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In a previous study an unconventional species of a 3ahn-Teller system was presented, where
electronic excitations of the mixed-valent host crystal adopt the role which is usually played by
nuclear displacements in the conventional coupling mechanism. In the present study the molecular
model is extended to a doped-semiconductor model including an electronic transfer coupling. An
electron capture in the defect states appropriate to describe electron spin resonance measurements
of SmB6.Gd can be explained within this model by the formation of a band-gap state in the coupled
system. The energetic lowering of a defect state as observed for Smae. Er is examined, and is
revealed to be most efFective for a direct coupling to excitations of the localized 4f states of the Sm
surrounding.

I. INTRODUCTION

The rare-earth compound SmB6 has attracted intense
theoretical and experimental interest as a mixed-valent
prototype system. From experimental results it is ac-
cepted to be a semiconductor with an extremely small
band gap of about 3—4 meV. ' This can be described as
a hybridization gap between localized 4f and delocalized
5d orbitals including correlation efFects. 3 Not only does
the ideal crystal show a variety of unusual properties but
also doped ions in this material can show unexpected
behavior. This was observed in electron spin resonance
(ESR) spectra of the Gds+, respectively, the Era+ (Ref.
5) doped system.

At temperatures below about 5 K in the case of
Sm86.Gd + a multiline spectrum was measured, which
could not be explained by the Gd(4f) configuration.
With the hypothesis of an electron capture in an Eg
crystal field state of the Gd(5d) orbital at low tempera-
tures, which results in a Gd2+ ground state, the spectrum
could be interpreted. Above 6 K the anomalous spec-
trum vanished and the remaining lines could very well
be related to the Gd + configuration. The mechanism
of the electron attraction at the defect site remained un-
explained. In the case of SmB6.'Er + at 4.2 K an ESR
spectrum was measured, which is related to a I'8 ground
state instead of the expected I'6 state. The latter type of
ground state is found in isostructural REB6 compounds
(RE=Ba, Ca, Yb), which show no mixed-valent behav-
ior. Because of the remarkable isotropy of the lines the
I'8 state of SmB6.Er + is not a pure crystal field state.

In both cases (Gd +, Er +) the relevant electronic de-
fect states (Es, I's) are Jahn-Teller active because of their

spatial degeneracy. To take the mixed-valent surround-
ing into account, which offers "softer" electron (3—4 meV)
than optical phonon (21 meV) excitations, s a new type of
Jahn-Teller mechanism was proposed for the Er3+ case.
Thereby the defect states are coupled to electronic ex-
citations of the host crystal. Thus the change in the
electronic charge distribution of the surrounding atoms
adopts the role of the nuclear distortions in the conven-
tional Jahn-Teller system. In a molecular model of this
mechanism the energetic lowering of the coupled I'8 state
and the extraordinary isotropy of the Er3+ spectra could
be explained.

To receive a microscopic picture of the unconventional
Jahn-Teller coupling we consider in this paper a doped
semiconductor model. An electronic transfer between the
defect states and the host crystal is included to exam-
ine the conditions of an electron capture in the case of
SmB6.Gd. In the second section we introduce a simpli-
fied model of the host crystal describing its essential elec-
tronic properties. In the third section we introduce the
defect states and the relevant coupling mechanisms into
this system. In the fourth section we calculate the defect
Green function to determine the energetic position of the
defect level for the Gd case, while in the fifth section a
modified Hamiltonian for the Er case is considered.

