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We show that a simple pairwise model for covalent materials provides a good description of the
high-density fourfold-coordinated metastable phases BC8 and ST12, in agreement with experimental
results and ab initio calculations. We use this potential to study the high-pressure behavior and the
free energy. We find that both phases are metastable at all temperatures. The relative energetic
stability depends on the parametrization, but the ST12 phase has higher entropy. We therefore
conclude that with correct pressure and temperature treatment it may be possible to synthesize

ST12 as a high-density metastable phase in Si.

I. INTRODUCTION

This paper continues our study of high-density
metastable phases found in the tetravalent group-IV
semiconductors, and comparison of our results with
experimental® and ab initio calculations.? The phases are
very long lived and can be produced by depressurization
from the high-pressure metallic 3-Sn phase.3* Here we
present a treatment based on empirical potentials which
allows intuitive insights into the stability and pressure
response of these materials, along with estimates of free
energy to describe finite-temperature behavior. A de-
tailed description of the structures and properties of these
phases can be found in the introduction to the previous
paper,? hereinafter referred to as Paper I. Projection di-
agrams of the atomic positions are also shown in Paper
I

In Paper I, we reported ab initio calculations based
on density-functional theory in the local-density approx-
imation. These calculations reproduced accurately the
properties known experimentally, and furthermore gave
some predictions for the exact behavior of the internal
structure of BC8 and ST12 as a function of pressure.

Despite the success that density-functional (DF) total-
energy calculations have had in describing the relative
phase stability in crystals, there remain limitations which
render the treatment of several important physical prop-
erties beyond that which can be achieved by these meth-
ods. This is particularly true in the case of free-energy
calculations at finite temperature and relaxation of unit-
cell dimensions under hydrostatic pressure. The explicit
treatment of finite-temperature effects by first-principles
methods is extremely difficult to incorporate in practice,
although a rigorous extension of density-functional the-
ory to finite temperature does exist. This is because of
the long simulations required to obtain good thermo-
dynamic averages, and the difficulties associated with
changing the box volume with thermal expansion and
fluctuations.

For structural relaxation, the plane-wave-pseudo-
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potential total-energy method has been shown to alle-
viate substantially complications which arise in atomic-
force calculations. These difficulties include basis-set
corrections (Pulay forces), which must be considered
when localized basis sets are used, and corrections which
arise from non-self-consistency in the solution of the
Kohn-Sham equation, which are particularly problem-
atic in full-potential treatments. The advantages of the
pseudopotential-plane-wave methods, however, do not
apply in the case of unit-cell relaxation for noncubic sys-
tems, which remains a formidable task to implement by
first principles. Schemes which have been proposed to
accomplish this show extremely unfavorable scaling with
system size.

These two complications associated with density-
functional methods coupled with the urge to explore
the P-T diagram of dense metastable phases of Group-
IV semiconductors have provided the motivation for the
present work. In Paper I we reported ab initio pseu-
dopotential DF calculations which accurately reproduced
known structural properties and allowed for predictions
as to the internal relaxation of the BC8 and ST12 struc-
tures of Group-IV elements under pressure. To make
the thermodynamic problem more tractable, we have re-
placed the ab initio forces calculation with an empirical
potential which reproduces the structural results.

With a view towards a full theoretical investigation of
the P-T diagram of these phases, including hydrostatic
effects, we have first carried out the same analyses as
in Paper I, using a previously published empirical model
for covalent bonding.®® This potential was parametrized
to model quite different situations, such as the diamond
structure and small clusters. It has, however, been shown
to be successful in other regimes very different from that
for which it was parametrized. It has previously been
shown to provide an accurate description of defects, vi-
brational properties, rebonding effects in surface recon-
structions, and in the formation of clusters. It has not
been applied previously in the present context of dense
phases of covalent semiconductors, so tests of its perfor-
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mance are essential. These results are compared to those
of experiment, where available, or to those of the ab inz-
tio calculations reported in Paper I, and show remarkably
good agreement.

