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We investigate the interaction eQ'ects for double-layer two-dimensional electron-gas systems in the
absence of a magnetic field using both the random phase approximation (RPA) and Singwi-Tosi-
Land-Sjolander (STLS) approximations. We show that the RPA overestimates correlation effects
and that one needs, at a minimum, to include local-Beld corrections in order to get reliable estimates
for the correlation energy and pair-distribution functions. The electron momentum distribution in
double-layer systems is also studied by evaluating the electron self-energy from the screened exchange
interaction. We 6nd that RPA and STLS dielectric functions give quantitatively similar results for
this quantity. The momentum distribution function depends very weakly on the layer separation of
double-layer systems.

I. INTRODUCTION

Over the past three decades two-dimensional (2D) elec-
tron systems have been extensively studied both theoret-
ically and experimentally. Many properties of these sys-
tems are strongly infIuenced by the Coulombic electron-
electron interactions. 2 Advances in the epitaxial growth
of layered materials have recently made it possible to
fabricate high-mobility double-layer 2D electron systems
with electrons confined to nearby parallel planes sepa-
rated by a distance comparable to the distance between
electrons within a plane. These new systems exhibit a
variety of qualitative efFects due entirely to interlayer
Coulomb interactions. In strong perpendicular magnetic
6elds where kinetic energies are quenched and interac-
tions are most important new &actional quantum Hall
states appear because of interlayer correlations. Some
of these states have a spontaneous broken symmetry as-
sociated with the layer degree of &eedom which has re-
cently attracted considerable attention. Even in the ab-
sence of a magnetic 6eld, however, new phenomena ap-
pear. Coulombic interlayer friction influences the trans-
port propertiess of double-layer systems. It has also
been suggested that Wigner crystallization is favored for
double-layer 2D electron systems because of the inter-
layer electron interaction. In this article we present a
study of the effect of interlayer correlations on some prop-
erties of double-layer electron-gas systems using approxi-
mations which are expected to be reliable at the densities
of typical experimental systems.

Many-body effects for an interacting electron gas were
first studied7 using the random phase approximation
(RPA). The RPA takes account of dynamic screening
in the electron gas but does not include corrections due
to exchange and correlation to the efFective potentials
associated with charge fIuctuations in the system. The
local-field theory ' of Singwi, Tosi, Land, and Sjolander

(STLS) includes these corrections in a simple physically
motivated way and represents an important re6nement
of the RPA. As expected, corrections to the RPA are
much more important in two dimensions than in three
dimensions: nevertheless comparisons of the STLS re-
sults with accurate Monte Carlo calculations ' show
that at least the ground state energy is given with re-
markable accuracy by this simple approximation.

In this article we describe an application of the STLS
approximation to double-layer 2D electron-electron and
electron-hole systems. We calculate pair-correlation
functions and ground state energies. We have also used
the self-consistently determined dynamically screened in-
teraction of the STLS approximation to evaluate the one-
body Green's function from which we calculate the mo-
mentum distribution function. We have restricted our-
selves to the case of zero magnetic Geld and to elec-
tron densities typical of experimental systems. In this
regime the electrons form a weakly interacting system
and the STLS approximation is believed to be reliable.
(The STLS approximation has been applied to the strong
magnetic field regime, although its validity there is du-
bious. ) We find that, as in the case of single-layer sys-
tems, the RPA gives a gross overestimate of correlation
energies in double-layer systems. It is necessary to in-
clude local-field corrections to obtain reliable results for
quantities like the electron pair distribution function and
correlation energies, especially in the case of electron-
hole double-layer systems. However, results for the elec-
tron momentum distribution do not depend strongly on
whether the RPA or the STLS dielectric function is used.
The dependence of the electron momentum distributions
on interlayer interactions is surprisingly weak.

