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Magnetoconductivity of the two-dimensional electron gas occupying two size-quantization sub-

bands is studied theoretically. When the bottoms of subbands are separated by an integer number of
Landau levels, the staircases of Landau levels in both subbands are completely aligned. For such val-

ues of magnetic field the intersubband scattering is enhanced. As it was pointed out by Polyanovsky,
this results in additional Shubnikov —de Haas oscillations of conductivity with magnetic field, with

period depending on subband separation, and amplitude depending weakly on temperature, pro-
vided that a large number of Landau levels in each subband are occupied. In the calculation of
conductivity we make use of the self-consistent Born approximation generalized to the case of two
subbands. An analytical theory for the case of strong disorder and numerical results for the case of
weak disorder are presented.

I. INTRODUCTION

Magnetotransport in quantum wells and superlattices
has been studied extensively in recent years. In a typi-
cal GaAs/Al Gai As well electrons are confined to the
interface plane, so that the electronic states represent a
set of size-quantized subbands. For large concentrations
of electrons several subbands can be populated. Figure
1 schematically illustrates this situation for the case of
two occupied subbands with their bottoms at Eq and E2
and the Fermi energy E~ lying above E2. The position
of the Fermi level can be controlled by changing the gate
voltage or by in-plane magnetic Geld.

When E~ intersects E2 peculiarities in thermodynamic
(such as specific heat and magnetic susceptibility) as well
as in kinetic (such as conductivity and thermopower)

h, = E2-E)

FIG. I. Schematic illustration of the magnetointersubband
oscillations of conductivity. The energy spectrum of the first
(second) subband represents a staircase of Landau levels on
the top of Ei (Es). When A/M is an integer (i.e. , b = 0),
two staircases of Landau levels are completely aligned, which
results in a peak in the intersubband scattering.

characteristics are expected due to the change in the
Fermi surface topology (topological transition) and, con-
sequently, the opening of a new scattering channel. In
bulk metal and zero magnetic Geld the peculiarities of
the thermodynamic properties in the vicinity of the topo-
logical transition were studied by Lifshitz. Anomalies of
kinetic characteristics were recently studied by Varlamov
and Pantsulaya. 4

For two-dimensional (2D) systems in zero field, the
anomalous behavior of transport coefficients has been
studied for a long time both theoretically and
experimentallyi i (for a review of early works see
Ref. 12). From now on we will be considering only
the case of two occupied subbands. The total con-
ductivity o. represents a sum 0 = oq + 02 of "par-
tial" conductivities Oq and 02 corresponding to the first
and second subbands, respectively. ' The usual rela-
tion o; oc 7; (i = 1, 2) still holds; however, the "par-
tial" scattering times, ~q and w2, are determined by a
system of equations and both depend on intersubband
scattering. At the transition point (i.e., when Ep in-
tersects E2) the theorys'i2 predicts a discontinuity in
the conductivity and, hence, the divergence of the ther-
mopower. Experimental data, however, show a well pro-
nounced but rounded peak in thermopower and a drop
in the mobility. ' 0 The scattering-induced smearing out
of these anomalies was considered in Ref. 7. In Ref. 8
the exact solution of the problem in the vicinity of the
transition point was found.

In a perpendicular magnetic field B the anomalies
in thermodynamic and transport properties, caused by
the occupation of several subbands, are even more pro-
nounced. The double minimum structure in the density
of states due to the interplay of Landau levels of two oc-
cupied subbands was reported in Ref. 13. In parabolic
quantum wells, with and without ' superlattices, the
suppression of weak quantum Hall plateaus has been ob-
served as a result of the mixing of difFerent series of Lan-
dau levels corresponding to difFerent subbands. In a weak
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where ~ is the cyclotron frequency. We assume that the
subband separation 6 is much larger than the Landau
level separation, i.e., 4 = E2 —Eq )) Ru. Now we note
that if 4 = %up, p being an integer, then the two stair-
cases of Landau levels are completely aligned. Clearly, for
such particular values of magnetic field the intersubband
scattering is enhanced. As a result, the conductivity os-
cillates with magnetic field with period

E2 —E~
(2)

Remarkably, unlike the Shubnikov —de Haas oscillations,
these "magnetointersubband" (MIS) oscillations should
exhibit an anomalously small sensitivity to the tempera-
ture. This idea was put forward by Polyanovsky in Ref.
22. The reason is that the period of oscillations, as it
is seen from Eq. (2), does not depend on the Fermi en-

ergy. On the other hand, with increasing temperature the
number of Landau levels contributing to the conductivity
increases. Since for Ru = 6/p the alignment occurs for
an entire staircase of Landau levels, the averaging of the
conductivity with the Fermi distribution function does
not acct the magnetointersubband oscillations.

