eq. (5.3) results from the adopted
normalization conditions of the state %Q and the popula-
tion number nr. The expressions (5.3), (5.2), and (5.1)
complete the general basis of our multichannel treatment
of the Rydberg states population process.

By using the standard eigendifferential technique of
trace calculations (see, for example, Ref. 16) and having
in mind the mentioned approximation of small transition
probabilities we obtain

n' —1

P„,(t)=P„,(t) 1 —g g P„".', (t)+O((T„,) )
n'Xn l'=0

(5.4)

where P„t(t) represents the population probability of the
ionic-(n, l) state in the presence of the background states
(n, l'Al). The contributions of remaining background
channels are described by the population probability
P„"I.(t) of the state (n'Wn, l') in the presence of open
channels y ~(n, l), where y& & y & y tr .

0

The probability P„i(t) can be obtained from Eqs. (5.3)
and (5.2) providing that we take ar& (t)=0 for n'An in

the expression (5.1). We get

P„t(t)= T„t(t) 1 —g T„"I'(t)+O((T„i) )
I'4 I

where

T,, (t)= f „rprtt(t)Tr, (, t)d), ,

and

(5.5}

(5.6a)

nl

prt". '(t)= [2Re[ar, .(t)(+g(t)~q"„'(t))
nl'

Xe "' ]+~art (t)~ (5.6b)

Pr, (t) = Tr, . (t)[1+0( T„(}]. (5.8a)

For the transition probability T„I the expression (2.9)
holds, where we set l' instead of l.

The population probability P„"t (t), appearing in the
sum of Eq. (5.4), is given by

P„"', (t) = f 'p„'",'(t)P„', (t)dy, (5.7)

where pr &
(t) is defined by (5.6b) providing that the set of

indices (n, l') is replaced by (n', 1'). For the probability
Pri, appearing , ,in the integrand of Eq. (5.7), we have

The population probability P„& (t) of the (n', 1'}-
background state in the presence of remaining (n', I"Wl')
states of the ionic level n'An is determined by

p„&(t)=f nrpri. (t)dy . (5.8b)

Inserting (5.8a) into (5.8b) we arrive directly to expres-
sions almost identical with Eqs. (5.5), (5.6a), and (5.6b):
instead of n, I, and l' we must take n', l', and l", respec-
tively. In other words, these relations can be used not
only for calculation of Pni but also for determination of
P„ I where n'Wn [see Eq. (5.12)].

From Eqs. (5.5) and (5.6a) as well as (5.7) and (5.8a) we
conclude that the actual population probability P„t(t) of
the ionic state (n, I), Eq. (5.4), is expressed completely in
terms of the one-channel transition probabilities Trt(t)
and Tr t ( t) The .interference of channels is described ex-
clusively by the time-dependent factors pri'(t). In other
words, the presented formalism and the proposed approx-
imation of small transition probabilities enabled us to "lo-
calize" the complexity of the multichannel electron tran-
sitions in these factors.

B. Population probability P„I

The obtained quantum-mechanical expression (5.4) for
P„I can be simplified when the transition probabilities are
sufBciently small quantities. In that case, the higher-
order terms in Eq. (5.4) can be omitted and we arrive just
to the "classical" law of the probability composition, Eq.
(2.17). Let us note, however, that even in the proposed
approximation the expression for Pni contains the un-

known functions p„r.i'( t ) of an exclusively quantum-
mechanical nature.

It is quite transparent that the determination of these
functions is connected with the very complex time-
evolution problem of the grt(t) state; see Eqs. (5.6b) and
(5.1). In addition, it is reasonable to expect that "true"
values of pr"I'(t) will be very complicated functions of the
ionic quantum numbers and parameter y. Therefore, it is
practically impossible to continue our discussion without
introducing some additional plausible arguments.

One possible way to overcome this problem is based on
the supposition that the probability P„& does not depend
significantly on details on the background channels ac-
tivity. In that case, we found that the factors pr"t'(t) for
fixed n and l can be considered (at t~ oo ) as stochastic
functions of y and l' so that some appropriate averaged
values of these functions with respect to y and l' can be
used. In addition, for the population of Rydberg states
we supposed that these averaged values, denoted by p„"',
are sufticiently small quantities.