In the experimental systems which motivate these cal-
culations electrons are confined to quantum wells and the
layers have a finite width which is typically comparable
to the electron-layer separation. If the subband separa-
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tion in the quantum wells is large the finite width can
be accounted for exactly by including appropriate form
factors in the effective interlayer and intralayer Coulomb
interactions. These finite width corrections for the elec-
tron layers are dependent on details of the geometry of
a particular sample and for definiteness we restrict our
attention in this article to the case of arbitrarily nar-
row electron layers. (For a single layer Jonsonio found
that corrections to the RPA were smaller in finite width
systems. ) The system is then completely specified by
the layer separation and by the electron density in each
layer. We employ efFective atomic units so that the bulk
dielectric constant and the effective mass of the semi-
conducting host appear only through their scaling of the
efFective Bohr radius: a& ——e~h /m'e2 and the Ryd-
berg energy Ry' = e2/2a&. (For the conduction band of
GaAs a& 10 nm. ) The electron density in each layer
will be expressed in terms of the customary dimension-
less parameter r, defined by n i = ssr2ag (Fo.r the
conduction band of GaAs n [10 i cm 2] 3.2r, .)

The STLS approximation is based on a physically ap-
pealing picture, in which the static pair-distribution func-
tion is used to approximate short-range electronic cor-
relations, rather than a systematic expansion in terms
of a small parameter. Therefore there does not exist
a simple parameter which can be used to quantify the
accuracy of the STLS approximation. The validity of
this approximation should ultimately be determined by
comparing the calculated results to experimental data
or to more sophisticated calculations, particularly Monte
Carlo calculations. For single-layer two-dimensional sys-
tems this comparison indicates that the STLS approxi-
mation is remarkably accurate. In this paper we use the
STLS approximation to estimate the importance of inter-
layer correlations for the experimentally relevent proper-
ties of a double-layer two-dimensional electron system
within this approximation. The possibility that effects
not accounted for by the STLS approximation may be-
come noticeable under certain circumstance should be
kept in mind.

In Sec. II we derive the self-consistent STLS equations
for the correlation functions and density-density response
functions appropriate for double-layer systems. Results
for the pair-correlation functions and the correlation en-
ergies will be discussed in Sec. III and the calculations
of the momentum distribution are described and the re-
sults presented in Sec. IV. Section V contains a summary
of our results and a brief discussion of potential applica-
tions.

II. THE RPA AND STLS APPROXIMATIONS
FOR DOUBLE LAY'ERS

The STLS theory is based on an approximation for the
density-density response function y, which is defined in

the double-layer case by

~p'(q, ~) = x', (q, ~)V'"'(q ~) (1)
where i, j = I,B are layer indices and repeated indices
are snmmed. In Eq. (1) hp is the linear density response
to the external perturbing field V'" . y(q, u) can be re-
lated formally to the dynamic density-density correlation
function of the unperturbed system but this cannot be
evaluated exactly. The problem at hand is therefore to
find a reliable approximation. In this section we brieQy
describe the application of the RPA and STLS approxi-
mations to double-layer systems.

In both RPA and STLS approximations the system
response to an external potential is equated with that of a
noninteracting electron system responding to an external
potential which includes an effective potential &om the
interaction with induced charges:

~p*(q ~) = x,', (q ~)[V'"'(q ~) + V"(q ~)l (2)

Here y, . = b,syo and g, is the density-density response
function of an isolated noninteracting 2D electron sys-
tem with the density of layer i. g, can can be evaluated
analytically. V' characterizes the effect of electron-
electron interactions. The RPA and the STLS approx-
imation differ in how V'+ is approximated. In the
RPA, only the Hartree term of the electron-electron in-
teraction is included so that V,'+ = v;sbps, where the
v,~ are the 2D electron-electron interaction potentials:
vr, L, (q) = vzsi(q) = 2st'e /q and vza(q) = vRI, (q)
exp( —qd)VL, L, (q), where d is the separation between lay-
ers. The RPA does not account for correlations between
the "responding electron" and the induced charge. To
correct for this deficiency STLS (Ref. 8) introduced an
exchange-correlation hole in the induced charge which
was approximated using the 8tatic, equilibrium electron
pair-distribution function. For the two-layer case this
ansatz leads to an efFective interaction with the induced
charge of the form

V"(q ~) =v*.(q)~p (q ~)[1-G' (q)] (3)

where n~ is the average areal density of electrons in the
jthlayer, z;s ——0 if i = j and z;s = dif i P j.
The derivation of Eq. (4) is straightforward following the
spirit of the original STLS argument.