It should be emphasized that the calculation of the
magnetoconductivity in the 2D case requires the smear-
ing out of the Landau levels. Such a smearing occurs
due to both intrasubband and intersubband scattering
processes. In the case when the widths of Landau levels
are much smaller than Ru, the intersubband scattering
modifies strongly the shape of the aligned Landau levels
in the vicinity of resonance.

To develop the theory of the MIS oscillations we em-
ploy the self-consistent Born approximationi2 2s (SCBA),
generalized to the case of two subbands. The SCBA ap-
proach has been shown ' to be accurate for the short-
range random potential and high Landau levels. This is
exactly what we need since the intersubband scattering
that we consider requires a large momentum transfer and,
therefore, can only be caused by short-range harmonics
of the random potential. Note also that the long-range
harmonics of the random potential do not acct the MIS
oscillations, since they just modulate the Landau levels
without destroying the alignment of two Landau stair-

magnetic field, B & 1 T, the conductivity exhibits mul-
tiply periodic Shubnikov —de Haas (SdH) oscillations at
low temperatures. Each of the "partial" conductivities
a,. is periodic in inverse magnetic field with the period
eh/mc(E~ —E;), m being electron mass. The resulting
superposition of SdH oscillations has been widely studied
(see, e.g. , Refs. 14—21) and the correspondence between
the power spectrum and the occupied subband energies
was found to be very accurate.

In the present paper we investigate another mechanism
for oscillations of the conductivity in a weak magnetic
field, when two or more subbands are occupied. This
mechanism is illustrated in Fig. 1. In a magnetic field
each subband represents a staircase of Landau levels asso-
ciated with E;. The energy spectrum of electronic states
is then given by

E;„=E, + Ru(n + 1/2),

cases.
The calculations of the conductivity are carried out

both in the cases of weak w7;- )) 1 and strong ~r, (& 1
disorder. The paper is organized as follows. In Sec. II
we generalize the self-consistent Born approximation to
the case of two subbands. In Sec. III we derive the
expressions for the magnetointersubband contribution to
the conductivity. The results of numerical calculations
for the case of weak disorder are presented in Sec. IU. In
Sec. V we discuss the experimental data of Refs. 19—21,
which can be accounted for by our theory.

II. TW'0-SUBBAND GENERALIZATION
OF THE SELF-CONSISTENT

BORN APPROXIMATION

Consider an electronic system in a perpendicular mag-
netic field B, and a random Gaussian potential V(r) with
the correlation function

(&(r)i'(r')) = 7~(r —r')

where p is the strength of the potential. The unperturbed
energy spectrum is given by Eq. (1) and the unperturbed
wave functions in the Landau gauge have the form

(4)

where y, (z) (i=1,2) are the wave functions correspond-
ing to the quantized energy levels E, along the magnetic
field and &p„A,,„(p) are the Landau wave functions, p being
in-plane radius-vector and k„being the y-component of
the momentum. In the presence of a random potential
each Landau level acquires a finite width, I';, for the ith
subband, which we assume to be much smaller than the
subband separation

I", && 2 = E2 —E, .

In the case of two subbands both the Green function
G'~(E) and the self-energy Z'~(E) represent 2 x 2 ma-
trixes in the subband indexes i and j, defined in the usual
way,

G(E) = E —t —Z(E)

where E is the energy and the matrix E'„'„, = b'~b„„E;„
is diagonal both in the subband and in the Landau level
indexes.

In the framework of the self-consistent Born approxi-
mation (SCBA) all diagrams with intersecting impurity
lines are neglected. The corresponding Dyson equation
for the self-energy is shown in Fig. 2. In the one-subband
SCBA approach' ' s the Green function (6) is diagonal in
the Landau level indexes n and n', while the self-energy
does not depend on n. This same feature appears to be
true in the case of two subbands. Indeed, according to
Eq. (4), the p and z dependences in the wave functions
are separated. Therefore, the in-plane variables p and
A:„ in the Dyson equation can be integrated out in the
same way as in the one-subband case. The two-subband
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SCBA Dyson equation then takes the form

z'~(E) = r'„) ) q*„', E —e„—z(E) „,
'

Icl

=r2„) ) q'„',a"„'(E),

where E'~ = b'~E;„and r&2 ——p/27rl, l = (ch/eB)1~2
being the magnetic length. In deriving Eq. (7) we used
Eq. (3) and introduced the notation

q'„', = f Zzy;(z)g, (z)g„(z)y, (z)

FIG. 2. Graphical representation of the Dyson equation (7)
for the SCBA in the case of two subbands. The self-energy Z'~

and the Green function G"' represent matrixes in the subband
indexes and q*„~ is defined by Eq. (8).