Looking for an appropriate expression for p„n' we real-
ized that the following simple formula can be used:
p„"'= 1/n '. Obviously, the use of p„"'= 1/n ' in the ex-

pression (5.4) for the transition probability P„t leads to
the corresponding relation which describes the popula-
tion process in terms of decoupled channels. In that case,
the values p„n' appear as statistical weights of those chan-
nels. As we shall see, the estimation p„".=1/n' leads to
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an approximate but sufficiently good final expression for
P„l, which reproduces all available experimental facts.
Some additional (theoretical) consequences supporting
the plausibility of the proposed estimation will be men-
tioned at the end of this section; see the discussion fol-
lowed by Eq. (5.14).

The proposed values of p„"' lead us to the "classical"
connection between P„l and T„l described by the solution
(2.19) of the rate equation (2.18). Namely, the expression
(5.5}for P«at t~~ can be rewritten as

Pnt=Tn, [1—(Tni )I ] ~ (5.9)

where higher-order terms with respect to T„l are omitted,
and where

(5.10)

This arithmetic mean of T„l., taken over all background
states (n, I'Al ) of the level n can be calculated numerical-
ly by using Eq. (4.29) for T„I . We found that in the case
of small angular momentum l and for n =Z the following
approximation holds: ( Tnt ) ( =

p Tn( Thus

P 7 ]+2+.. . ~1 e "1
nl nl 2 nl (5.11)

P„,=P„, '1 —y (P„., ),
n'An

(5.12)

where (P„& ) I denotes the arithmetic mean of P„.&. with
respect to I', see Eq. (5.8b}. It is not necessary to take
into account contributions of all terms in the sum
g„.&„(P„.&. )I . only the background levels n', positioned
in the neighborhood of the level n, participate
significantly. %e found by direct numerical calculation
that (P„.I )I.=Pn I „when n'=n =Z. Therefore, con-
sidering P„ l &

as sufficiently small quantity, we get

P„,=P„, g (1 P„,)— (5.13)

or

P«=(1 —e "')exp —g T„.I
n'Wn

(5.14)

where T„I and T„.I, are given by Eq. (4.29). The last
relation is our final expression for P„l, which will be com-
pared with experimental data.

The obtained relation (5.14) can be considered as
a generalization of the adiabatic formula P„l= 1—exp( —const/u), used in the quasistatic model. A
comparison of these two formulas can elucidate the back-
ground of limitations of the quasistatic model in the Ryd-
berg state population problem. Namely, the two-state
character of the quasistatic approach reduces formally to
the condition T„ l.

&
=0. Besides, the adiabatic charac-

ter of the mentioned model means essentially that the

which is just the mentioned solution (2.19) of the rate
equation (2.18) for t ~ oo.

Inserting the averaged value p„"' into Eq. (5.7) and om-
itting the higher-order terms in Eq. (5.4) we obtain, at
g~ DO,

n,„=—P(u),=Z
v

(5.15)

where 9'(u) is a relatively complicate function of u satisfy-
ing (at intermediate velocities} simple condition
V(u)/v = 1. Thus, Eq. (5.15) correlates generally with the
experimentally observed trends (n,„=Z), mentioned in
the Introduction. Some specific and intriguing experi-
mental facts about position of the population maxima
will be discussed in Sec. V C.

It is worth noting that the first factor Zlu in the Eq.
(5.15) represents just the value of n', „=Z/v, calculated
by using the simple classical electron pickup model'
(developed before and outside of discussion of the selec-
tive Rydberg levels population). Obviously, this cir-
cumstance indicates that the formed Rydberg ions pos-
sess some properties of classical objects. Nevertheless,
from the expression (5.15) we recognize that only an in-
terplay of classical (n ',„= Z /v ) and quantum properties
[P(v)%1] leads to the more consistent understanding of
the selective population of Rydberg states at intermediate
velocities.

C. Comparison with experiments

Our final formula for P„I=P„&(u,Z} [Eq. (5.14)] will be
compared with experimental data, ' mentioned in the
Introduction. Since our dynamic model holds for point-
like ionic cores (see the beginning of Sec. II), it is applica-
ble only to the beam-foil experiments in which hydrogen-
like ions (S VI, Cl VII, and Ar VIII}are used.

The population probability P«=P«(u, Z) is a compli-
cated function, not only of the quantum numbers n and I,
but also of ionic velocity v and the charge Z. For the
sake of clarity, among many graphical presentation of
P«(u, Z) we shall prefer mainly those which could be
compared with available experimental findings. The ex-
perimental studies' report only relative population
probabilities of Rydberg states, so that some appropriate
normalization of the experimental curves to the theoreti-
cal predictions will be necessary. %e note that the
overall uncertainty in the experimentally measured rela-
tive level population probabilities is around 20% (see,
e.g., Ref. 8).