Combining Eq. (2) and Eq. (3), we obtain the STLS
expression for the density-density response function of a
double-layer 2D electron gas system:

where the dependence of the local-field factors, G;s (q), on
the pair-distribution functions y,s (r) is expressed through
the static form factors (see below)

1dpqpG' (q) = — [b ' —S' (p q)]e Is' el i''
n, (2n)2 qp

t'
[y&(q, ~)] —vt, l, (q) [1 Gl, r, (q)] vt—,Is, (q) [GI.ss(q) —1]E»1,(q) [GIsl. (q) —1] [Zsi(q, ~)] ' —»&(q) [1—G&&(q)] y
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The RPA is recovered if the local-field factors are set
to zero, i.e. , G;~. (q) = 0. The STLS approximation
leads to a set of equations which need to be solved self-
consistently. The static structure factors appearing in
Eq. (4) which determine the local-field factors are re-
lated to equal time density-density correlations which
in turn may be obtained by integrating the density-
density response function over &equency using the zero-
temperature fIuctuation-dissipation theorem. The inte-
gral over frequency must be done numerically and is most
conveniently performed along the imaginary frequency
axis where the response function is well behaved

(6)

The great advantage of the analytical continuation of the
response function to the complex frequency plane and
the subsequent Wick rotation of the &equency integral
is that it eliminates technical difficulties associated with
the plasmon poles along the real &equency axis. Along

the imaginary axis yo is given by

x,, (q, z(u) =

with

4

6 =
4m2

Equations (4)—(6) comprise the STLS self-consistent
equations for the double-layer system. Results obtained
from the numerical solution of these equations are dis-
cussed in the next section.

Historically the Grst attempt to go beyond the RPA
in electron-gas calculations was the Hubbard approxima-
tion. This approximation may be obtained by using the
Hartree-Fock approximation for the static structure fac-
tor in Eq. (4):

SHF( ) ~
—sin (q/2k~;) + q/(7rk~;) [1 —(q/2k~, )2]i~2 if q ( 2k~,

2 if q & 2kF'

The Hubbard approximation includes only exchange con-
tributions to the local Geld and there is no local-Geld
correction to the interlayer effective interaction. With
the Hubbard approximation one is relieved &om the task
of solving the coupled STLS integral equations at the ex-
pense of neglecting the correlation contribution to the lo-
cal Geld. In multilayer systems, the Pauli exclusion prin-
ciple becomes less dominant, and we expect the Hubbard
approximation to be less accurate than for a single-layer
2D electron system.

III. PAIR-DISTRIBUTION FUNCTIONS AND
CORRELATION ENERGIES

Many properties of an electron-gas system are related
to the frequency-dependent response function y(q, ~) ob-
tained &om self-consistently solving the coupled STLS
equations. These properties can be separated into two
categories. Quantities like the two-particle distribution
function, the ground state energy, the collective excita-
tion spectrum, etc. , can be evaluated directly. Single-
particle electron properties, like the quasiparticle life-
time, the quasiparticle effective mass, the momentum
distribution function, etc. , require the evaluation of the
self-energy due to the Coulomb interaction between the
particles. In this section we discuss only properties in
the first category and delay to the next section a dis-
cussion of the evaluation of the self-energy and. of inter-
action effects on single-particle electron properties. Al-

though all the above-mentioned quantities can and have
been calculated, we present results here only for the pair-

distribution function and the ground state energy. These
two quantities are chosen because they display correla-
tion effects most clearly. The pair-distribution functions
are calculated by performing a Fourier transform of the
static structure factors which solve the STLS equations:

g,~(r) = n~ [S;~(q) —8,z]exp(iq r) .