The computer-intensive nature of density-functional
calculations means that finite-temperature studies at
many points in the phase diagram are currently imprac-
tical, especially in view of the pressure and temperature
dependence of the c/a ratio. To investigate the stability
of the phases it is, however, necessary to evaluate free
energies throughout the phase diagram. The empirical
potential enables us to carry out this calculation for a
model covalent material, whose properties are fitted as
closely as possible to those of silicon.

This paper is divided into eight sections and is orga-
nized as follows. The empirical potential and its charac-
teristics are described in the next section. This is followed
by a description of the calculated structural properties
of the BC8, ST12, and (3-Sn phases and their relative
response to applied pressure. A discussion of the P-T
diagram follows and is based upon separate discussions
of the vibrational properties under pressure.

II. DETAILS OF THE EMPIRICAL POTENTIAL

Much effort has been invested in deriving simple po-
tential models for covalent materials such as silicon. The
intuitive picture of a covalent bond suggests that pair-
wise interactions should dominate the structural prop-
erties, and yet no standard short-ranged pair poten-
tial stabilizes the diamond structure. Various methods
have been introduced to circumvent this: several au-
thors have introduced potentials with a strong angular
dependence.”®? Pettifor'® arrived at a similar solution
from approximate tight-binding ideas. Models based on
the notion of a bond charge,!! or on a function of the
local coordination'? have also been tried. Most of these
models were successful in the regime for which they were
parametrized, but showed a lack of transferability. The
final model of Tersoff perhaps comes closest to being
transferable, but at the price of considerable functional
complexity and 13 fitted parameters. A recent survey of
six such potentials’® concluded that each has strengths
and limitations, none appearing clearly superior to the
others, and none being fully transferrable.

For the present study we require a potential which
gives a reasonable treatment of high-pressure phases and
phonons, and can give an insight into the different be-
haviors of silicon and germanium. Recently, it has been
shown that a very simple model, based on analytic pair
potentials representing one bond per electron, gives good
results in studies of phonons, high-pressure phases, sur-
face reconstruction, defects, and cluster formation. An
unusual aspect of this potential is its simplicity (three
free parameters, two more to define length and energy
scales) and its transferability.

In its parametrized form, this potential is written as
follows:

The function A term represents the short-ranged repul-
sion due to core overlap. B represents the covalent bonds
themselves, the sum is interpreted as being over electrons
but can be written as a sum over atom pairs (limited
here to four neighbors per atom, though double bonds
km = k, are allowed). C represents the repulsion be-
tween adjacent bonds as the angle between them is re-
duced, due mainly to distortions in the orbitals to pre-
serve orthogonality. Again, although the final term is in-
terpreted as a sum over pairs of bonding electrons sharing
a common atom, it can be written as a sum of pairwise
interactions between pairs of neighbors of a given atom.
Thus the rather complicated notation in which k,, means
the label of the mth neighbor of atom 1.

There is no physical justification for the analytic form
of the functions chosen to represent each term, so here we
assume both they and their parameters to be the same
as in the previous papers:

A(z) = Ae %, (2)
B(z) = Bze P®, (3)
C(z) = C(coswz + )2 (4)

In general there is no unique way to select the four
“bonded” neighbors (choosing the four nearest neighbors
may not satisfy the requirement that if ¢ is bonded to
j then j must be bonded to i). In the present case,
however, we have fourfold-coordinated crystal structures
so this difficulty does not arise.

The electronic-structure calculations also provide
strong evidence that this model will not be suitable for
modeling BC8 carbon, because that appears to be more
like a molecular crystal. This is similar to the situation
found in clusters,® where small silicon and germanium
clusters form distorted structures maximizing their num-
ber of bonds (up to four). By contrast, rather than dis-
tort bond angles, small carbon clusters form rings and
chains containing double bonds. This preference for dou-
ble bonding rather than massively distorted bond angles
is a qualitative difference between silicon and carbon. It
is difficult for a single potential formalism to describe
both behaviors.