It follows &om the obvious symmetry properties of q&&
that G = G and Z = Z . To analyze the Dyson
equation (7), we rewrite it in the component form

q12

(+12)2

E —E2 —Z22

q22
(gl2)2E —E2~ —~ E —E„—Z11

and

2q12g12

(s —s —sll)(s —s +22) (+12)2 ]I'

gll r2 )
E E +11

q11

(g12)2

E —E2„—Z22

q22
(+12)2
E

(10)
2qll +12

(E —El +11)(E E2 +22) (g12)2

The third equation can be obtained from (10) by the
replacement 1 ~ 2.

Let us demonstrate that despite the fact that the di-
agonal Z" and nondiagonal Z components of the self-
energy are of the same order of magnitude, Z does not
contribute to the diagonal components G'„' of the Green
function. Consider the first term in the right-hand side
(rhs) of Eq. (10). The main contribution to the sum over
n comes &om such values of n for which the magnitude
of the denominator

(+12)2
D1 ——E —E1 —Z E —E2 g22

+~„('z"& 11

)

E —E2 —Z (14)

where we again used the condition E /6 « 1. Simi-
larly, for the relevant values of n, one can estimate the
denominator of the second term in the rhs of Eq. (10) as

(g12)2

D2 ——E —E2„—Z
1n

is of the order of the width I'1 of the corresponding Lan-
dau level that belongs to the first subband. On the other
hand, the denominator of the last term in the rhs of Eq.
(10) can be rewritten as

E —E2„—Z = (E —El„—Z") —(Z —Z") —A,

(12)

where the first term in the rhs of Eq. (12) is again of the
order of 11. Since the Z" themselves are of the order of
I';, the magnitude of the rhs of Eq. (12) is of the order
of 4 )) F;. Thus, we can write

Consider now the third term in the rhs of Eq. (10). Ap-
plying similar arguments one can estimate this term as

g» (1
/

—+ —/« —+ —.
(I'1 I'2 ) I'1 I'2

Since the sum of first two terms in the rhs of Eq. (10) is
of the same order of magnitude as the rhs of Eq. (15),
the third term can be neglected.

Thus, the two-subband SCBA Dyson equation for the
diagonal components of the self-energy reduces to the
following system of equations
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= r'„) (q,",G„"+q,",G„"), (16a)

22 22
Z22 r2 ~ qll Q22

(E —El„—Z" E —E,„—Z22)„+
r2 ) (Q22G11 + Q22G22) (16b)

or, in matrix form,

Z» —r2 ) Z22 )
E —E; —Z;(E) is already renormalized in the same way
as in Ref. 28.

III. CALCULATION
OF THE MAGNETOINTERSUBBAND

CONTRIBUTION TO THE CONDUCTIVITY

%le start from the conventional Kubo formula for the
longitudinal conductivity in a magnetic Geld,

Bf (E)
BE

"'E'='"')-)-E-E '-'Z
(E)

2

with

0(E) = (Tr v b(E —H)v b(E —H) ). (20)

=r'„) ) q,,G,„(E), (17)

where we introduced the notations

G,„=G„",Z;=Z", (18a)

Qll qll) Q12 Q21 Q22 Qll & Q22 Q22. (18b)

We see &om Eqs. (16) that the diagonal components of
the Green function depend only on the diagonal compo-
nents of the self-energy and vice-versa. As we will see
in the next section, the nondiagonal component of the
Green function G does not enter in the expression for
the conductivity and, therefore, is of no interest. Note
also that for the symmetric quantum well Qli = Q22

——0,
and according to Eq. (9), both Gl2 and Zl2 are equal to
zero identically.

Concluding this section, the following remark is in or-
der. The sum over n in the rhs of Eq. (17) for Z;(E)
diverges at large n. However, in calculating the con-
ductivity we will need only the imaginary part of the
self-energy, which is Gnite. The divergence of the real
part of Z;(E) implies that the fiuctuations of the ran-
dom potential cause an inGnite shift of the bottom of
the ith subband. This divergency is not related to the
magnetic field. It is just a consequence of the zero cor-
relation length of the white-noise potential. The careful
treatment of the divergency can be found in Ref. 26 for
the 3D case (see, also, the review in Ref. 27). This
treatment reduces to the introduction of the "physical"
(renormalized) energy, measured &om the shifted bot-
tom of the band. Particularly, in the paper by Thou-
less and Elzain the renormalization was carried out for
the 2D case in the &amework of the coherent-potential
approximation —the zero-Geld analog of the SCBA, which
we employ for the calculation of the conductivity.