The energy per particle of the electron-gas systems is
conventionally separated into noninteracting, exchange,
and correlation contributions. The electrostatic energy
of the system is usually assumed to be zero because of
the presence of a uniform neutralizing background and
we follow that convention in this section. However, as we

discuss briefIy below, the electrostatic energy is impor-
tant when considering response involving charge transfer
between the layers. The exchange energy is the lead-
ing order term in the perturbative treatment of electron-
electron interactions and may be determined by evaluat-
ing the expectation value of the interaction term in the
Hamiltonian for the simple Fermi-sea Slater determinant.
For the double-layer system both noninteracting and ex-
change energies are simply the sum of the corresponding
energies for isolated 2D layers. The kinetic energy per
particle is given by

[Nl, t (r.r, ) + Nnt {rsn)),
NL, +NR

where t (r, ) is the kinetic energy per particle for an iso-
lated layer:2
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tp(r, ) = 1/(n„r2). (12) sities for which high-mobility 2D systems can now be
fabricated.

In Fig. 1 the correlation energy per particle is shown
as a function of the particle density in each layer for
both the RPA and the STLS approximation. The first
thing to be noticed is that the magnitude of the corre-
lation energy of the RPA is larger than the correlation
energy of the STLS, roughly by a factor of 2. The over-
estimate of the correlation energy is a result of the fact
that the RPA dielectric function does not incorporate ef-
fects of short-range correlations of the electrons. In the
STLS approach, the local-field factors G;~ (q) reduce the
strength of the effective interaction potentials which en-
ter the dielectric function. The overestimate of the corre-
lation energy by the RPA is then essentially removed. As
emphasized by Jonson, the failure of the RPA is more
dramatic in two dimensions than it is in three dimensions
because of phase-space considerations which make short
distances have a relatively larger importance. Figure 1
suggests that the basic conclusion of Jonson o that one
has to go beyond the RPA in order to obtain a reasonably
good description of correlation effects in 2D electron sys-
tems remains true for multilayer systems. In Fig. 2, the
correlation energy per particle obtained &om the STLS
approximation is shown as a function of layer separations.
At large layer separations the correlation energy equals
that of two independent single layers. At zero layer sep-
aration, the double-layer system becomes equivalent to
a single-layer system with a valley degeneracy n„=2.
Our results in these two limiting cases agree with the re-
sults known from previous single-layer calculations.
As the layer separation increases, the correlation energy
decreases smoothly, approaching the value that results
for two independent layers when d & E+ . This quanti-
tative result suggests that interlayer correlations become
important only at small layer separations.

NL~ (r,L) +NREM (r,R),
1 0 0

NL+ NR

where e (r, ) is the exchange energy per electron for an
isolated layer:

e (r, ) = — (2/n„) ~ .
B

(14)

The correlation energy is defined as the difference be-
tween the total ground state energy and the sum of the
noninteracting and exchange contributions. We evaluate
the ground state energy by using a coupling constant in-
tegration for the interaction term which requires that we
be able to evaluate the expectation value of the interac-
tion term in the Hamiltonian at any coupling strength.
The necessary expectation values may be expressed in
terms of the static structure factors and the correlation
energy per particle is given by

1
[NL~.L + NRe.R + NLe.LR) ~

L+ R

Here (in effective Rydberg energy units) the contribu-
tions to the correlation energy &om the intra- and inter-
layer Coulomb interactions are, respectively,

(~)dA dq [SLL (q) S(q)]-
g'Av ) reLICFL p p

(16)

and

In Eq. (12) n„is the valley degeneracy, i.e., the number
of degenerate single-particle states per spin at each 2D
wave vector. (For the conduction band of GaAs n = 1.)
The exchange energy per electron is

(2'l 1
&cLR = dA dq e- SLR(q).