II. HOST CRYSTAL 8MB'

The electronic properties of SmB6 are determined by
the degeneracy and the coupling of the two Sm config-
urations: (4f) and (4f) (5d) . Since the 4f orbital is
strongly localized, while the 5d orbital is delocalized, this
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results in the mixing of a very narrow 4f and a broad
5d band in the crystal. In an octahedral surrounding,
the former configuration leads to a singlet ground state,
while the 4f part of the latter shows a twofold degenerate
I 7 ground state. We consider in our model at each site
of the cubic Sm sublattice two totally symmetric (Aig)
electronic levels, which are degenerate in the spin indices.
One of these orbitals is supposed to be strongly localized,
representing the 4f states, the other is delocalized and
builds the broad Sd band. If we assume two particles
at each site in the local limit of our model, the degree
of degeneracy of the relevant Sm 4f configurations is re-
fiected by the doubly occupied (singlet) configuration re-
spectively, by a con6guration where the localized level is
singly occupied (twofold degenerate). Because the unoc-
cupied localized state does not contribute to the mixed-
valent behavior it has to be excluded. This is achieved by
taking a Coulomb-like term into account which increases
the energy of this configuration. The Hamiltonian de-
scribing the host crystal is a modi6ed periodic Anderson
model (HphM) (Ref. 9)

HSB ) Sk(1 dhkadhkcr) + ) &y(1 fhjafhia)
k,o

—V ) [fh, b.jdhka exp (ik R;) + H.c.]
k, i,a

(4)

and Eq. (3) adopts the role of a subsidiary condition to
(4). Characteristic electronic properties of the crystal are
already described within the mean 6eld approximation
for the bosonic operators, where these are replaced by
their expectation value (r = (b") = (b)). Within this
approximation the Hamiltonian including the constraint
(3) with a Lagrange multiplier AsB reads

t - tHSB = ) &kdhkadhka ) &f fhkafhka
k,a

V(f„„dhk +H.c.)N

+AsBN(r' —1) + ) (sk + sf),

HpjccM = ) ekdkadka + ) Sffjafja e f ——ef —Ag~, V = Vr. (6)
LCD

+V ) [dkt f; exp(ik. R;) + H.c.]

+2U). fi f.f f. -

In (6) fhtk . ——P,. ~1 exp(ik R;)fht,. was used. A

self-consistent solution is received by exploiting the
Bogoliubov-Feynman inequality for the &ee energy of
a test Hamiltonian. This leads to the self-consistency
equations

sk = 2t(cos k + cos k„+ cos k, ) .

The first term describes the broad pure Gd band with the
nearest-neighbor dispersion relation ek and the operators
dkt, dk . cr is the spin index and the k sum runs over the
first Brillouin zone (lattice constant a=1). The second
term represents the strongly localized 4f states with the
potential energy ey lying within the range of the 5d band

(operators fit, f; ). The third term shows the 4f Sd mix-—
ing leading to hybridization. The last term can be used
to describe SmB6. With the use of the anticommuta-
tor relations the corresponding operator is transformed
to (1 —fit fi )(1 —ft f; ) It therefore . leads to an
energetic increase of the unoccupied localized level.

We change into the picture of holes (ft ~ fhi,
dk ~ dhk ) and consider the limit U ~ oo. In this case
the occupancy of the localized level with two holes is ex-
cluded and we can apply the slave boson approach.
The Bose field with zero energy is described by the op-
erators bt, b;. The following constraint for the hole occu-
pation numbers of the localized states and the Bose field
at each lattice site results in the exclusion of the doubly
occupied localized level in the hole picture.

) ft , fhj +btb; = .1.

Afh+P =1 )

1 t Hsa
~ca =).y (fa~ f~~ )

k, cr

1 t Hsa
2ASBr = ) —fhk dhka+ H.c.

T
k,-" (9)

hkia Yk hkcr + Pk fhkcr

Chk2cr Pk hkcr +k fhka

(10)

where the coefficients obey ]Pk]2 + ~pk~ = 1 and Pkpk +
Pkpk = 0 to fulfill the anticommutator relations for Fermi
operators. When we choose pk and Pk as

1
1 (

1
2

pk = —
2 I

1+ ~ I
sgn(V)2( Wk

1

Wk = (sk —Zg) + 4V (12)

where ()T, denotes the thermal expectation value with
respect to Hg~. To diagonalize the Hamiltonian we make
use of the transformation

Consistent with this restriction the following Hamilto-
nian corresponding to Eq. (1) is obtained:

Eq. (5) is diagonalized. Thus a hybridized band struc-
ture (band index 1) is described, degenerate in the spin
indices. We write down the resulting Hamiltonian in
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the conventional picture of electronic operators (c~ki
t
klcr ' hkln k/n) ~

HSB ) sklck)~ck&~ + As~N(r + 1)
k, l, cr

~kl — (Sf + Sk ~k)
21-

~k2 = (sf + sk + ~k)
2

(14)

M
(D

co

o

3

Q)

Because the system is bilinear within this approximation
the expectation values in Eqs. (7) and (8) can easily be
evaluated, yielding the self-consistency equations (7)—
(9) in the form

0
-1.5

energy ~ (units of 2iti)

nf~ = 2—). I&l' 1 —f(&» T)
k

+I»l' 1 —f(&k2 ~)

(15) FIG. 2. Total density of states (DOS) (arb. units, dotted
line), partial DOS of localized 4f states (full line), and partial
DOS of delocalized 5d states (interrupted line) of the model
for SmB6. ey ———0.7; V = 0.38.

2V
Ass = ).&kA f(&k2~T) f(ski&~)

f (ski, T) is the Fermi-Dirac distribution function. The
chemical potential p and the parameters r and Ag~ were
determined self-consistently. Because of the given parti-
cle number (two electrons per site) this results in a semi-
conductor with a small band gap. In Fig. 1 the dispersion
relation of the system is drawn for the self-consistent (full
line, U ~ oo) and the corresponding tight-binding cal-
culation (dotted lines, U = 0). The effective one-particle
Hamiltonian leads to an energetic lowering of the local-
ized 4f level and, because of the reduction of the mixing
constant V, to a decrease in the size of the band gap. The
energetic lowering for the Sm compound is in contrast to
the energetic raising of the localized level in the case of
the corresponding calculation for Ce compounds. ~a In the
effective one-particle picture this refiects the fact that in
the former case the unoccupied localized states are ex-
cluded, while in the latter the excluded states are the
doubly occupied ones.

-2-

I'IG. 1. Comparison between the self-consistently calcu-
lated band structure of our model of SmBs (full line) and the
corresponding tight-binding model (dotted line). —,sf
—0.7, V = 0.38, U + oo; -. . . , ey ——0.05, V = 0.6, U = 0.

In Fig. 2 the total density of states (dotted line), the
4f density of states (full line), and the 5d partial density
of states (interrupted line) are shown. The sharp maxima
near the band gap are formed by the 4f states, while the
5d states constitute the fiat background of the hybridized
band. In our model the hybridized band structure is
determined by the parameters t = —0.5, V = 0.38, and

Zf = —0.7 in units of 2ltl = 1 eV. This results in nfl
0.63, which is consistent with the measured Sm valence
of 2.6 to 2.7, but leads to a band gap Eg &

which is too
large by an order of magnitude. The parameters were
chosen to make numerical integrations in the following
sections feasible; they give a qualitatively correct density
of states of the host crystal.

III. DEFECT MODEL HAMILTONIAN

In our model we consider a defect representing a Gd
or an Er ion, which substitutes a Sm ion and therefore
obeyes octahedral symmetry. To keep the model simple
we assume at the defect site two Ai~ states with the same
physical properties as the replaced Sm states and addi-
tionally a Jahn-Teller active Eg orbital. Because only
spatial degrees of &eedom are relevant in our coupling
we neglect the spin indices. In this way the I'3 state
can represent both the Gd Gd crystal field state and the
spatial part of the Er I 8 state.