Within the current model, the physical picture which
explains the difference is that the bond bending arises
primarily from orthogonalization within the atom core
(which is why it runs over pairs of bonds to the same
atom). In silicon the 3s3p® valence electrons are kept
away from the center by orthogonality to the 2s2p® (this
effect is even more pronounced in germanium), and con-
sequently their overlap and attendant orthogonality con-
tribution to bond-angle distortions are smaller. The con-
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sequence of this is that in Si and Ge distorted tetrahedra
are favored over double bonding.

This argument can be developed further to explain
the differences between Ge and Si found in the previ-
ous paper. ST12 has bond lengths clustered more closely
around the “ideal” (diamond) value than does BCS8, but
at the expense of a much wider spread of bond angles.
Consequently, in germanium where smaller overlap al-
lows for easier bond-angle distortion, the ST12 structure
is favored. In silicon the bondbending is more costly, so
the BC8 structure is found. Finally in carbon, with no
core p electrons, the orthogonalization cost of bond-angle
distortion is too great for either ST12 or BC8, to form
with true fourfold coordination.

A surprising aspect of this formalism is that it stabi-
lizes the metallic sixfold-coordinated (3-Sn structure at
high enough pressures.® The absence of any metallic na-
ture in the covalent formalism makes this stability sur-
prising. The predicted c/a ratio, however, is around 0.65,
and highly pressure dependent. In silicon, it is 0.55 and
almost independent of pressure. This discrepancy shows
that the model is beginning to break down by failing
to allow for the attraction of the two neighbors of each
atom in the c direction. It is fair to presume, therefore,
that the cohesive energy of 8-Sn may be underestimated,
and we find evidence for that here in that the predicted
diamond—(3-Sn transformation pressure is greater than
that for diamond-BCS8.

Thus the model of Eq. (1) appears to meet our crite-
ria for the current study. Throughout the paper we shall
examine the discrepancies of its predictions with exper-
iments, and what effect these discrepancies have on the
accuracy of our final results. As we shall see, it repro-
duces the pressure behavior of the BC8, and ST12 phases
well, and while it is less accurate for the absolute phonon
frequencies than other potentials fitted for that purpose,
these inaccuracies tend to cancel out when examining
phase stability.

III. STRUCTURAL DETAILS

Figure 1 shows the relative stability of diamond, ST12,
BC8, and (-tin phases for the potential with parameters
fitted to silicon. From these curves we can deduce the
lattice parameter and cohesive energy for these phases
(Table I). The graphs representing ST12 and (3-Sn are
under hydrostatic pressure, obtained by minimizing en-
thalpy with respect to all internal parameters and the c/a
ratio. Including these degrees of freedom makes a signif-
icant difference to the curve, softening the bulk modulus
considerably.

Figure 2 shows a plot of the minimum cohesive energy
of B-Sn parametrized by different fixed c/a ratios. No-
tice here that the lowest point of this graph is identical to
that of the diamond structure. This is because diamond
can be regarded as 3-Sn with a c/a ratio of v/2. The
concave shape of the graph shows that under pressure
silicon remains in the diamond structure rather than re-
ducing its volume by becoming 8-Sn with a smaller c¢/a
ratio, and shows also that the diamond—(3-Sn transforma-
tion is first order. The implied transition pressure is 8.5
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FIG. 1. Plot of energy against volume for various phases.

GPa, below which pressure the (3-tin phase becomes un-
stable. The concave nature of the 3-Sn curve also shows
that, while a martensitic transformation proceeding by
continuous reduction of ¢/a is geometrically possible, it
is kinetically unfavorable and could occur only with con-
siderable hysteresis, requiring a pressure of at least 12.4
GPa (from the tangent at c/a=+/2). Consequently, the
model predicts that for a range of volumes no mechani-
cally stable structure with 3-tin symmetry exists at any
hydrostatic pressure. For this reason, the 3-tin curve in
Fig. 1 does not continue to a turning point or to larger
volumes. The actual transformation probably proceeds
by a nucleation and growth process, perhaps involving
partial dislocations.'# In any case, its kinetics must be
sufficiently complex to account for the nonobservation of
the retransformation.