('nv j reL4'L 0 0

(i7)
S~"~ is the structure factor at a particular value of the
coupling constant and the expression for eR is of the same
form as that for eL. Equations (16) and (17) follow after
noting that the exchange energy can be expressed in the
form

0 0

—0.2

t I [ I

) i/2
dq [S (q) —1)

(&v p reL~FL p

and that the Hartree-Fock static structure function is in-
dependent of coupling strength. Note that for large layer
separations eLR goes to zero and the correlation energy
is also the sum of contributions from the two indepen-
dent layers. The correlation energy per particle goes to
a constant at high densities (r, (( 1), while the kinetic
energy and the exchange energy go like r, and r, , re-
spectively, so the relative difference in total ground state
energy between the RPA and the STLS approximations
becomes insignificant at high densities. However, as we
see below, quantitative corrections are important at den-

—04— RPA

FIG. 1. Correlation energy per particle as a function of
electron density in a double-layer system. The solid line is the
STI S result and the dotted line is the RPA result. Results
are shorn for the case of equal layer densities and the layer
separation at each density is d = K+ .
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electron-hole double-layer system, it is especially neces-
sary to go beyond the RPA.

IV. SELF-ENERGY AND THE MOMENTUM
DISTRIBUTION FUNCTION

-p. 8 '-

Single-particle properties of the 2D electron layers are
obtained from a calculation of the self-energy due to
electron-electron interaction. In this section we describe
a self-energy calculation based on the STLS approxima-
tion for the dynamically screened electron-electron in-

teraction. This approximation we use does not predict

dkp.

FIG. 2. Correlation energy per particle as a function of
the layer separation in a double-layer system calculated from
the STLS approximation. Two layers have equal density. Re-
sults are shown for r, = 0.5. For GaAs this corresponds to
n ~ 1.3 x 10 cm per layer. This density is higher than
that of typical experimental samples.

1.5 f I ~~ T
I

In Fig. 3 the intra- and interlayer pair-distribution
functions are shown for both the RPA and the STLS ap-
proximation. The difference between RPA and STLS ap-
proximation pair-distribution functions is consistent with
the difference in their correlation energies. The corre-
lation energy may be related to the interaction of an
electron with its correlation hole which is described by
the pair-distribution function. The failure of the RPA is
most obviously manifested in Fig. 3 by the fact that the
pair-distribution functions from the RPA fail to remain
positive at small distances. This results in an overesti-
mate of the exchange-correlation hole density at small
distances and hence to an overestimate of the correla-
tion energy. The STLS pair correlation has a very small
violation of the positive requirement even for the fairly
low density situation which is illustrated. Except in the
case of very high electron densities, the STLS approxi-
mation is needed to obtain a reasonably accurate pair-
distribution function. The interlayer correlation holes de-
scribed by the interlayer pair-distribution function will
diminish quickly at large layer separations (d & K+ ).
As mentioned earlier, the Hubbard approximation cannot
include the effect of interlayer correlation. It is therefore
expected to be a poorer approximation in a multilayer
system than for a single-layer 2D electron gas.

In electron-hole double-layer structures, where one
layer contains a 2D electron gas and the other contains a
2D hole gas, the RPA results are even less reliable. This
is no surprise since mean-Geld theories like the RPA are
expected to be especially poor for attractive interactions.
In Fig. 4 the pair distribution functions of an electron-
hole double layer are shown for both the RPA and the
STLS approximation. One can see clearly that the inter-
layer correlation from the STLS is much stronger than
that from the RPA. To obtain reliable results for the