Since the renormalization, in general, can depend on
energy, one might think that it could destroy the Landau
levels equidistance, which is crucial for our considera-
tion. Indeed, in the 3D case the energy shift increases
for negative energies as g~E~. However, in the 2D case
the divergence is logarithmical so that the energy depen-
dence vanishes as the correlation length of the random
potential tends to zero. In the rest of the paper, calcu-
lating the conductivity, we will assume that the difference

Here fo(E) is the Fermi distribution function, H is the
Hamiltoxuan, ( . . ) denotes the average over the random
potential V(r), v is the z-component of the velocity op-
erator, and 0 is the 2D normalization volume (the nor-
malization length along the z-axis is taken to be unity).
The trace in Eq. (20) is taken over the complete set of the
wave functions, which we choose to be the unperturbed
wave functions (4). In this basis the matrix element of
the velocity operator is given by

(21)

In the framework of the SCBA approach, the b func-
tions in the rhs of Eq. (20) should be averaged
independently. l 2 Replacing (b(E —H)) by ImG(E)/7r
and using Eq. (21) we get

2 2

o(E) = ). (2n+ l)G,"„(E)G,"„+,(E), (22)

with G'„(E) = ImG;„(E) = Im E —E;„—Z;(E) . It
is seen &om Eq. (22) that G and, hence, Zl2 do not
contribute to the conductivity. The reason is that the
matrix element (21) is diagonal in the subband indexes.

The density of states (DOS) in the two-subband case
is given by

tn A ij

(23)

where Z"(E) = Imz~(E) and Q is the inverse of the
matrix Q defined by Eq. (18b). In deriving Eq. (23), we

expressed G" through Z" via the SCBA equation (17).

A. Strong disorder

Consider the case of strong disorder, i.e., Z' )& fnu.

To solve the SCBA equation (17) for Z"(E) we rewrite
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xI'2
Z/I Q )~Q

2

(25)

where

F;(E) = 1+ 2 exp( 2+I';—/f(0/) cos 27r(E —E;)/fiur (26)

it using the Poisson summation formula. We have

2 OO

Z". = — ) Q~glm ) exp[27rip(E —EI,)/hu]
k P=—OO

exp(27ripx/Ru)
X

(E E ) z+(Zi
where we neglected the exponentially small real part of Z.
We assume that Ey lies well above E2, so that E~ —E2
E2. On the other hand, according to Eq. (5), Z" « E2
Therefore in the relevant range of energies one can extend
the lower limit of the integral over z to —oo. Iterating
Eq. (24) and keeping only the first harmonics in the sum
over p, we obtain

o (E) = ) ) „exp[2z.ip(E —E~)/h(d]
e2 . E —E~

P=—OO

(29)

where we again used the condition Z"/E « 1. The in-
tegral over x in the rhs of Eq. (29) is equal to (m/2) [1 +
(fuu/2Z") ]

~ exp( —2z']p~Z" /fu()). Keeping only the first
harmonics in the sum over p we get

e' .F;(E) E —E;
4z A ~. - Z' (E) 1+ [Ru/2Z,"(E)]2' (30)

It represents a simple superposition of the "partial" den-
sities of states g;(E) corresponding to each subband.
Note that each ~; includes the contribution from the in-
tersubband scattering.

To calculate the conductivity we apply the Poisson
summation formula to Eq. (22),

sl'2 ).
2~,

2

(27) with Z," and F; given by Eqs. (25) and (26). Let us
trace the transition to the one-subband case in Eq. (30).
When the subbands are uncoupled (i.e. , Qq2

——0), the
factor

It is seen from Eq. (27) that the width I'; of the Lan-
dau level, belonging to the ith subband, does not depend
on n and represents the sum I'. = I",; ' + I",'". "of the
intrasubband I",";t' = Q;;z'I'2&/tub and the intersubband
I",z" = Q;~m'I'&/Ru contributions. The latter vanishes
as the intersubband coupling Q;z (i g j) goes to zero.
The density of states, calculated with the use of Eq. (25),
has the form

(31)
Z," ml'~2 Q;;F; + Q;; F~

in the rhs of Eq. (30) reduces to a constant equal to
hew/el'~&Q;; for each subband. Then the total conductiv-

position of one-subband conductiv-
band scattering contributions [see

ntersubband scattering (i.e., Qq2 j
31) oscillates with magnetic field,
ntersubband oscillations of the con-
le calculations we 6nally obtain

