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We study in detail the impurity mechanism suggested by Frank for step bunching instabilities on crys-
tal surfaces during crystal growth and evaporation. A two-dimensional model in which the impurities
are treated microscopically is proposed. We perform a numerical simulation of the model and show that
it leads to step bunching. In this paper we examine the large line tension limit, where the step train
remains effectively one dimensional. Using a mean-field theory, we express the velocity of a step in terms
of the widths of adjacent terraces and the parameters of the microscopic model. It is shown that the
theory is valid over a wide range of physical parameters, and only outside this range does one have to use
a more complicated exposure time formalism. We compare the velocity function predicted by the theory
with results from Monte Carlo simulations of the two-dimensional model and find remarkable agree-
ment. Our theory predicts a logarithmic growth of the average terrace width with time for noninteract-
ing impurities, in agreement with Monte Carlo simulations. Lastly, we suggest new physical realizations
of the impurity mechanism. We illustrate the robustness of the idea by considering generalized impuri-
ties, which are created by the kinetic process itself without involving an external impurity source. In
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some of these cases a power-law coarsening of the terrace widths may arise.

I. INTRODUCTION

Both equilibrium and nonequilibrium properties of vi-
cinal crystal surfaces are strongly influenced by the pres-
ence of atomic steps produced by the miscut.!~* Modern
observation techniques permit very accurate measure-
ments of the behavior of these steps, sometimes with
atomic-scale resolution and in real time. These experi-
mental tools can be used to test existing theories and
motivate the development of new theories that relate
measurable macroscopic properties of the surface to the
microscopic behavior of the steps.

This interplay between theory and experiment is espe-
cially important for understanding nonequilibrium pro-
cesses. Of particular interest to us here are processes of
crystal growth or evaporation where motion of the preex-
isting steps play the dominant role. Under appropriate
experimental conditions, crystal growth and evaporation
occur via step flow —the motion of more-or-less straight
and equidistant steps. This is a favorable mode for grow-
ing high-quality crystals for devices. One reason is that
in this growth mode the roughness of the surface does not
increase with time (as can happen during layer-by-layer
crystal growth where islands form on terraces). As a re-
sult, one can grow many layers of high-quality crystal.
Another reason is that in the step-flow regime one can
control the spatial variation of the electronic properties
of the material. For example, this growth mode has been
used to create a system of quantum wires.’

Many features of the step-flow regime can be under-
stood using a simple one-dimensional model® of straight
steps where the velocity of a step is some increasing func-
tion of the widths of the terraces in front (i.e., in the
direction of step motion) and behind the step.® This sim-
ply reflects the increased area available for adatom ex-
change between the terraces and the vapor. This, in turn,
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affects the motion of steps, which occurs mainly through
exchange of atoms between the step edge and the adja-
cent terraces. The dependence of the step velocity on ter-
race width should saturate for terraces wider than some
characteristic surface diffusion length, beyond which fluc-
tuations in adatom concentration have little influence on
step motion. Finally, to avoid overhanging steps, the step
velocity should vanish when the terrace in front is of
minimal width.

Examples of stable step-flow growth can be easily ra-
tionalized using this simple model. Suppose, for example,
that adatom exchange at a step edge involves mainly the
lower terrace rather than the upper one, as is often
thought to be the case.” This model then predicts that
the uniformly spaced step train is stable during crystal
growth.

In other cases, however, the uniform step train be-
comes kinetically unstable. The steps then tend to aggre-
gate together and from step bunches, sometimes of mac-
roscopic size, separated by wide terraces. The physical
origin of these phenomena is not clear in most cases, and
several mechanisms have been proposed to explain them.

A widely cited mechanism, proposed by Schwoebel and
Shipsey,® relates the instability of the uniform step train
during growth or evaporation to an asymmetry in the
attachment-detachment rates of atoms at step edges. In
the typical asymmetry mentioned above, where exchange
with the lower terrace dominates, these authors showed
that while the uniform step train is stable during growth,
it becomes unstable toward step bunching during eva-
poration. An asymmetry-driven instability during
growth is also possible, but only if attachment from the
upper terrace is more important.

A different and, we believe, more generally applicable
bunching mechanism was proposed by Frank.” He relat-
ed the instability to the existence of a flux of certain kinds
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of impurities that impinge on the surface from the vapor.
This impurity mechanism is the main focus of this paper.
In the next section we give an intuitive explanation of the
mechanism and the resulting step-bunching instability,
while in the rest of the paper we analyze various one- and
two-dimensional models of the effect and the relationship
between them.

Before discussing the mechanism itself, let us explain
the notation scheme we adopted to describe the system of
steps. One of the attractive features of the impurity
mechanism is its generality. For example, the mechanism
is equally effective during growth and evaporation.
Hence it is useful to introduce a general description of
step flow, which is independent of whether the crystal is
growing or evaporating. We thus label steps such that
the step index n is increasing in the direction of step
motion. The terrace in front of step » is the one that
separates steps n and n +1, whereas the terrace behind
the nth step separates step n from step n —1. This nota-
tion unifies the descriptions of growth and evaporation as
is shown in Fig. 1. During growth the terrace in front of
a step is lower than the terrace behind it [Fig. 1(b)]; dur-
ing evaporation, on the other hand, the terrace in front is
the higher one [Fig. 1(c)], but both cases are described by
the step train of Fig. 1(a) with the same direction of step
motion.

II. FRANK’S IMPURITY MECHANISM

The type of impurities envisioned by Frank® have two
properties that together lead to step bunching.