/

p p l&

rkp,

(b) HPA

I I I I I J I I

FIG. 3. The intralayer (solid line) and interlayer (dotted
line) electron pair-distribution functions in a double-layer sys-

tem calculated from the STLS (a) approximation and the
RpA (b). The two layers have the same electron. Re-

sults are shown for r, = 4. For GaAs this corresponds to
n 2.0 x 10' cm per layer. This density is close to the
lowest at which high mobility samples can presently be fabri-

cated. The layer separation is d = K& 28 nm.
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any violations of Fermi liquid theory; the possibility of
such violations in 2D electron systems has recently been
the subject of speculations motivated by the unusual
electronic properties of the conducting planes of high-
temperature superconductors. is The conditions (if any)
under which violations of Fermi liquid occur in 2D sys-
tems are not known and we appeal to the absence of any
experimental indication of violations in the 2D electron-
gas case to justify our approach. The assumption of the
Fermi liquid picture for the electron gases implies that
interaction e8'ects will not change the single-particle elec-
tron properties qualitatively, although important quan-
titative efFects can occur.

We approximate the self-energy by a single term de-
scribing the dynamically screened interaction of an elec-
tron with its exchange hole. When the RPA is used to
determine the screened interaction the result is the RPA
approximation for the self-energy which, &om a pertur-
bation theory point of view, is a sum of ring diagrams.
The local-field factors G(q) which appear in the STI S
approximation for the dielectric function can be viewed
as approximating vertex corrections to the polarization

loops in the RPA ring diagrams. In this section, we first
sketch the procedure for evaluating the self-energy, and
then discuss the momentum distribution of the electrons
which results. As in the preceding section, the results
from the RPA and the STLS approximation will be com-
pared and the dependence of the momentum distribution
on electron densities and on layer separations will be illus-

trated. Although other single-particle electron properties
can also be determined once the self-energy is evaluated,
we concentrate here on the momentum distribution.

When there is no hopping of electrons between the
two layers, the particle number in each layer is a con-
stant of the motion and the electron Green's function
must be diagonal with respect to the layer indices. We
may split the self-energy into exchange and correlation

peart~: ZL, L, ——ZI,L + ZL, I, ~h~~~ the exchange self-energy
is obtained without including screening and the corre-
lation self-energy is defined by this equation. The ex-
change self-energy for one layer is real, independent of
&equency, independent of the presence of the other layer,
and reducible to a simple integral. ' In effective Ryd-
berg units, it is given by

~ei ~v vr )i~ i( & 2kq ) ky; (19)

The correlation contribution to the self-energy has the
usual branch cut along the real &equency axis. We
evaluate the retarded self-energy ZLL (k,ip„=u + io+).
Since the real part and imaginary parts of ZL& satisfy
Kronig-Kramers relations it is sufficient to evaluate the
imaginary part of this quantity.

In the Matsubara formalism, the approximation we

employ for the self-energy is given by

I' (q) = 1+Uy

with the elements of U defined by

(22)

jth layers. The quantity I is defined by Eq. (21); it may
be interpreted as approximating vertex corrections to the
polarization loops of the RPA. Comparing Eq. (21) and
Eq. (5) we see that I' is related to the local-field factors
G(q) by

1 1
~LL(k ip ) = ——).—) vt, l, (q, i~ )

q iv)„

xP~~(q+ k, a~„+ip„), (2o)

' (q) = ' (q)G' (q). (23)

The approximation we use for the screened electron-
electron interaction potential is

where v is the area of the 2D layers and vl'L represents
a screened intralayer interacting potential for which an
explicit expression will be given in the following. To mo-
tivate our expression for vL'I, we rewrite Eq. (5) in the
following form:

~ —[1 ~rv]-~r
Here each variable is a 2 x 2 matrix with respect to the
layer index. y is the diagonal 2 x 2 matrix specify-
ing the independent response of two Doninteracting two-
dimensional layers. V has as its elements v;~, the bare
Coulomb potentials between two electrons in the ith and

V'"(q, ~) = r(q)e(q, (u) 'V(q)
= r(q) [1+v(q) x(q, u))]v(q)
= [1 —y (V —U)] V. (24)