(32a)(r(E) = og(E) + o2(E), o;(E)
2

(r0(E) = (E —E;) (32b)

sty represents a super
~(E)= ).g*(E)=, ).F'(E) ities with no intersub

2xl2ho Eqs. (25)—(27)].
( n ) In the presence of i

1+) exP~ —
~

cos[2m(E —E')/fuu] 0), the rhs of Eq. (
causing the magnetoi

(28) ductivity. After simp
I

oo (E) + osdH (E) + AMIS (E)

bosdH(E) 4~2~2
,', exp

~

—
~

cos[2z (E —E;)/Ku], (32c)

b~M»(E) = —2,.„'„~ 1 — '
2 ~

exp ——
~

—+ —
~

cos[2vr(E; —Ez)/fur]
o, (E) 7 ""' ( 1+(d2~, )

( m'I
~"pI —

I
»8I2~(& —L)//»I +»vI —

I
~»l»(@ —@,)/~l ), (32d)

where

1 1 1+7-. 7.1ntra Tinter '
tt u

intra
tt

inter
t2 2pinter

U

1 h3
)Q;;pm

1 h3
(33)Q;. pm

I

Equation (32b) represents the classical contribution to
the conductivity, while Eq. (32c) describes the usual SdH
oscillations. ' The MIS contribution to the conductiv-
ity is given by Eq. (32d). The last two terms describe
oscillations caused by the difFerence in the widths of Lan-
dau levels belonging to difFerent subbands. Indeed, it can



5536 M. E. RAIKH AND T. V. SHAHBAZYAN

be easily seen that for wi ——72 the contributions of these
terms, &om different subbands, to the total conductivity
cancel each other. These terms as well as the SdH oscil-
lations disappear with increasing temperature since their
period depends on energy.

The first term in the rhs of Eq. (32d) is the one we are
looking for. The period of oscillations of this term, given
by Eq. (2), depends only on the subband separation b, =
E2 —Ei. Therefore, averaging with the Fermi distribution
function does not affect MIS oscillations as far as T «
EF. (We neglect for now the acoustic-phonon-assisted
broadening of Landau levels which we will be discussing
in Sec. V.) Thus, the magnetointersubband correction to
the conductivity, which survives at high temperatures,
can be written as

N. =) N. ,
2

m . flu f 2vr2T) ( m- 5) EF —E;+ A! ! exp!—
2vrh2 - ' 2~ hu ) i, sr~;)

x cia]2m (E~ —E;)/hw] ) . (36)

N, 1). r f2 'T5, (
Np 2, '

2vr ( hu ) ( sr~;)

The Fermi energy, expressed through the concentration,
has the form

g trMis T ( 2ld2T2——2 1—
rr0 &inter 'q 1 + ~2&2

~2 U 2

x exp ——
1

—+ —
! cos(2vrA/Ru), (34)

x sin 2~1

where Np ——1/nt2 and the —(+) sign corresponds to
i = 1 (2). It is seen from Eq. (37) that the oscillating
part of E~ vanishes exponentially at high temperatures.

where oP is given by Eq. (32b) with E replaced by EF.
Equation (34) was derived under the condition urw; «

1. In accordance to the qualitative consideration of Sec.
I, the MIS correction has a minimum, when b, /her is an
integer, which corresponds to completely aligned stair-
cases of Landau levels. It is also seen that the rhs of Eq.
(34) changes sign at &uw; = 1. This can be explained as
follows. The case ~7;. )) 1 corresponds to a weak disorder
(or strong magnetic field). In this case the classical con-
ductivity o 0 is proportional to 1/r; [see, e.g. , Eq. (32a)].
Then it is clear that the peak in intersubband scattering
results in a maximum in the conductivity. Thus, despite
the fact that Eq. (34) does not provide the precise shape
of oscillations at ~w, )) 1, it gives a correct qualitative
description of the transition from a strong to a weak dis-
order.

In contrast to the SdH term (32c), the MIS correction
to the conductivity contains the product of two Dingle
factors, corresponding to each subband. As a result, at
low temperatures the MIS oscillations are not visible on
the background of the SdH ones. This situation changes
with an increasing temperature. The averaging of Eq.
(32c) with the Fermi distribution function yields12 20

B. Weak disorder

Consider the case of weak disorder, Z' « ~. Then
the MIS oscillations of the conductivity represent a sys-
tem of isolated peaks at integer values of 4/Ru. In other
words, oMi is a function of "deviation" b from the res-
onance (see Fig. 1)