The n dependence of P„I for ions of sulfur (S VI) and
chlorine (Cl VII) is illustrated in Fig. 3(a). We take the
case I = 1; the values of intermediate ionic velocities v are
indicated in the presented figure. The points predicted by
our formula (5.14) are connected by solid lines, whereas
symbols represent experimental data. Experimental
curves are normalized to the theoretical ones at the popu-
lation maxima. Curves for I =0 and 2 of S VI and Cl VII
ions (with maxima at n =Z) are similar.

more complex, nonmonotonic v dependence of
T«=Tn&(u} is simplified by taking T„i=const/v. It can
be verified by direct calculations that the function T«(v)
reduces for small v to the corresponding quasistatic ex-
pression.

From Eq. (5.14) we can conclude that P«as a function
of n has only one maximum. By direct (but relatively
long) calculations we found that the position of selective
population maximum n =n,„ is determined by
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The n dependence of P„I for the argon ion Ar VIII re-
quires more careful analysis. For / =0 the shape of the
theoretically predicted population curve is similar to
those presented in Fig. 3(a): the maximum of the popula-
tion is at n =9=Z, which correlates with experimental
data (Ref. 2, Fig. 1). An intriguing situation arises for
1=1; see Fig. 3(b). In this case, our theoretical curve has
expected an "ordinary" shape (with a maximum at n = 8 )

whereas the experimental curve exhibits a dominant
maximum at n =11. This argon "anomaly" is also found
for l =2, see Ref. 2, with an almost identical maximum at
n =11.

The character of the anomalous behavior of Ar VIII
will be more transparent if we realize that the experimen-
tally observed shape of the Ar VIII curve can be viewed
as a superposition of an "ordinary" curve [dotted curve,
Fig. 3(b)] and a dominant peak placed at n =11 [dot-
dashed curve, Fig. 3(b)]. Obviously, our theoretically

predicted curve [solid line, Fig. 3(b)] is in reasonable
agreement with the "modified" experimental (dotted)
curve, whose maximum is positioned at n =9, i.e., at
n =Z=8. Therefore, the anomaly appears when Z, n,
and l, as well as P„I, simultaneously exceed some "criti-
cal" values.

From the point of view of the Rydberg state popula-
tion model presented here, the argon anomaly is not a
quite unexpected problem. There are at least two possi-
ble reasons why the resonancelike peak at n =11 is not
contained in our formula for P„I. First, in developing the
multichannel formalism (Secs. V A and V B) we restricted
ourselves to the case of suSciently small values of P„I.
Second, our wave functions have been calculated for rela-
tively deep underbarrier electron transitions. It is quite
possible that only one (or even both) of these assumptions
break down in the case of Ar VIII, causing the anomaly.
In our concluding remarks (Sec. VI) we shall comment
briefly on some possible ways of resolving the problem.

In our Fig. 4 the l dependence of P„I, given by Eq.
(5.14), is compared with experiments (for S VI, Cl VII,
and Ar VIII). Corresponding values of n and u are indi-
cated in the figure. %e conclude that the agreement of
theoretical predictions (solid lines) and experimental re-
sults (symbols) is good (in the range of validity of our
low-angular-momentum theory, for 1=0, 1, and 2). In
the case of low I, almost identical theoretical curves are
obtained for other values of n, as well as for other
relevant values of U in the intermediate velocity region.
Let us note that, for large l, our theoretical curves de-
crease with increasing I, so that a detailed comparison
with more complicated shapes of experimental curves (see
our final comment in Sec. VI) is not suSciently informa-
tive.

The velocity dependence of P„& =P„&(U,Z) for Cl VII
and I =1 and 2 is presented in Figs. 5(a) and 5(b), respec-
tively. (The theoretical curves for S VI and Ar VIII are
similar to the presented ones. ) The only available experi-
mental data for I =1 and 2 (indicated by symbols in our
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FIG. 3. The n dependence of the population probability P„&

for hydrogenlike ions: (a) S VI and Cl VII, (b) Ar VIII. In or-
der to point out the argon "anomaly" the experimentally ob-
served probability distribution (dashed) is decomposed into dot-
ted and the resonancelike curves.
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FIG. 4. The I dependence of the population probability P„I
for S VI, Cl VII, and Ar VIII in the low-angular-momentum re-

gion.
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figures) agree satisfactorily with theoretical predictions
(solid lines). From the presented figures we see that for
n =Z the v dependence of P„I(v,Z) has its maximum in
just the intermediate velocity region. Such a prediction
cannot be deduced from the quasistatic model, where
P„I(v,Z) represents a monotonically decreasing function
of v for all Rydberg states and ionic velocities.