We assume local coupling of the defect states to the
nearest-neighbor Sm states, which form the irreducible
representations 2Ai~, 2Eg, and 2'„. The Jahn-Teller
coupling of the Ez defect states can be established by
transitions between Aig and E~ states of the surround-

ing. We can consider various coupling types, which difFer

mainly in respect to the spatial extent of the involved
local Sm states. This is discussed in Sec. VI. In the
following we consider the Jahn-Teller coupling to the lo-

calized Sm states. To examine the electron capture we

include in our model an electron transfer between the Eg
defect states and that Eg state of the surrounding which
is built up by delocalized Sm states.
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The Hamiltonian for the doped semiconductor model
now reads

(AIB)—:(ABt + BtA)~ . (23)

H=Ho+ H~„+ H

H, =) ~„ctc„+) soata, ,

(17)

(18)

The link between the anticommutator Green function in
Fourier space and the Mori scalar product in Laplace
space then reads

i=1,2

Ht, ——td
I

Ci lai + Cza2 + H.c

=tg) (ii, (r)c„ai+(2i,(r)c„a2 + H.c. , (19)
K

((AIA')) = —
I

AIA
I

2= [H, . . .]j,
E=~ hie, 5 = 1.

(24)

(25)

The evaluation of the scalar product in this equation is
determined by Mori's evolution equation

I
CoCi + CiCo

I I
(i2&2 —&i(ii

I)l )
+

I
Co C2 + C2 Cp

I I
(i2&i + (ii(i2

I

l ) l )

( 1 l (AIA)

z —udp + M(z)

where

(26)

=~):I". - +".'-
I

x (o()(')(i(r')
I

oz(i2

+(!o(&)(!2(K) I
&2oi + oio2 I (20)

t, t (ytpft t )tt yt t yttft ) (gt)

Hp describes the mixed-valent semiconductor (e = kl)
and the degenerate E~ states with the potential energy

sp and the operators a, , respectively, a; (i = 1,2). The
tilde signifies that the energy values are related to p.
H~„allows the transfer of an electron between the defect
states and those of Sm neighbors. Hp describes the corre-
lation coupling mechanism of the defect states to Aq~-E~
transitions. The operators of the Ais states Co (Cp) and
those of the Eg states Ci, C2 (Ci, C2) are defined by

(up ——(ZAIA) (AIA)

M(z) =
I

QCAIQCA
I

(AIA)lz—
Q=1 —P,

PX = (XIA) (AIA) A .

(27)

(28)

(29)

(30)

0
Oi = —8'pGi (31)

td ) (ai, t (&)b', 1 + (a2, t (K)b', 2 c (3
K

8 u;= —A) I c„c„+c„,c„
I„„;l" " )

x (o()(;)(i(r') I
a2b; 2

—aib; i
I
+ (o()(:)(2()(.")

In this section we choose the observable A = a; (i = 1,2).
The static scalar product therefore results in (AIA) = 1.
o)p and M(z) cannot be determined exactly in the consid-
ered model. In this section we take terms to second or-
der in io = td, , A into account and factorize the appearing
thermal expectation values under the assumption that ~
is still a good quantum number. To calculate uo and
M(z) we subdivide 8 according to the parts Hp Ht„
and Hp in our Hamiltonian and find

x, y and z establish the base of the simple cubic Sm
lattice. Because in H&„ the delocalized Sm states are
involved the operators fit in Eq. (22) have to be replaced
by the operators d,. in the definition of Ci, C2 (Ci, C2) of
the transfer operator. The operators of the Sm states are
expanded into terms of the operators of the band system,
yielding the corresponding coefficients (p, (i, and (2.

IV. GD DEFECT CASE

We are interested in the energetic position of the cou-
pled defect level. This is easily revealed by the one-
particle Zubharev Green function, because its imaginary
part yields the corresponding partial density of states.
The Green function was calculated by means of Mori's
formalism. For this purpose it is reasonable to define the
Mori scalar product

xI.2b. ,, —.,b, , 2 I

~

To obtain ~0 we need the scalar products

(~'"I")=-" (34)

(C";I;)=0, (35)

(t:"a(a) = c —A) (c„c„,+ c„,c„) (c(a)t'c(a )
K)K

x (b; 2 —b;, ) . (36)

~o = —~o. (37)

Since we are interested in terms in order m and since
Ql:a; is of order u), we can replace QZQ in the resolvent