(38)

where here ( . ) denotes the integer part. For Z',.' « Ru
and b « Ru, the relevant values of energy lie in the
vicinity of aligned Landau levels Eq„and Ei„—b. Then
in SCBA equations (16) only two terms, corresponding
to these levels, contribute to the sums over n in the rhs.
All other terms are small in parameter EI'/Ru « 1. The
SCBA equations then take the form

Q11 Q12 3g" 8 —Z, (f, b) t+b —& (&, &)
'

g~SdH

~0
2

4u)2r, 2 (2m 2T )] t'

exp
1 + (u2~.2 ( her J ( (u~; )

x cos[27r(EF —E;)/Ru], (35)
F2 Q12 Q22 3gb"('')='

~ z, (~,s)'~+a-z. (s, ~)

where A(x) = x/ sinh(x). At T ) hey the SdH oscillations
are damped by the factor exp( 2m T/—bc'), while the MIS
ones are not. Therefore, at temperatures T ) 5/2m+, =
I';/n the MIS oscillations should dominate.

For a fixed total concentration %, of electrons, the
Fermi level also exhibits oscillations with magnetic field.
In the case of two subbands the period of these oscilla-
tions depends on the subband separation A. However,
these oscillations of Fermi level do not contribute to the
conductivity at high temperatures. Indeed, with the help
of Eq. (28) the concentration can be written as

z, (z, s) =r'„) Q,,a, (z, s),

with

'( ' ) =
z —z, (~b)'

1
'( ' ) = ~+a-z(zb)

where E' = E —Eq, or, in. matrix form,
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It should be emphasized that, for Qi2 g 0, each of the Z;
depends on both 8 and b. The system (39) then reduces
to quartic equations for each of the Z;.

To obtain an expression for the conductivity we note
again that in the sum over n in the rhs of Eq. (22),
one should keep only the terms corresponding to aligned
Landau levels. Since Z' « bur and h « hu, the Green
functions G' „+& can be simpli6ed as

Z",

8 —Z her —Zi p hu (hu))2'

(42)

and similarly for Gz. Using Eqs. (42) and (40) we get

2

a(E) = ) (E —E;)O'z', "

) ~
(E E )

Zll q
—i Zll

"u
where we replaced the numbers of aligned Landau levels
by E —E; for each subband.

The expression (43) for the conductivity should be av-
eraged with the Fermi distribution function. Note that
Z' (E) is a periodic function of energy, representing the
system of sharp peaks. Therefore the integral over the
energy in the rhs of Eq. (19) can be rewritten as a sum
over all Landau levels and an integral over the width of
the particular level. For T (( EJ; we have

2

, ) q;, '(z -z, ) diaz,"(z,b)z,"(z,b))
1nA ij n

(44)

where we replaced E by E~ in the prefactor and substituted E = E'+ Eq„ into the argument of the Fermi function.
The sum over n in the rhs of Eq. (44) represents a system of smooth peaks with a width of the order of T )) Ru, so
that one can replace the sum by the integral. Neglecting the terms of the order of T/E~ and E'/E~ we finally obtain

(r(b) = ) o;(b') = q.„(8»—8;)f dEZ' (E, b)Z,"(8, ), r
A ij

(45)

IV. NUMERICAL RESULTS

To perform n»clerical calculations it is convenient to
introduce the parameters

r = r~~q, a = qi2/q,
s=a/r, z,- = z, /r, ~=6/r,

(46a)

(46b)

where Z,"(E', h) (r, = 1, 2) are solutions of the system (39).
Let us again trace the transition to the one-subband case.
According to Eqs. (39), in the absence of intersubband
scattering (i.e., at Qi2 ——0) Zi and Z2 are decoupled.
On the other hand, the coefBcient in front of the overlap
integral between Zi and Z2 in the rhs of Eq. (45) van-
ishes at Qi2 ——0, while the integrals of Z; do not depend
on the "deviation" b. Thus, each of the "partial" con-
ductivities in the rhs of Eq. (45) reduces to the constant
o; independent of b. With switching the subband cou-

pling on (i.e., qiz g 0), each of Z; acquires the nontrivial
dependence on h, determined by Eqs. (39), and, besides,
an additional contribution to the rhs of Eq. (45) comes
&om the overlap integral between Zq and Z2. As a re-
sult, the MIS contribution to the conductivity b(rMis/o;~

represents a sharp function of h. Such a sharp depen-
dence emerges &om the fact that at resonance values of
magnetic Beld the alignment occurs for entire staircases
of Landau levels. The conductivity has a maximum at
b = 0 and decreases with increasing ~b~. We see that o(h)
does not depend on temperature as it was discussed in
Sec. I. The results of numerical calculations of the con-
ductivity as well as of the DOS are presented in the next
section.