Obviously, the presented predictions of the population
probability P„~=P„I(v,Z) as a function of n, l, and v (for
different ionic charges Z) call for further more systemati-
cal and refined experimental studies. Especially, new ex-
perimental facts about the u dependence of the popula-
tion probability I'„& could be very useful for deeper un-
derstanding of the quantum dynamics of the considered
process in the intermediate velocity region.
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FIG. 5. The v dependence of the population probability P„I
for the states: (a) 1=1 of Cl VII, (b) 1=2 of Cl VII. Note a
nonmonotonic character of all curves, with remarkable maxima
just in the intermediate velocity region.

VI. CONCLUDING REMARKS

The analysis performed in this paper leads us to the
conclusion that the mechanism of the electron pickup
from the foil valence band can be used as a starting point
for sufficiently good understanding of experimental data.
However, the simple quasiclassical picture' of this pro-
cess, as well as the quasistatic quantum arguments are
not sufficiently informative. Our calculations indicate
that only some more elaborate quantum-mechanical
treatment of the electron pickup mechanism can eluci-
date the problem. It was necessary to take into account,
as we have seen, both the dynamic character of the pro-
cess and the main features of the ionic Rydberg states be-
ing formed.

Few additional concluding remarks may be relevant for
further theoretical work on the proposed electron pickup
model in the case of selective Rydberg level population.

First, in the presented model the ionic core has been
considered as a pointlike charged particle. As we pointed
out, such a structureless particle can be used to describe
hydrogenlike ions (e.g., S VI, Cl VII, and Ar VIII} but
not the heliumlike species (e.g., Kr VIII and Xe VIII, in-
vestigated experimentally in Ref. 3). In the last case, it is
reasonable to expect that the screening effect of ionic core
electrons can be relevant. In other words, the concepts of
the effective projectile charge Z,fr and quantum defect 5„,
would play some role, especially for low-angular-
momentum cases (when Rydberg orbits with high eccen-
tricities partly cross the ionic core; e.g. ,Ref. 18, Chap. 4.)

Second, the wave functions %z and %g (Secs. IIIA
and III B}used in this paper are basically worked out to
describe relatively deep under-barrier electron tunneling.
However, it is evident [see, e.g., Fig. 1(b)] that the tunnel-
ing near the top of the potential barrier contributes too,
especially for sufficiently high n. Let us note that the im-
portance of these electron transitions has been stressed in
the context of the Stark ionization (e.g. , Ref. 18, Chap. 2).
We expect that analogous calculations can also be incor-
porated into our molecular model.

Third, in this paper the problem of argon anomaly was
not discussed in more detail: we mentioned only (Sec.
V C) that it can be addressed to the approximations used
in developing the multichannel formalism, as well as in
evaluation of wave functions. Our preliminary investiga-
tions indicate that contribution of the electron transitions
near the top of the potential barrier can be relevant.
Namely, by using the etalon-equation method (see, e.g.,
Ref. 18, Chap. 2) for solving quasiradial equation (in the
approximation of close turning points) we found a rela-
tively good correlation with an experimentally observed
trend of the Ar VIII curve for n =11, 12, and 13. At
present, further elaboration of the presented multichan-
nel formalism seexns to be fairly difficult. Even in the ap-
proximation of small transition probabilities it is not
quite simple to obtain a more precise formula for I'„l.
We expect that the simple statistical arguments of Sec.
V B could be generalized by means of standard models of
random processes. ' '

Finally, the available experimental studies' report
that in the region of high l a decrease combined with a
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"saturation" or even with an increase of I'„& with increas-
ing l exists. In addition, it was observed that the max-
imum of P„I=P„t(u) shifts towards higher ionic velocities
when the quantum number n increases. It was suggest-
ed ' that some additional mechanism (different from the
discussed direct pickup from the valence band) could be
relevant for the high-l case. In the cited paper, ' qualita-
tive description of two such mechanisms, based on the
Fano transitions and a capture of secondary electrons, is
given.

From the standpoint of the presented molecular model,
we do not expect that the additional mechanisms corn-
pete in a high degree to the one-electron pickup process.
Namely, the mentioned features of the population of
high-l Rydberg states could be directly related with the
importance of the region, complementary to the narrow
cylinder around the z axis (relevant for l=0, 1,2). At
present, we do not have insight in the distribution of the
electron-density Aux through the SF plane in this region.
We expect that the "bifurcation" methodology,

'

developed for Z =1, could be generalized to the case of
multiply charged projectiles and that corresponding
theory will give correct l behavior.