(i) The presence of an impurity directly in front of a
segment of a step impedes the motion of that step. As a

step flow
—————
’ I I I | |
n-3 n-1 n n+l n+3
growth
b)
evaporation
V)

FIG. 1. (a) Unified notation for description of step flow dur-
ing both growth and evaporation. The index »n that labels the
steps increases in the direction of step flow. (b) A side view of
the step train of (a) during growth. (c) A side view of the step
train of (a) during evaporation.
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result, the velocity of a step is a decreasing function of
the density of impurities immediately in front of it.

(ii) When a step segment finally moves past a given im-
purity, it weakens the effect of that impurity on other
steps that may encounter it at a later time. Thus, impuri-
ties are essentially covered or deactivated by the moving
steps.

Since new impurities continually arrive from the vapor,
a time-dependent density profile of active (uncovered) im-
purities is established. This results in a gradient in the
active impurity concentration on a terrace, with very low
concentrations just behind a moving step.

An accurate description of the effects of such impuri-
ties may require more complicated models than those de-
scribed in the Introduction. In the simplest case, impuri-
ties arrive and stick at random times and positions on the
terraces. They directly affect only the motion of a local
step segment when the impurity is directly in front. Oth-
er segments of that step that have not encountered im-
purities may move more rapidly. Thus, it is not clear
that a one-dimensional model of straight steps is able to
give an accurate description of step motion when impuri-
ties play a significant role. One of the main points of this
paper is to introduce a more general two-dimensional
model describing step motion with and without impuri-
ties and investigate when the one-dimensional limit is ap-
propriate.

Even assuming for the moment that a one-dimensional
model can be used, there is still another complication in
the description of impurities that must be dealt with. In
the discussion of the model describing motion in the ab-
sence of impurities, it was natural to assume that the ve-
locity of a step was a function of the terrace width. How-
ever, given property (ii) above, the concentration of ac-
tive impurities immediately in front of step n, at position
x,, is an increasing function of the exposure time 7, that
passed since step n +1 was at x,, (7, is the time interval
during which new impurities can impinge on this portion
of the terrace). When impurities are important, the step
velocity is thus a decreasing function of the exposure
time of the terrace in front of it, rather than a simple
function of the terrace width.

van der Eerden and Muller-Krumbhaar derived'® a set
of equations for one-dimensional steps that properly ex-
pressed the dependence of step motion on the exposure
time as implied by Frank’s physical picture.® Unfor-
tunately, the resulting recursive delay-difference equa-
tions are exceptionally difficult to handle both analytical-
ly and numerically.

Much simpler equations result if we follow Frank and
assume that the exposure time is an increasing function
of the terrace width, thus associating wide terraces with
long exposure times. One goal of this work is to deter-
mine the conditions under which this simplifying assump-
tion is accurate. When it holds, we expect the velocity of
a step to be a decreasing function of the width of the ter-
race in front of it for large terrace widths, when the
effects of impurities dominate. For small terrace widths,
the density of active impurities is small from property (ii),
and the velocity should be an increasing function of ter-
race width, just as it is in the case without impurities. Fi-
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nally, in order to avoid overhanging steps, the velocity of
a step should vanish as the width of the terrace in front
vanishes (as mentioned above).

When these simplifications can be made, we expect the
step velocity dx, /dt =x, to satisfy the following equa-
tion:

x,=f(W,), (1)

where W, =x, ., —x, is the width of the terrace in front.
The velocity function f (W) is an increasing function of
the terrace width W for small terrace widths, has a max-
imum value V"=f(W™) at W=W"™, and decreases with
increasing W for W > W™,

In previous work!! we analyzed in some detail step
bunching described by Eq. (1) in the special (and some-
what artificial) poisoning limit where f (W) vanished
identically for terrace widths W greater than some finite
poisoning distance W”. Here we consider more general
velocity functions f for which there can be a finite limit-
ing velocity V* < V™ as W— . (Such functions arise
naturally from the two-dimensional model and mean-field
theory discussed later.)

Equation (1) can also describe step flow in the absence
of impurities, using a nondecreasing function f,( W) that
saturates beyond a characteristic diffusion distance to a
value V5, as discussed earlier. Equation (1) predicts
stable step flow for such an f,. (The Schwoebel asym-
metry is stabilizing in this case.) Thus it is the region of
negative slope in the function f induced by impurities
that leads to the instability.

Note that Eq. (1) does not conserve the average veloci-
ty of the surface. This is certainly consistent with a step-
flow mode during evaporation, but one has to be more
careful when considering crystal growth. In the latter
case, the growth velocity of the surface (and hence the
average step velocity) is fixed by the external flux unless
there is significant desorption. We have therefore impli-
citly assumed that the experimental conditions are those
of evaporation or of crystal growth with significant
desorption. Equivalently, the average terrace width
should be larger than the diffusion length, so that in the
absence of impurities step velocities will depend very
weakly on the terrace width. (Thus, the velocity function
fo in the absence of impurities has saturated as explained
above.)

It is easy to see from Eq. (1) why the uniform step train
with step spacing W > W™ is unstable towards step
bunching. Assume that the width W, of the terrace in
front of step n is infinitesimally smaller than the widths
W of other terraces. The velocity of step n is then larger
than the velocity of other steps because f is a decreasing
function of W in this region. As a result, W, decreases
further and the perturbation is amplified. One can also
perform a linear stability analysis of Eq. (1) to show that
the most unstable wave number is kK =7 /W, which means
that the initial instability is towards step pairing.>!!

Note that the model of Eq. (1) is one sided; steps are
affected only by the terrace in front. As in the Schwoebel
effect, this asymmetry plays an important role in induc-
ing the step-bunching instability. Here, however, the

asymmetry arises naturally during both growth and eva-
poration because only impurities in front of a step can
affect its motion, while impurities behind the step have
no influence. One does not have to assume any asym-
metry of the attachment-detachment kinetics of adsorbed
atoms at step edges as is the case for the Schwoebel insta-
bility.