zy= +
8 —Zy 8+ Z —Z2

a 1
Z2 — + )8' —Zy 8' + X —Z2

and the density of states is

u(s *) = »(~ *)+ g2(s ~)

1+a
'

(zan'(s *)+ z2'(s *)j

(47a)

(47b)

1Ir'(
where z,"= Imz;. The MIS correction to the conductivity
for the ith subband reads

MISbO. 1 3,I2 II Ilde (z; ) —az; z. —1,00 1 —a2 8 (49)

where o;. is the conductivity without the intersubband
scattering contribution (i.e., a = 0). The factor 3/8
comes from the integral over E in the rhs of Eq. (45)
for a = 0. Note that for Qii ——qzz the correction (49)
is the same for both subbands, so that in this case the
MIS contribution to the total conductivity is also given
by Eq. (49).

In Fig. 3 we show the evolution of the DOS, gi(E, b),
for the Brst subband at a = 0.7 with increasing "devi-

I

~h~~~ Q = Qqiiq22. For numerical calculations we as-
sumed that Qii ——Q22 = Q, i.e., the widths of Landau
levels belonging to diferent subbands are equal. The
meaning of I' in Eq. (46) is the half-width of a Landau
level in the absence of intersubband scattering. In this
notation the system (39) takes the form
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ation" kom resonance b = xI', together with the DOS
without the intersubband scattering contribution. The
DOS g2 for the second subband can be obtained from
gq by the replacement b ~ —b. The value a = 0.7
corresponds to the case of the infinite square well. At
b = 0 [Fig. 3(a)], the DOS (for a given Landau level)
represents a semiellipse which is gl + a times broader
than Ando's semiellipse shown by the dashed line. At
the value b 2r (which is the width of Landau level
in the absence of intersubband scattering) two semiel-
lipses, corresponding to difFerent subbands, begin to de-
part from each other [Figs. 3(b) and 3(c)], until at the
value b 3.5I' the complete separation occurs. We see
that the intersubband scattering results in an additional
peak in the DOS, when the alignment of Landau stair-
cases is destroyed. The stronger peak corresponds to in-
trasubband scattering, while the intersubband scattering
causes the weaker one. The ratio of the heights of these
peaks, when they are well separated, is a = Qi2/Q —the
strength of the subband coupling. The evolution of the
total DOS is shown in Fig. 4 for the same values of b and
a as in Fig. 3.
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FIG. 4. The evolution of the total DOS at a = 0.7 with
increasing x is shown for the same values of x as in Fig. 3.
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FIG. 5. The MIS contribution to the conductivity as a
function of the deviation 8 [Eq. (38)] from resonance. Nu-
merical results are shown for the case of a vreak disorder at
a=0.5, 0.6, and 0.7.

The MIS correction to the conductivity near the reso-
nance versus b is shown in Fig. 5, for different values of
a. It represents an isolated peak at b = 0 with a width of
about 2I'gl + a. The height of the peak increases with a,
reaching about 30% of the background at a = 0.7. With
increasing ]b], the MIS correction rapidly falls down and
vanishes at b 3.5I'—the same value at which complete
separation of two semiellipses, constituting the DOS (see
Fig. 4), occurs. Note that the values of a chosen in Fig. 5
are close to those for the infinite square well (a = 0.67),
parabolic (a = 0.58), and semiparabolic (a = 0.52) po-
tentials.

V. CONCLUSION

In this paper we developed the theory of magnetointer-
subband (MIS) oscillations of the conductivity in the case
when two subbands are occupied. We calculated the MIS
contribution to the conductivity using the self-consistent
Born approximation, which we generalized to the two-
subband case. Calculations were performed both for the
cases of weak and strong disorder, which we assumed to
be short-range. Physically, MIS oscillations result &om
the resonant intersubband scattering associated with the
alignment of staircases of Landau levels, corresponding
to different subbands. We have shown that MIS oscil-
lations survive with increasing temperature, the reason
being that their period, given by Eq. (2), does not de-
pend on the position of the Fermi level.

We emphasize that the intersubband scattering re-
quires a large momentum transfer and, hence, occurs in
saxnples with short-range disorder, caused, say, by inter-
face roughness or by impurities close to the 2D electron
gas. In quantum HaO samples with a large spacer the ran-
dom potential is long-ranged and intersubband scatter-
ing plays a little role. On the other hand, in the presence
of short-range disorder the long-range harmonics of the

random potential do not affect the MIS oscillations since
they just modulate the bottoxns of the subbands, and
both staircases of Landau levels follow this modulation.
Therefore a sxnooth potential does not destroy the align-
ment of these staircases.