Within our approximation (2 a;Ia;) vanishes, because of
the symmetry of the coupling coeKcients. This yields
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of M(z) by E. This leads to the following expression for
the self-energy M(E) = —zM(z = —zE):

M(E) = Mi, (E) + Mp(E),

,2 ~ - 4i. (&)~*,r + 4i, (K)~', 2

K K

M E) A2)- &P'(~)6(~') +4(~)Q(K')
&p &~' + &+

K)K

(39)

4(K) =4(K)+4(K)
(4O)

(4I)

((a'la;))~ =—1 1

2& E —Cp —M(E)
(42)

By means of (24) the Green function of the defect level
then reads

the density of states appears. Because the three-valent
Gd introduces an electron into the conduction band, this
electron wHl be captured in the energetically lowered de-
fect level within the band gap.

In Fig. 3 the imaginary part of the Green function
is shown for Cp + p = cp = —0.56 and td ——0.25. For
A = 0 the maximum within the conduction band is broad-
ened because of the transfer coupling (interrupted line).
The Jahn- Teller coupling, however, leads to a sharp peak
within the band gap (full line, A = 0.25) for A & A„where

depends on td, and Fp.
In Fig. 4 we show the temperature dependency of the

self-energy in the one-pole approximation ReMq(w = sp),
which determines in a good approximation the energeti-
cal shift of the defect level. Because of the shown sharp
decrease for T ) 0.1Eg p the coupled defect level will
be shifted back into the conduction band. The peak of
Im((a, la, ))@ is broadened in this case because of finite

values for ImM(E). This leads to a delocalization of the
electron. This behavior is in good quantitative agreement
with the experiment, where the spectrum connected with
the electron capture disappears for T & 6 K.

The self-energy part Mq, is well known from the Fano-
resonance problem. It leads to a shift of the defect level
depending on the position of ep with respect to the band
structure. In the self-energy part Mp the many-body
character of the coupling is reflected in the appearance
of occupation probabilities of the band states and of the
defect level. Since we consider only one defect site within
the host crystal the change in the energy values of the
band states with respect to the uncoupled values is of
order 1/N. Therefore we introduce the approximation
(ct c„) f (e„,T). The remaining expectation value

(ata;)T is determined by use of the spectral function

((a;la, )) +„
exp id + 1

V. ER DEFECT CASE

In the case of the Er ion we are interested in a micro-
scopic picture of energetic lowering of the defect level.
Because the Er + orbital is derived from a 4f configu-
ration it is more strongly localized than the Gd orbital
considered in the preceding section. Therefore we choose
a weaker transfer coupling. The double occupancy of
this level is excluded at low temperatures by a large
Coulomb repulsion. This leads in our model to a term

KU ——Uaza2a2aq. We consider the limit U ~ oo by

introducing a Bose Beld with the operators bp and bp,
which obeys the constraint

-((a'la,'))--*. (43) -40

The considered Green function describes a "test parti-
cle" (electron or hole) in the defect state added to the
semiconducting system. If we assume that the uncoupled
defect level is situated in the conduction band, the con-
sidered electron for T = 0 suffers an energetic lowering,
which essentially is caused by the correlation coupling.
Since the doubly occupied defect state shows A2 sym-
metry, the Jahn-Teller coupling is only eKcient for the
singly occupied state. Therefore the energetic lowering
of the defect level into the range of the valence band is
not allowed. In our calculation this unphysical behavior
is excluded by the self-consistent determination of (a; a;).