In the remainder of this paper we investigate the
impurity-induced step-bunching instability in detail and
make the heuristic ideas put forward by Frank more
quantitative. In Sec. III we define a new ‘“‘semimicro-
scopic” two-dimensional model of step flow, with an
effective treatment of main component atoms, but a mi-
croscopic treatment of impurities. Fluctuations along a
given step edge are controlled by a quadratic “line-
tension” term. We carry out a Monte Carlo simulation
of the model and show that it leads to step bunching. We
also show that in the large line-tension or low-
temperature limit the steps are relatively straight
throughout the evolution of the system from the initially
uniform step-train configuration to a bunched state. This
provides justification for the one-dimensional models in
this region of parameter space. Section IV gives a mean-
field derivation of the velocity function f that appears in
Eq. (1), in terms of parameters of the two-dimensional
model. We also find a condition for the validity of the
mean-field approximation and show that it holds if the
impurity effect is not too strong (in a sense that will be
explained in Sec. IV). We compare the velocity function
predicted by the theory to the one that results from a
simulation of the microscopic model.

In Sec. V we calculate the evolution of the average dis-
tance between step bunches as a function of time in the
long time limit. The theory predicts a logarithmic
growth of this distance with time, in accord with results
from simulations of both the effective one-dimensional
model of Eq. (1) and the two-dimensional microscopic
model. Last, in Sec. VI, we consider several possible real-
izations of the impurity mechanism. We believe the im-
purity mechanism has a much wider range of applicabili-
ty than might initially be supposed. For example, we ar-
gue that surface structures created during crystal growth
or evaporation can sometimes serve as effective impurities
with the crucial properties (i) and (ii) as envisioned by
Frank. These can affect the growth rate and can cause
step bunching, without the need for a flux of real impuri-
ties.

III. THE MICROSCOPIC
TWO-DIMENSIONAL MODEL

We want to develop a simple model for step flow in the
presence of impurities that incorporates the important
physical ideas discussed above, but which is still reason-
ably easy to implement numerically. The most time-
consuming physical process to describe microscopically is
the diffusion of main component adatoms on the terraces.
Fortunately, this process is not causing the instability in
our case, and its effect is fairly well understood. We
therefore treat main component diffusion effectively rath-
er than microscopically, essentially describing the motion
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of a step-segment in terms of a nondecreasing velocity
function f,(W), as discussed in Sec. II and below. This
approximation permits simulations of large systems for
sufficiently long times that the late stages of the evolution
can be investigated. Note that we are excluding here the
possibility of any diffusional instability such as the one
predicted by Bales and Zangwill.!> This instability is not
expected tQ play any role in the case discussed here,
where the diffusion length is much smaller than the ter-
race width (see below).

Let us first describe our model for step flow in the ab-
sence of impurities, which is an effective treatment of ada-
tom adsorption, diffusion and desorption. Consider N
steps on a square lattice, where each step is composed of
L coarse-grained segments that reside on the links of the
lattice. We associate a line-tension energy favoring
straight steps with each configuration of segments:

E=y 3 [x,(+1)—x,()H]?, ()

m,j

where x,, (j) is the position of the jth segment of step m,
and 7 is the effective line tension.

We assume (as discussed in Sec. II) that initially the
widths of all the terraces are larger than the diffusion
length, so that the step velocity is essentially independent
of terrace width. When steps bunch together, some ter-
races get wider while others become very narrow. When
the width of narrow terraces is smaller than the diffusion
length, the dependence of step velocities on terrace width
becomes significant. However, it is reasonable to assume
that the details of this dependence are not very impor-
tant, since it is relevant only for the small-scale dynamics
of steps within a bunch. The main role of these short-
ranged processes is to suppress configurations with
overhanging steps. In the absence of impurities, and for
sufficiently closely spaced steps, asymmetric attachment
kinetics could lead to Schwoebel-type step-bunching in-
stabilities. In the case considered below, however, the
larger-scale instability caused by the impurities manifests
itself long before any asymmetry in the attachment-
detachment kinetics of atoms at step edges can play a
role. In fact, the impurity instability is so strong that
even if we choose the most stabilizing Schwoebel asym-
metry (i.e., such that the system without impurities is
stable), impurities still can cause an instability in the uni-
form step train towards step bunching. In what follows
we indeed choose the most stabilizing Schwoebel asym-
metry and demonstrate this fact.

Thus, in the absence of impurities we choose the fol-
lowing rules for step motion.

(1) Select a step segment at random: say, segment j of
step m.

(2) Attempt to move it backwards with probability

py=(1—A4,)/2, (3)

or forward with probability

—[xm+1(j)—xm(j)]/ld)
b

pr=pptA,(1—e (4)

where [, is the main component diffusion length and 4,
(the reason for the subscript 1 will become clear later) is a

monotonically increasing function of the flux of main
component atoms, which vanishes when the flux is equal
to the equilibrium flux.

(3) Always reject the attempted move if it leads to ter-
races of width smaller than 1. (This corresponds to
overhanging steps.) If this no-overhang condition is not
violated, reject the move with probability
1—exp(—pBAE) if it raises the energy by an amount AE,
and accept it otherwise. Here, £ is the inverse tempera-
ture and E is the line-tension energy defined in Eq. (2).