The potential can sometimes give rise to ambiguities in
choosing the neighbors, especially if considerable relax-
ation is required after the choice has been made. BC8 has
a single internal parameter to relax. It has four nearest
neighbors and so there is no difficulty in determining the
bonding arrangement 7;;. Although the fifth neighbor is
relatively close, the charge-density plots in the previous
paper confirm the assumption implicit in the form of the
empirical potential that there is no bond to it.2 If the
fifth neighbor is included as one of the four bonds at the
expense of the B bond, it gives a higher energy structure.

TABLE 1. Cohesive energies (eV/atom) and lattice pa-
rameters (A) at zero pressure.

Structure Lattice constant(s) Cohesive energy
Diamond 5.429 -4.631
BC8 6.577 -4.546
ST12 5.761, 6.2546 -4.475
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FIG. 2. Plot of the minimum energy for the 3-Sn phase at
a given c/a ratio against the unit-cell volume at that energy
and c/a ratio.

Including it at the expense of the A bond leads to mas-
sive increase in z, achieved by simulated annealing, back
to a BC8 structure: the broken A bond now becomes the
new fifth neighbor.

ST12 has four internal parameters and two lattice pa-
rameters. The enthalpy is minimized with respect to all
of these. Once again, it is a fourfold-coordinated phase
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and so there is no difficulty in selecting the correct bond-
ing arrangement. As with BCS8, the charge-density plots
in Paper I give a clear indication that four covalent bonds
is the correct description of the bonding.

IV. EFFECT OF PRESSURE ON STRUCTURE

The diamond structure can respond to pressure only
by contraction of its bonds, but pressure increase in BC8
and ST12 can be taken up by increased internal distor-
tion, change in bond lengths, and change in c¢/a ratio. In
practice all these happen simultaneously.

Due to problems with changing basis sets, many ab ini-
tio calculations are unable to calculate forces and then
relax the relative atomic positions. They are therefore
restricted to rescaling all bond lengths. With a plane-
wave basis set this problem is somewhat alleviated, and
for a given unit cell the atomic position can be deter-
mined. This still does not fully allow for relaxation of
c¢/a ratio with pressure. By minimizing the enthalpy us-
ing a conjugate-gradients procedure with the Parrinello-
Rahman Lagrangian,® it is possible to allow both inter-
nal and unit-cell parameters to relax simultaneously, as
they would in a real material.

In Fig 3 we show the importance of including all de-
grees of freedom in the case of ST12. This can currently
be done only with empirical potentials. The graph shows
the change in length of the three distinct bonds with vol-
ume under full relaxation and under conditions of con-
stant c/a. For reference, we show the variation of a typi-
cal bond length when no relaxation is allowed (it simply
remains proportional to the cube root of the atomic vol-
ume).

2.46

s .~ No relaxation

FIG. 3. Comparison of empirical bond
lengths in ST12 with full relaxation (full
lines), fixed c¢/a ratio (dashed lines), and no
relaxation (dotted line). Inset: Comparison
between empirical and ab initio neighbor dis-
tances in ST12 as a function of pressure at
fixed c¢/a ratio.
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It is clear that the change in ¢/a with pressure is such
as to reduce the necessary change in bond lengths. In
both ST12 and BC8 the material is able to reduce its
volume without commensurate reduction in bond lengths
by adjusting its internal degrees of freedom. This has a
very significant effect on the bulk modulus, which is lower
in the denser phases than in diamond, in spite of a much
greater number of bonds per unit volume.

Figure 4 shows the variation of the BC8 internal pa-
rameter £ with change in volume as determined by empir-
ical methods. In Fig. 5 we show the variation in neighbor
distances with decreasing volume comparing the empiri-
cal and ab initio results. We recall that the local-density
approximation (LDA) invariably underestimates the lat-
tice parameter of solids by about 2%, while the empirical
model has its length scale set to reproduce the diamond
structure exactly. Allowing for this, comparison with the
ab initio simulation shows that the pressure evolution of
the structure is well described by the model.