Our physical picture of the electron capture in the Gd
case now is the following. If the uncoupled defect level is

lying near the band gap within the conduction band the
Jahn- Teller coupling can shift the level into the band gap.
In this case ImMi (~) vanishes because (~,, = 0 within

the gap, while ImMg(ur) is zero for w ( sp + Es ~ and

(a, a, )T 0. Therefore a sharply peaked contribution to

-30

-20

-10

0
-0. 9 -0. 8

II

I )

I
I

I
I

I I
I
I
I
I
I
I
I
I
I
I
I
I
I I

I

-0. 6 -0. 5 -0. 4

energy ~ (units of 2ltl)

FIG. 3. Imaginary part of the Green function of the de-

fect states for the model of the electron capture in the Gd
case. Cp + p, = —0.56; td, = 0.25; p = —0.72; kT = 0.
A = 0.25; ————,A = 0; - -. . ., band edges of the band gap.
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-0. 1
p 0.3 0.4 0. 5

temperature kT/Es„~

In this section we calculate the Green function of the real
defect level which is defined by ((bpa, ]a, bp)) @. The rele-

vant observable of this section is A = bpa;, in agreement
with the Hilbert space restricted by Eq. (44). With the
use of Mori's formalism we calculate the Green function
up to terms of second order in m = A, td. The correspond-
ing terms of the expansion of the thermal expectation
values are given in the Appendix. This series contains
thermal expectation values of the undisturbed system,
which is defined by the limit U -+ oo of Hp + HU.

To determine (t)p and M(E) we use Zbtpa, , which yields

FIG. 4. Temperature dependency of the self-energy term
ReMq(~ = so). t o+)(t = —0.58; tq = 0.25; A = 0.25.

bpai = —Fpbpa,pt -t

boa, = tg) —(r&, (r)
l

8;,rc„hobo —aIc„a;
l)

(47)

botbp + ) a+a; = 1.
i=1,2

(44) +(2& (+) l
b', 2c bobp a2c-a* (48)

H =Hp+ H,'„+H&, (45)

Ht, = tg ) [(1q, (e)c„bo a1+ (2q, (z)c„boa2 + H.c.].

Because Hp conserves the number of defect electrons only
the transfer term of our Hamiltonian has to be modified
to be consistent with the restriction (44)

C"bpa; = —A) l
ctc„+ct, c„ lbp

, (x (o(~)g, (s.")
l

h, 2a2 —b;,a1
l

W

+(0(&)tca2(& ) l
b', 2al + b', &a2 (49)

(46) To obtain urp [see Eq. (27)] we use

bpta'lboa
I

= -s-p (50)

Itd
0t ~

o

2
o ~~ ~

~

I(
d ~I ~

T
2

~

t
t: bca(boa)'= —to) oo (a) (attc )(t; 1 —1„) + to, (a) (abc ) (b;,1,—1)

1'tc ' ~a~)to=a—1 & t'o(a)6(a') x ((c„c„+c„, b b c(t', 1 o1o; 1) + coact; 1 —a(alt;
rc, ]c'

+oo(a)tt(K ) ((c c +c,c ) (1',1aoat + 8' 1Joal)) (52)

The thermal expectation values are determined to first
order in m. Thereby the constraint (44) is refiected in

n@ = (a, a;)7 = [exp(psp) + 2] and (a1a2 a2a1)z = 0.
The static value of the Mori scalar product is given by

The second order terms of the expansion of (a,. a;)T yield

(a;a;) = td ) —[f(C„,T) + 1] PnEnsa, - ~.(-) 1

p2

+~2 )- (!o(&)4(&') + 4(~)4 (&')

IC~K

x [1 —f(s„,T)]Pn@ns~, (56)

nsa = (hobo)~T' = 1 —2n@ . (57)

(a,- a;) = n@ + (a,.a;)~ + (a,.a;)~ + O(u) ),
(a]a,)' = 0

(54)
In the Er case charge fluctuations are not measured,
whence, because of its proportionality to n@np~, we can
neglect the term (ata;)072, at low temperatures.