As explained above, the details of the short-scale dy-
namics in these rules are arbitrary and do not affect the
physics of the instability induced by impurities. Their
importance is only in maintaining the no-overhand condi-
tion. We could, for example, omit the exponential term
in Eq. (4) without changing the qualitative results. We
choose to include it only because it builds in the idea of a
diffusion length for the main component atoms in a sim-
ple way. At equilibrium, when 4, =0, rules (1)-(3) pro-
duce the usual Monte Carlo kinetics of steps whose fluc-
tuations are controlled by a line tension, and the no-
overhand condition introduced here in a very simplistic
way is enough to generate the equilibrium entropic repul-
sion of steps.! The dependence of p ¢ only on the terrace
in front ensures that the system is stable towards
Schwoebel-type step-bunching instabilities during both
growth and evaporation as discussed above.

Now consider the effect of impurities. They arrive at
random sites on the square lattice, such that each site can
either be vacant or contain a single impurity. An impuri-
ty affects the motion of a step segment immediately
behind it in the following way. If we attempt to move the
step segment forward past the impurity, the acceptance
probability of the move in Eq. (4) is reduced by a factor
0<1—S<1 compared to the probability in the absence
of an impurity [rule (3) above]. If the move is accepted
the impurity is turned off. The microscopic parameter S
is associated with the strength of impurities. If S=0 the
impurities are weak, whereas S =~ 1 is the strong impurity
limit.

We simulate the model in the following way. Starting
with uniformly spaced straight steps and a surface clean
of impurities, we alternatingly perform sweeps of impuri-
ty deposition and step flow. We do not expect the long
time behavior to be affected by these arbitrary choices.
In an impurity-deposition sweep we pick at random
F,NLW? sites, where F; is the flux of impurities and W?°
is the initial terrace width. Impurities are deposited in all
the selected vacant sites. Each step-flow sweep consists of
NL attempts to move step segments chosen at random.
The attempts are done according to rules (1)—-(3) above,
taking into account the impurity effect on step motion as
well.

Figure 2 presents snapshots of a portion of a system of
N =30 steps of length L =1000 and initial terrace width
W°=50 after 1000 [2(a)] and 30000 [2(b)] time steps. We
use periodic boundary conditions in both directions.
Each time step consists of an impurity deposition sweep
followed by a step-flow sweep. We used the following
values for the parameters of the model: the dimension-
less parameter K =By relevant for the line-tension
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strength parameter was K =3.5, the impurity flux was
F;=0.0002, the impurity strength parameter was
S§=0.65, and the diffusion length was /,=10. We also
used 4,=0.9. Steps flow from left to right. Figure 2(a)
indicates that initially the steps remain quite uniformly
spaced. At later stages, however, the uniform step train
becomes kinetically unstable as expected and step bunch-
ing occurs, as is seen in Fig. 2(b). However, throughout
the evolution the steps remain fairly straight, although
there are some fluctuations. (Other choices of these pa-
rameters can lead to interesting two-dimensional bunch-
ing patterns and will be discussed elsewhere.)

The first thing we learn from this simulation is that in
cases where the line tension is large or the temperature is
low enough the steps remain fairly straight even when the
instability occurs. We therefore conclude that in this re-
gime it is consistent to describe the evolution of the sys-
tem using an effective one-dimensional model where the
steps are pointlike objects.

Next, we ask whether the model proposed in Sec. II
[see Eq. (1)] reasonably describes the physics of the sys-
tem or must we use the more complicated exposure-time
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FIG. 2. Snapshots of a portion of the system after 1000 (a)
and 30000 (b) sweeps of the simulation. Each step is composed
of 1000 segments. The parameters (see text for definitions) of
the simulation are K =3.5, F;=0.0002, S =0.65, [;=10, and
Wo=50.

formulation.! To answer this question we develop a
self-consistent mean-field theory that predicts the form of
the velocity function of Eq. (1).

IV. MEAN-FIELD THEORY

In this section we derive the effective velocity function
f (W) of Eq. (1) assuming knowledge of microscopic pa-
rameters and the velocity function, f,( W), in the absence
of impurities. We also assume that the step train is
effectively one dimensional, as is the case when the line
tension is large enough (see Fig. 2). Our aim is to express
f (W) in terms of two microscopic parameters: the im-
purity flux F; and the impurity strength parameter S.
Recall that S is defined such that if the concentration of
impurities in front of a step is C; =1, the velocity of that
step is f =(1—S8)f,.

With this definition of S the velocity f in the presence
of impurities can be expressed as

FW)=Fo(W[1=C,(W)+(1—S)Ci(W)] . (5)

We have assumed here that C;, the impurity concentra-
tion immediately in front of a step, depends only on the
distance to the step ahead. In fact, as we pointed out in
Sec. II, C; is really a function of the terrace exposure
time 7, and not of the width of the terrace, W. The cru-
cial assumption of our theory is that the exposure time
can be expressed in terms of the width of the terrace as
w

(W) Fw) (6)
and therefore the simpler formalism of Eq. (1) can be
used. Note that we have omitted the terrace index n in
Eq. (6), and in doing so we have made the mean-field as-
sumption that the fluctuations from step to step of the
step velocity can be neglected. We will return to this
point later in this section and derive a self-consistency
condition for the validity of these assumptions.

To complete the derivation of the velocity function we
have to know how the impurity concentration behaves as
a function of terrace width. To that end, consider the
evolution of the impurity concentration at a given site of
the lattice from the time t =0 when step n +1 passed
that site until the time ¢ =7, at which step n arrived (7,
is the exposure time of the nth terrace as defined above).
Since the impurities are deposited randomly, and since an
impurity can be deposited only at a vacant site, the equa-
tion of motion for the impurity concentration is

dC,;

F; . 7
— C,)F, @)

Therefore, when step n arrives at the chosen site the im-
purity concentration just in front of the step is

4

Ci=1—e "=1—¢ 'fW 8)

where we have used our approximation (6) for the expo-
sure time.