2Z —1 1
A 4 A+ ( UM+ UAM )dr A +sAo .

4&A r Ao

S„(r,t )=s„f„.—
Inserting the Eq. (A4) into the Schrodinger equation

(A5)

gy~nl
=H%'"'

neglecting the small terms V S„and (VS„),and using
relation (A2), we obtain

(A3)

The explicit form of the obtained solution in the central
part of the SF plane (r A =a ) is given by (3.6).

In order to calculate the space-time distortion factorf„we write the O'A"'(r A, t ) function, Eq. (3.3), in the fol-
lowing form:

s~ Qf t ) +{l' I2 )r ~ of
A A, r~oe

where

APPENDIX: CALCULATIONS
OF THE DISTORTION FACTORS s „AND f„

BSA BSA—)' „o
&

= —
( UM+ UAM )

Bt A

(A6)

Inseting Eqs. (3.2a) and (3.2b) into Eq. (3.1) and omit-
ting small terms V s„and (V's„) we obtain

This partial differential equation can be solved by using
complex variables' '"

r

V4 "r~o 2Z —1
VSA = (UM+ UAM)+

4R
(Al)

1 1

TAO

1 1+ lt, 7j'A
r„—it

V4'~, r „,
~ r~o

7 aper& (A2)

where e„ is the unit vector of the vector r ~.
From (Al) and (A2) we get a simple differential equa-

tion for s~ whose general solution is

For large R, the SF plane will be far from the ionic core,
r go"wso that the asymptotic form 4~ -e "' " for 4~

on that plane can be used. Thus

In the central part of the SF plane we obtain

1 aSq= ln 1 ——
4(y „,+ tu) R

Z a
ln 1 — +Szp,f go+ 2lv 2R

where S„ois a free constant of integration.
Now, using (A8), (A5), and (A3) we get

(A7)

(A8)

f„=s„—S„=—2Z —1a 1 1

4r,. R+4 y,. 1 a
ln 1 ———Z

T 30+iV R FAO

1 a
ln 1 — +(s„o—S„o) .

y ~o+2iv 2R

s~o —S~o=o (A10)

Recalling the boundary condition (3.4) for f„at t ~~
and having in mind Eq. (2.15c) we obtain

limit ( u =0,R =const). In this case, the function
'O'A"'(rA, t) can be roughly taken to be stationary state of
the following from:

i.e., the unknown constants cancel. Thus, the final ex-
pression for f„ is given by Eq. (3.7).

The remaining unknown constant s„o, Eq. (3.6), can be

calculated by using the form of qI'A" (r„,t ) in the adiabatic

tnl
—is~ {R)&

+'A" (r A, t ) @A (rA, R )e

where @„ is defined by

(Al 1)
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( ——,'V2+ U„)4„(r„,R )=E„(R)@„r(r„,R),

(A12)

On the SF plane and for large R we have

2Z 1 A(r„,R )=4„r (r„,R )exp'~ AO 4yqo R
(A13)

where 4„r is defined by Eq. (2.4).

Therefore, in order to find the unknown constant s„o
we ought to calculate 4'„"' [defined by (3.3), (3.2a), and
(3.6)] for v =0 and R =const, and compare the obtained
solution with the adiabatic form given by Eq. (Al 1). This
procedure gives

whereas E„(R) is given by Eq. (3.2b). In other words,
the hydrogenlike function 4z corresponds to the

atomic energy level —y„o/2 shifted upwards by the im-

age force interaction

2Z —1
Ua+ UAM=

2Z —1a 2Z —1a
SAO +

2y~o R 4y~o R

+ ln 1—Z a

Xao 2R
.2Z —1+l

4v

(A14)

The second term [ ] in the real part of Eq. (A14) can be
neglected in comparison with the first one (this may be
verified by direct numerical calculation taking, for exam-
ple, the characteristic values of relevant parameters Z,
y „o=ZIn = 1, and a /R =—,

' ). In this way, we obtain the
expression (3.8) as a sufficiently good approximation of
(A 14).

Let us note, that although the 4„st function [Eq.
(3.2a)] becomes the atomic function 4„r in the vicini-

~~AO

ty of the ionic core, this circumstance cannot be used in
the calculation of s„o. Indeed, the obtained expressions
(A3) and (A8) are valid exclusively on the Sy plane, i.e.,
they cannot be extrapolated in the vicinity of the ionic
core. This fact motivated the use of the adiabatic limit
condition (Al 1).
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