This particular form is motivated by identification of I'
as an approximate vertex correction and requires the in-
sertion of the same approximate vertex correction in the
self-energy diagram as in the polarization loops. (See,
for example, the corresponding discussion for single com-
ponent systems in Ref. 13.) The explicit form for the
screened intralayer electron-electron interaction potential
is obtained by inverting the necessary 2 x 2 matrices to
obtain the diagonal elements of V'":

[1 —vt L, (1 Gr I, )y&I ]vl I—, + vL &(1 —GrR) y&&
[1 —yl I vt I, (1 —GL I,)][1 —vRQ+n~(l —GQR)] —

[VLR (1 —GQR)]
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ImZrL (k, (u) = —) 1m[vI'I (q, (i,+ —ur)]

x [e(~ —()',+,) —~(—C+,)] (26)

where energies are measured kom the Fermi energy.
Prom the above expression we can see immediately that
Im[ZL L (ur = 0)] = 0, so the electron lifetime at the Fermi
surface is infinite. It is important in the above expres-
sion to include the contribution from the plasmon poles
in the screened interaction which occur along the real

The RPA is recovered by setting all the local-field correc-
tions to zero; G;z(q) = 0. For the STLS approximation,
the G;z(q) are obtained by solving the self-consistent
STLS equations in the previous sections.

Performing the analytical continuation on Eq. (20), we

get the imaginary part of the retarded self-energy as

frequency axis. (Both the real and imaginary parts of
the denominator of Eq. (25) vanish at both in-phase and
out-of-phase plasmon frequencies and 1m[v/&] has a h'-

function contribution which must be included. ) With
Eqs. (25) and (26), the imaginary part of the retarded
self-energy can be computed numerically. Employing the
Kronig-Kramers relations, the real part of the correlation
self-energy can then be evaluated.

Combining the above numerically obtained results
with Eq. (19) gives a complete result for the one-body
Green's function and we are then able to evaluate any
single-electron property of the system. In particular, the
momentum distribution for the electrons is given by

n(k) = f A(k, ~),

where the spectral function is related to the self-energy

by

STLS

1
A(k, u)) = —2Im

(u + i0+ —(so —E'I'~t (k, ur)
(28)

0 ——

The size of the discontinuity of the electron momentum
distribution function at the Fermi surface, denoted by
ZF, provides a direct measure of the interaction efFects.
For a &ee electron gas, ZF ——1, while for an interacting
electron gas 0 & ZF & 1. This quantity, the quasiparti-
cle renormalization constant, is related to the self-energy
b 13

1

[1 —BReE~~(k, ur)/Bur[g s p
(29)

l 1 z~ ~M l
The momentum distribution function of the electrons cal-
culated from the STLS dielectric function is shown in

Fig. 5 for two difFerent electron densities. Decreasing

(b) RPA 1.0
STLS

0.5---

FIG. 4. The intralsyer (solid line) and interlayer (dotted
line) particle pair-distribution functions in an electron-hole
double-layer system calculated from the STLS (a) and the
RPA (b). The two layers have equal carrier densities with

density parameter r, = 4 and the electron and hole masses
were taken to be equal. The layer separation is d = 0.5 K+
as in Fig. 3.

0.0 '-—--- -'-

1.0
k( k, ,

-

FIG. 5. Electron momentum. distributions in a double-

layer system calculated from the STLS approximation with
1 (dotted line) and r, = 2 (solid line). (n 3.2 x

10~~ cm and n 0.8 x 10 cm .) The layer separation in
each case is d = it+ . (d 7 nm snd d 14 nm. ) The layers
have equal electron density.
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distributions depend very weakly on layer separations in
double-layer systems, except possibly at very small layer
separations.

In this article we have presented some numerical results
for layer separations which cover the range of densities
and layer separations of typical experimental systems. In
order to compare with measurements on a particular sys-
tem it is necessary to account in detail for the geometry
of that system including the 6nite width of both quan-
tum wells. The calculations described here can then

be carried out without any essential modification for any
sample geometry.
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