Combining this equation with Eq. (5), we arrive at the
main result of this section:
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¥
fFM=fo(W)[1—S+Se /W7, 9)

This is a self-consistent equation for the velocity function
f in terms of the parameters S and F;. It assumes
knowledge of the velocity function f in the absence of
impurities, but makes no analytical assumptions about
the functional form of f,. f, can be obtained from ex-
periments or from simulations without impurities, and
then Eq. (9) can be solved numerically for the function
fW).

We can analyze the form of the velocity function f of
Eq. (9) for small and large values of the terrace width.
We find the following results: For small terrace width
f (W)= f'(0)W, where the derivative f'(0) of the func-
tion f at W =0 satisfies the equation

F,

i

FO)=£5(0)[1—S +Se 7O, (10)

while for large W the function f decays exponentially to
(1=8)fo():
Fi

AT

S(W)=fy(o)[1—S +Se 1. (11)

To arrive at (11), we assumed that f,(W) approaches
fo( ) exponentially in W with an exponent larger than
F,/[(1=S)fo()]. This assumption holds for our
choice of parameters. Since f is an increasing function of
W for small terrace widths, but decreases with increasing
W for large W, it must have a maximum as expected.

For the simple microscopic model described in Sec. III
we know f, for L =1 (i.e., each step is composed of one
segment):

-w/,

fw=4,(1—e ). (12)

For longer but basically straight steps we expect the same
dependence on terrace width, but a different length-
dependent prefactor A;. We therefore predict

-wly
)

FEPW)=4,(1—e (13)

where A; is independent of terrace width, but does de-
pend on the line tension ¥ and the temperature. We now
verify that Eq. (13) is valid and determine the value of A4,
for the case we simulated (see Fig. 2), where /; in Eq. (4)
equals 10.

To that end we repeat the simulation, but this time
without impurities. In this case the uniform step train is
stable, and one can easily measure the average step veloc-
ity as a function of terrace width by performing the simu-
lation starting from several initial widths. The results are
depicted in Fig. 3, where the numerically obtained veloci-
ties are drawn as full circles. The solid line is the func-
tion

Fo(W)=0.037(1—e ~%/10) (14)

Clearly, Eq. (13) is obeyed to a very good accuracy with
the prefactor 4 =0.037.

Using this form for f; we can solve Eq. (9) for the ve-
locity function f(W) numerically. Before showing the
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FIG. 3. Step velocity f, in the absence of impurities as a
function of terrace width W. The numerical results are shown
as full circles, while the theoretical fit is the solid line.

result of this calculation, let us explain how we measured
f (W) from simulations of the microscopic model and
then compare the results of the two approaches. As we
have seen above, the uniform step train is unstable to-
wards step bunching when impurities are present. As a
result, the terrace-width distribution evolves with time.
In order to measure the velocity function we performed a
single simulation of the microscopic model and followed
the terrace width distribution. We recorded the average
position of each step

o1 ,
xn—Lgxn(ﬂ (15)

as a function of time. From X,(¢) we obtained step veloc-
ities and terrace widths as a function of time, and from
these we calculated the average velocity for each value of
the terrace width.

This velocity function obtained from the simulations is
shown as solid lines in Fig. 4 for $=0.65 [4(a)] and
S =0.5 [4(b)]. The dashed lines are the numerical solu-
tions of Eq. (9) for the same values of S. The agreement
is clearly impressive. Note though that the agreement is
better for § =0.5 than for S =0.65. Can we understand
why the agreement deteriorates for stronger impurities
(larger values of .S)?

To answer this question we now derive a self-
consistency condition for our mean-field assumption.
Equation (6) holds only if the step velocity changes slow-
ly, so that its fractional change (1/f)df /dt during the
time W /f it takes a step to move a distance of order W is
relatively small. Mathematically, this corresponds to the
following condition:

W 1 df (W)
f(W) f(wW) dt
__w 1 af (W) | | dW <1 (16)
fW) f(W) | dw de |~
From Eq. (1) we have
W,
=f(Wn+1)'—f(Wn), (17)

dt
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and therefore dW /dt is of the order of f(W). As a re-
sult, condition (16) takes the form

af | W .
aw | £~
Our theory is self-consistent when condition (18) is

satisfied. Otherwise, one has to use the exposure-time
formalism.

1. (18)

g1, |_S 1 | _dfow
_df w_ 8 1-Sg—1| aw f,
aw f &=l | S 1
g 1-S g—1

with g(W)=[1/(1—=8)I(f/f0)-
fo)>0, it is enough to require

Since (dfo/dW)(W/

g—1 S 1 )
1 <1l 20
" L s P, ! (20)
in order to satisfy condition (18), or equivalently,
S c(g—1es/E-11 @1

1-S

The minimal value of the expression on the right-hand
side of condition (21) is 0.5exp(3). Inequality (21) is thus
satisfied if S /(1—S) <0.5exp(2) or if

0.04 L T T

0 I L I
0 100 200 300 400
W
0.04 T T T
b
0.03
Z 0.02
0.01[ .
O 1 1 1
0 100 200 300 400

w

FIG. 4. Step velocity f in the presence of impurities as a
function of terrace width W for impurity strengths S=0.65 (a)
and S =0.5 (b). The solid lines are the numerical results and
the dashed lines are the theoretical predictions.
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When is condition (18) satisfied? First, we note that at
W =0 the equality in Eq. (18) holds. For W >0 the in-
equality is obviously satisfied as long as df /dW > 0, since
f is a concave function in that region. To find out what
happens when df /dW <0 we take the derivative of both
sides of Eq. (9) with respect to W, and obtain the follow-
ing expression:

(19)

1

1+2e 732
Our mean-field assumption is thus self-consistent if the
impurities are not too strong. As we have seen above
(Fig. 4), the agreement between theory and simulations is
better for S =0.5 than for S=0.65. We now understand
that this deterioration occurs because S =0.65 is close to
the limit of applicability of our theory. Still, it is some-
what surprising to us that when the equality in Eq. (18) is
satisfied, the agreement between mean-field prediction
and results from simulations is so good.