In our consideration, we assuxned that the energy spec-
trum of each subband represents a staircase of even-
spaced Landau levels. The main reason why this assump-
tion can be violated in real samples is nonparabolicity of
the conduction band, which results in a decrease in the
interlevel spacing with n. The theoretical and experixnen-
tal studies performed in Refs. 30 and 31 indicate that the
relative decrease in ~ can be estimated for large n as

bE„hu)
L) E, (50)

with E, 1.4 eV for GaAs. For B 0.5 T and n =
50 the ratio (50) is about 0.03, i.e., the alignment of
staircases remains unafFected even for considerably large
subband separation 6 40 meV.

At low temperatures the effect of the alignment of
Landau levels, belonging to different subbands, was dis-
cussed in the experimental papers of Refs. 13, 15, and
16 in connection with observed anomalies in the DOS
and the conductivity in the quantum Hall regime. Such
anomalies were caused by a double minimum structure
in the total DOS, resulting &om the superposition of
the DOS for each subband. When the Fermi energy lies
in this double-minimuxn region, a peak in magnetoresis-
tance occurs and the corresponding Hall plateau disap-
pears. The suppressed plateau recovers with increasing
electron concentration, when the Fermi level moves up.
When the Fermi level reaches the next double-minimum
region in the DOS, the corresponding plateau disappears
again. The suppression and recovery of quantum Hall
states was observed ' for the values of filling factors
v = 4, 8, and 12. Such an observation is possible in the
low-temperature regime (the ratio T/hu was about 0.07
in experiment) when only Landau levels, closest to the
Ferxni level, contribute to the conductivity.

The low-field oscillations of the conductivity with an
anomalous dependence on temperature were reported by
Leadley et al. in Ref. 19. They performed Shubnikov —de
Haas measurements on a GaAs-Gaq Al As heterojunc-
tion with two occupied subbands. At T & 1 K, the oscil-
lations of conductivity represented a simple addition of
sinusoidal oscillations resulting &om different subbands.
At temperatures above 1 K, two series appeared to be no
longer additive but rather multiplicative, i.e., the ampli-
tude of the first-subband series became modulated by the
period of oscillations &om the second subband. Within
the interval 1 ( T ( 4 K the degree of modulation was
increasing with temperature. Such an increase was first
attributed to acoustic-phonon-assisted increase in the in-
tersubband scattering rate. However, the later measure-
ments by the same authors, and also by Coleridge
(who observed a similar efFect), have shown that acoustic
phonons do not, in fact, contribute to the intersubband
scattering up to T 20 K.

The rise in intermodulation with temperature can
be viewed as an onset of the MIS oscillations. In-
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deed, the energy distances E~ —Eq and E~ —E2
in experiments differed strongly (about 15 times).
In this case the sum of the Shubnikov —de Haas term
bur /o z oc cos[2vr(E~ —Eq)/Ru] and the magneto-
intersubband term her& /o'z Cx cos[2m(E2 —Eq)/her] in
Eq. (32) can approximately be presented as the SdH os-
cillations in the first subband modulated by cos[2vr(Ez-
E2)/her]. Then the temperature damping of SdH oscilla-
tions results in an increase in the degree of modulation.
The characteristic temperature for such a raise kT I'/vr

(k being the Boltzmann constant) seems also to be rea-
sonable. Indeed, the width I' is equal to I' = 5/2r, r be-
ing the scattering time. This time can be estimated from
the mobility p = ert, /m, where rt, is the transport relax-
ation time. For narrow spacer samples used in Refs. 19—
21, with the mobility p 10s cm2/V ~s r, a reasonable
estimate for the ratio rt, /r is about 10. Then, for char-
acteristic temperature, we obtain T 5he/xkmp, 2.2
K with m = 0.067mo.

It should be pointed out, however, that at T ) 4
K all the oscillations in Refs. 19—21 were washed out
completely, while our theory predicts that the MIS term
should survive at higher temperatures. The possible rea-

son for such a discrepancy is that in our derivation of Eq.
(32) it was assumed that a large number of Landau levels
are occupied in each subband. This was not the case in
Refs. 19—21. At typical magnetic fields B 0.4 T, only
two to three Landau levels in the second subband were
occupied. For low Landau levels the modulation of the
DOS cannot be presented simply as cos[2vr(E —E2)/Ru].
Consequently, the product bgq(E)bg2(E) cannot be split
into the sum of an oscillating term and a term indepen-
dent of energy. Then it can be shown that this results in
the damping of MIS oscillations with temperature. How-
ever, such a damping is weaker than exp( —27r T/~) for
SdH oscillations.
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