This yields for 4)p



O. BRANDT, E. SIGMUND, AND M. WAGNER

o = —so+ t ). —
"

— ( [1 —f(' T)) —"» f('(~, (r.)
'AE + 'As~ &P —&K

yAr). (o[ )6( ) (x( ) 0[ )f a[- T[[1 f[e T-)]2n@)
KiK

(58)

The self-energy terms Mp and M&, are determined to second order in m,

Mi, (E) = A
AE + Agg

M„(E) = t„'
nE + nag

.4',„(K) &1). I
risa+riE

I )E —s„(2 (»)

) (f(s., T)[1 —f(s„,T)]nsJ3+ f(s„,T)[1 —f(~~, T)]n@}
- 4(K)4(~') + 4(~)4(K')
IK)K

(60)

Thus finally we obtain for the Green function of the real
defect states

((boo*la,'bo) )a =
22~ E+ [do — Mt, (E)Mi(E)

(61)

Because the double occupancy of the defect level is ex-
cluded in this model for the Er + case the significant
changes of the symmetry according to the defect occupa-
tion number as shown in the Gd case cannot appear. For
that reason the Jahn-Teller coupling is efFective for the
defect level within the energy range below p. This is ap-
propriate for the description of Er +. In Fig. 5 the imag-
inary part of the Green function is shown for E'p = —1.5
with the parameters t~ = 0.1, A = 0 (dotted line), and
A = 0.2 (full line). Obviously the Jahn-Teller coupling
leads to an energetic lowering of the defect level as it was
already derived within the molecular model.

VI. SUMMARY AND CONCLUDING REMARKS

We have considered a transfer coupling and electronic
correlation efFects, which establish a Jahn- Teller-like cou-
pling of degenerate defect levels to a mixed-valent semi-

energy u (units of 2[/[)

FIG. 5. Imaginary part of the Green's function of the real
defect states in the model of the energetic lowering of the Er
defect level. ep = 6'p + p, = —1.5; td ——0.1; kT = 0; p =
—0.72. —,A = 0.2; — — — —,A = o.

conductor. In this model electronic excitations between
symmetrized states of the surrounding take on the role
which normally is played by distortions of the ionic con-
figuration. In the host crystal SmB6 this mechanism
is more probable than the conventional one, because it
takes advantage of the low energetic electronic excita-
tions (Es ~ 3 —4 meV).

Within our model the electron capture proposed to ex-
plain ESR measurements for SmB6'.Gd can be explained
in the following way: If the uncoupled defect level is ly-

ing within the conduction band near the band edge of
the gap, the correlation coupling leads for A & A, to an
"effective state" within the band gap. The conduction
band electron introduced by the Gd + ion can be cap-
tured within this state. With increasing temperature this
state is shifted back into the conduction band where the
electron is delocalized because of the transfer coupling.
This is in agreement with experimental results. Because
of the transfer coupling we also expect contributions of
the band states to this efFective band-gap state. This will

be examined in further work.
In the case of an Er + ion we took into account the

prohibition of the doubly occupied defect state caused
by a strong Coulomb repulsion. The correlation coupling
leads to an energetic lowering of the defect level as was

suggested by a molecular model to explain ESR measure-
ments.

Within our model we have examined various micro-
scopic coupling types, which difFer in the degree of par-
ticipation of the localized Sm 4f states in the coupled
electronic transitions. Our result is that the energetic
lowering is strongest when the defect states interact with
transitions between Aq~ and Eg states of the surround-
ing, both of which are composed of Sm 4f states. This
is a result of the large density of low energetic excita-
tions of predominantly 4f character in SmBs. This "soft"
surrounding is characterized by the small band gap and
the sharp maxima of the 4f partial density of states at
the corresponding band edges. The dominant role of the
Sm4f states in the coupling mechanism is also confirmed

by an approximate calculation of the coupling constant,
which revealed higher A values for the coupling to the lo-

calized states than to the delocalized states of the defect
surrounding.

In further work we plan to examine the efFects of the
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unconventional Dahn-Teller coupling on the band states
and on thermal properties of the doped semiconductor.
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APPENDIX A APPENDIX

To calculate thermal expectation values like (A)&'+
to terms of second order in the perturbation W we made
use of the expansion

+ f dp' W(p')

x d 'W ' A —AT'
0 T

(A4)

with

(A) = (A) + (A) + (A) + 0( ) (Al) W(P) = exp(PH()) W exp( —PHo) .

P is the inverse temperature, which is multiplied by the
Boltzmann constant.
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