Note that the denominator of the right-hand side of
Eq. (19) can vanish for sufficiently large S. In this case
condition (18) can never be satisfied and the mean-field
theory clearly breaks down. One can repeat the analysis
above to find out when this catastrophe happens. The re-
sult is that if S >1/(1+e ~2)~0.88 there is a value of W
for which |df /dW|W / f diverges. Hence, condition (22)
yields quite a good estimate of the value of S beyond
which the mean-field theory breaks down.

S < 0.69 . (22)

V. TERRACE COARSENING KINETICS

In this section we extract some dynamical information
from the model of Eq. (1) and compare it to results of
simulations. In particular, we study the behavior of the
typical distance between bunches of steps as a function of
time. To do that we make the ansatz that the system is
always close enough to a steady state that its behavior
can be well approximated by linearizing around a time-
dependent steady state. At first glance this assumption
may seem questionable, since all the steady states of mod-
el (1) except for the uniform step train with spacing
W < W™ are unstable. However, at the late stages of the
evolution, the distance between the bunches is very large.
Therefore, the system typically probes only very small
widths (the distance between steps in a bunch) or very
large ones (distances between bunches). In the first case,
the derivative of f is positive, whereas in the latter it is
negative but exponentially small. As we will see later in
this section, such steady states are very weakly unstable,
which makes our ansatz more legitimate. The final
justification for the steady-state assumption will come
from the comparison of its consequences to results of
simulations.

In a steady state all the steps move at the same veloci-
ty. For each value of the velocity in the range
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fleo)SV<f(W™) there are two terrace widths
WOV <wm<W2(V) such that f(WV)=f(W?)
=V. Thus the sequence of terrace widths W, that corre-
sponds to a steady state with velocity ¥ has the property
that for any n the value of W, is either W'(¥) or
W2(V). We can therefore decompose the system into
bunches such that the distance between consecutive steps
in the same bunch is W'!) while the distance between two
consecutive bunches is W'?). Such a steady state is de-
picted in Fig. 5.

The steps within a bunch stick together during the evo-
lution, and the probability of separation of a bunch into
several bunches is negligible. It is therefore useful to
think of the bunch as a single entity rather than a collec-
tion of distinct steps. Hence, we label the bunches by the
index /, such that [/ increases in the direction of step
motion (see Fig. 5). The stability of the bunch is due to
the fact that it is essentially a uniform step train with
W=~W" < W™, and as we show below such a step train
is stable. The instability of the steady state arises from
the motion of the leading (rightmost) step in the bunch,
since the terrace in front of it is wide (W > W™). Thus,
the motion of a bunch is essentially determined by the
evolution of its leading step. The other steps in the
bunch follow it keeping the small distance between them
more or less fixed. To a very good approximation we can
therefore think of the bunch as a rigid array of steps
whose motion is completely determined by the width of
the terrace in front of it.

Mathematically this corresponds to keeping the dis-
tance A; between the first and the last steps of the /th
bunch (see Fig. 5) fixed. The position of the first step is
then X;—A,, where X; is the position of the last (right-
most) step in the bunch. In this notation the width Z; of
the terrace in front of bunch [/ is

Zi=X X84y, 23)
and the equation of motion (1) for X; becomes
) =f(Z)) . (24)
dt

The resulting evolution of Z; is determined by the equa-
tion

step flow
——
Ay
N
I l <—Zl_1—-> <—Zl—>| I
X1-1 X] X141
I-1 1 1+1

FIG. 5. A steady state of the step train. The system is divid-
ed into bunches (labeled /,/+1, - - - ), with distances Z,; between
bunches and bunch thicknesses A,.

dz,

_=f(ZI+1)_f(ZI) , (25)
dt

where we have used the assumption that the time depen-

dence of A; can be neglected.

Note that Eq. (25) becomes identical to Eq. (17) if we
replace Z by W. This is not surprising, since within the
rigid-bunch approximation we expect the behavior of a
bunch of steps to be similar to the behavior of a single
step. In a steady state, Z,=Z=W'? for any [/, which is
reminiscent of a uniform step train in the W variables.
Let us now perform the linear stability analysis of Eq.
(25) around this steady state.!! The linearized form of the
equation is

ds,
7=f'(l)(61+1-81) , (26)

with §,=Z,—Z. Assuming a solution of the form

8, ~exp(ikZl +wt)(i=V —1), we obtain the linear
dispersion relation

o(k)=f"(Z)e*2—1) . 27

We immediately see that if f'(Z)>0 all the modes are
stable [Re(w) <0]. This happens only if Z < W™, If, on
the other hand, f'(Z) <0 (as is the case for Z > W™), the
system is unstable. The most unstable mode is the one
with the maximal value of Re(w). From Eq. (27) it is
easy to see that it corresponds to bunch pairing, i.e.,
kZ =. For this mode we have

olk=1/Z)=0""=—-2f"(Z) . (28)

Since the most unstable mode corresponds to bunch
pairing, we expect that after a time interval
f(Z—>2Z)=1/0™*(Z) the average distance between
bunches, Z, will double. For large Z we can find an in-
teger m such that Z ~2"W?° where W? is the initial ter-
race width. We can then estimate the time that it takes
the system to reach an average distance of Z between
bunches:

WOz~ =y L
t=t — ~— —_— .
Eo f12we)
According to the mean-field theory of Sec. IV, f'(Z) de-
cays exponentially to zero for large Z [see Eq. (11)]:

(29)

f(Z)~—e % (30)
with
F;
N= M= FS)}”—O(TJ . (31)

Nme i the mean-field prediction for the value of 7. Using
this result in Eq. (29) we get

1
t~ 3

j=0

em"W 32)

This sum is clearly dominated by the last term and,
hence,

m—15,0
t~e‘r]2 W :e(’r]/Z)Z . (33)
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Inverting Eq. (33) we obtain an expression for the long-
time behavior of the average distance between bunches:

Z(t)z%—lnt +const . (34)

The logarithmic dependence on time is in agreement with
the result obtained by van der Eerden and Muller-
Krumbhaar'® using the exposure-time formalism in a
mean-field approximation. Note that (34) and (31) make
a definite prediction about the prefactor 2/7 as well as
the logarithm.

We now check this result on two levels. First, how ac-
curate is our ansatz that the system is always close to a
steady state? This can be checked by comparing the pre-
diction (34) to numerical results from simulations of the
one-dimensional equations (1) with computer-generated
noise, using a velocity function f that satisfies Eq. (30) at
large Z. Second, how well does model (1) describe the
coarsening effect of the microscopic two-dimensional sys-
tem? The two relevant comparisons are shown in Fig. 6.

Figure 6(a) is a comparison with simulations of a one-
dimensional model with = ;. The numerical results are
shown as full circles, whereas the solid straight line is the
theoretical prediction. The slope of the line in this loga-
rithmic plot corresponds to 2/17=190, which agrees ex-
tremely well with the numerical results. In Fig. 6(b) we
show results from simulations of the full two-dimensional
model (full circles) with F;=0.0002, S =0.65, and
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FIG. 6. Log plot of the average distance between bunches, Z,
as a function of time ¢ from simulations of one- (a) and two- (b)
dimensional models. The solid lines are the theoretical predic-
tions for the long-time asymptotic behavior.

folo0)=0.035. The slope of the straight line is
2/m=(1—8)f¢(o)/2F;~123, and it agrees with the
data from the simulations after a transient of about
2X 10* time steps. We clearly need to perform a longer
simulation of a much larger system and to average over
several such simulations in order to achieve a reliable
comparison such as the one of Fig. 6(a). However, the
agreement with this small-scale simulation is very
promising and reassures us that the model of Eq. (1) de-
scribes impurity-induced step bunching very accurately.

VI. PHYSICAL REALIZATIONS
AND GENERALIZED IMPURITIES

We now argue that the impurity mechanism for step
bunching is extremely robust and may occur in a variety
of physical situations. We support this statement by giv-
ing several examples. First, we discuss conventional
“external” impurities associated with the foreign atoms
in the flux from the vapor under both growth and eva-
poration conditions.

The remaining examples are concerned with effective
or generalized impurities that are generated on the sur-
face during the process of step flow itself. As discussed
below, examples of these generalized impurities are
domains in the uppermost complete layer of the crystal,
on which step motion is slower than its motion in the
background (the rest of the uppermost complete layer).

A. External impurities

Imagine a crystal growing from a vapor of main com-
ponent atoms in the presence of a small concentration of
impurity atoms. These impurities usually impinge and
stick on the surface independently of each other, and we
therefore call them “free” impurities. In this case their
concentration C; at a fixed position on the surface far
from a step increases exponentially in time [See Eq. (8)]:

AF[!

Ci =1—e¢ (35)

Let us assume that these impurities have the following
features.

(1) They attach to the surface more strongly than do
main component atoms. They therefore diffuse on the
surface more slowly, and we will assume that their
diffusion can be neglected.

(2) Once they attach to a step edge, their bonds are sa-
turated (perhaps because they have fewer free bonds than
main component atoms do). As a result, a main com-
ponent atom is less likely to attach to the step edge at a
site where there is an impurity than at a clean site.

(3) After a new layer has grown on top of the impurity,
it no longer affects the attachment probability of atoms
on the surface.

Feature (2) implies that these impurities indeed impede
the motion of steps in their vicinity. Feature (3) ensures
that the impurities will be turned off after being passed by
two steps. The first feature maintains the dependence of
impurity concentration of terrace width and the neces-
sary impurity concentration gradient in front of steps.
Thus all the conditions for step bunching are met.
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External impurities can cause step bunching during
evaporation as well. Assume now that the crystal evapo-
rates in the presence of a small concentration of impuri-
ties. If these impurities have feature (1) above, they tend
to stick to the surface, and a step that approaches such
an impurity may have to wait until the impurity either
evaporates or diffuses away before it can continue mov-
ing. Thus the conditions for step bunching are again
satisfied in an even more natural way than during growth
[we do not have to assume a saturation effect such as
feature (2) above]. Almost any atom with a stronger at-
tachment to the surface could act as an effective Frank
impurity during evaporation and induce step bunching.

B. Generalized impurities

The examples we give below are related to surface
reconstruction, and are meant to be physically suggestive
of the kinds of processes we have in mind. However, we
emphasize that any ordering process on the surface may
cause step bunching provided that properties (i) and (ii)
outlined in Sec. II are satisfied.

If the crystal is grown at a temperature where the equi-
librium surface is reconstructed, one might expect that
immediately behind the moving step the newly formed
surface will mostly have the order of the bulk crystal, or
at least a different ordering than the equilibrium recon-
structed surface. Surface reconstruction allows for an ad-
ditional surface ordering, which, e.g., tends to satisfy
more atomic bonds within the layer. The energy gained
from this ordering serves as a driving force for formation
of the reconstructed surface, and small reconstructed re-
gions may nucleate in the newly formed terrace behind
the growing step.

Consider now the growth of a second step on such a
terrace. We assume that step motion is fast enough that
the new terrace has not completely reconstructed and
that the reconstructed regions remain widely separated
from each other, perhaps because the nucleation and
growth of the reconstructed regions is relatively slow. It
is reasonable to assume that it is easier to grow on top of
the unreconstructed parts of the surface than on the
reconstructed regions, since the reconstruction may have
to be destroyed during the growth process. We therefore
conclude that the reconstructed regions slow the step
down, just as the impurities of Sec. VI A do. Moreover,
as a function of time, the reconstructed area (and hence
the “impurity” concentration) near a given position on
the surface grows, until another step passes and creates
an initially unreconstructed layer on top of it. The ter-
race width dependence and the gradient of the impurity
concentration come out naturally in this case. If nu-
cleation and growth processes are slow enough, different
reconstructed regions do not affect each other, and these
generalized impurities are noninteracting.

In other cases, nucleation and growth of many different
reconstructed regions of the terrace may occur much
more rapidly than the time scale for step motion over a
distance equal to the average terrace width. Then the
above instability based on the distinction between isolat-
ed reconstructed and unreconstructed parts of the terrace

will probably not be seen. However, in such cases, a
different mechanism could lead to step bunching.

The nucleation of reconstructed regions behind a step
could start at many different positions. If nucleation and
growth are fast enough, many domains will grow until
they touch each other. Since the different domains may
not be in registry, domain boundaries may be created.

Using the same idea as before, we assume that it is
easier to grow near domain boundaries than on top of a
reconstructed region. Moreover, because of the fast nu-
cleation, steps create regions with a large initial concen-
tration of domain boundaries behind them as they move.
We thus see that once again all the conditions for step
bunching are fulfilled, and the reconstructed regions can
serve as generalized impurities.

The system will coarsen as a function of time, and the
domain boundaries will be slowly eliminated in favor of a
homogeneous reconstructed phase. The domain size R
will grow with time as

R~t%, (36)

with a value of a that depends on the symmetries of the
particular system considered. Typically =1 for coars-
ening without conservation laws, and a=1 for kinetics
that conserve the order parameter,'? but other values are
also possible. Therefore, the concentration of the recon-
structed regions immediately in front of a step increases
algebraically in time as follows:

c=1-2%. (37)
ta

It is clear that when the coarsening kinetics obey Eq.
(37) the generalized impurities strongly affect each other,
and we therefore refer to them as “interacting” impuri-
ties. Such a behavior will lead to a velocity function with
a power-law decay for large terrace widths. As a result,
the typical length scale will grow as a power of time,
which is much faster than the logarithmic coarsening
that occurs when the impurities are noninteracting.

Let us conclude this section by noting that the first
bunching mechanism discussed in this subsection during
growth works equally well during evaporation. We again
need only assume that a step advances faster when the
evaporating surface in front of it is unreconstructed than
when it is reconstructed, and that the surface exposed im-
mediately behind the step is initially unreconstructed. It
may be rather difficult to achieve a rapid enough eva-
poration rate at temperatures where there is surface
reconstruction. However, if this can be done, and the
time scale associated with nucleation of surface recon-
struction is long enough, we expect this mechanism to
cause observable step bunching.

VII. SUMMARY AND DISCUSSION

In this work we have reached a fairly detailed under-
standing of Frank’s impurity mechanism® for step bunch-
ing. We started from a two-dimensional model that
treats the impurities microscopically and showed numeri-
cally that it leads to step bunching. We investigated the
large line-tension limit and showed that in this case the
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steps are fairly straight throughout the step-bunching
process, which can therefore be described by a one-
dimensional model. We then developed a mean-field
theory for such a model under the assumption that the
velocities of steps are determined by the widths of adja-
cent terraces. The theory predicts the step velocity as a
function of terrace width, and its prediction agrees
surprisingly well with results from simulations. The
theory also gives an accurate prediction of the evolution
of typical length scales (i.e., the distance between step
bunches) with time. We argued that the mean-field ap-
proach should work well when the impurities are not too
strong (S <0.69), while for very strong impurities an
exposure-time formalism!® should be used.

We believe that the impurity mechanism for step
bunching is very robust and general. It is effective during
both crystal growth and evaporation and, moreover, the
impurities need not originate from an external source.
We argued that generalized impurities such as recon-
structed regions on the surface can cause step bunching
as well.

Another reason for the generality of this mechanism is
the fact that the behavior of the system does not depend
strongly on the small-scale kinetics of steps that are very
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close together. For example, the attachment-detachment
kinetics of adatoms at step edges affects the small-scale
dynamics significantly, but is irrelevant in our case. One
consequence is that the behavior of a bunch of steps is
very similar to the behavior of a single step. This is not
the case for the instability of Schwoebel and Shipsey,®
where small-scale kinetics and the details of energy bar-
riers for diffusion of adatoms are very important.'*

Throughout this work we assumed that desorption of
adatoms from the surface to the surroundings is
significant. This assumption is also important for the
robustness of the model. Some materials (e.g., Si and
GaAs) are grown under conditions where desorption is
negligible. In these cases a more complicated model with
a conservation law has to be considered. It is not clear
yet how robust and general such a model would be, and
we intend to study this problem in detail.
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