The crossover in BC8 bond lengths occurs with both
empirical and ab initio methods, though at different pres-
sures. The semiempirical model gives an intuitive expla-
nation for this. The compression of the type-A bond is
restricted by repulsion arising from the orthonormality
requirement with the type-B bonds. Since the angle © 45
is smaller than ©ppg, the AB overlap is greater than the
BB overlap, and so this term dominates the differential
short-ranged repulsion. There are three times as many
AB angles to the A bond as to the B bond, so we ex-
pect its compression to be three times more difficult, and
indeed that is what we observe in Fig. 5: the slope corre-
sponding to A is about a third that corresponding to B.
An alternate way of rationalizing this is that relaxation
of the internal parameter = causes much larger changes
in A than in B (dA/dz = 2+/3; dB/dx = (8= — 1)/2B),
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FIG. 4. Variation of the internal structural parameter z
of the BC8 structure with pressure.
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FIG. 5. Comparison between empirical and ab initio
nearest-neighbor distances in BC8 as a function of lattice pa-
rameter.

so while symmetry is retained internal relaxation can do
little to affect B.

ST12, has four internal degrees of freedom and, be-
cause of its tetragonal symmetry, two independent lattice
parameters. Its space group is P432;2 (Dg) or its enan-
tiomorph. In germanium ST12, the bond lengths are
on average about 1% longer than in the diamond struc-
ture, which leads to a density about 10% greater. All
the atoms are fourfold coordinated, and there are two
distinct atomic environments a and b. The eight type-b
atoms per unit cell form spiral chains with a unique he-
licity, bridged by the four type-a atoms. We therefore
expect ST12 to be optically active, although this has yet
to be confirmed experimentally. A combination of sev-
enfold and fivefold rings means that the bond angles are
much more diverse than in BC8, but also enables the
bond lengths to be much closer to one another than in
BC8.

We find that in addition to the internal parameters,
the c¢/a ratio varies as a function of pressure, so we use
the Parrinello-Rahman Lagrangian'® to investigate high-
hydrostatic-pressure behavior. Simple scaling of the unit-
cell parameters, adequate for diamond or BC8, would be
incorrect in ST12 because of the pressure dependence of
c/a.

With so many variables to consider, it is not obvious
how best to represent the response to pressure. In the
inset to Fig. 3 we compare the behavior of the three
distinct “nearest-neighbor” bond lengths as a function of
volume with c¢/a held constant at the value which gives
minimum energy at zero pressure. This ensures consis-
tency in the degree of relaxation among the structures
examined by the ab initio method. We compare the em-
pirical result with results from Paper I because ST12
silicon has not been synthesized experimentally, but it
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should be noted that while the empirical potential is fit-
ted to the actual lattice parameter (of diamond silicon),
LDA always gives too small a lattice parameter.

V. PHONON SPECTRUM

The empirical potential has been used to calculate the
phonon spectra for diamond, BC8, and ST12 phases at
various pressures up to 10 GPa. Atomistic relaxations,
as described in Sec. IV, have been performed under con-
stant pressure, allowing the atoms and box size to relax
into their equilibrium state. These atomic positions and
cell parameters are used in conjunction with the poten-
tial to calculate the vibrational frequencies allowed in
the crystals. To calculate thermodynamic properties, we
require only the phonon-frequency density of states and
not the entire dispersion curve, so we calculate the dy-
namical matrix of the complete cell used in the simula-
tion treating it as a single cell.® This allows the actual
Brillouin zone to be sampled at many k-points, giving

a good representation of the density of states. We find
that a cell consisting of 4 x 4 x 4 unit cells (contain-
ing N=512, 768, and 1024 atoms for diamond, ST12,
and BC8 respectively) results in a reasonable represen-
tation of the Brillouin zone. The dynamical matrices of
size 3N x 3N for the three relaxed structures, at various
pressures from 0 to 10 GPa, are diagonalized to obtain
the pressure-dependent phonon density of states. The
entire phonon calculation was carried out on a CM200
Connection Machine. A full description of the procedure
is documented in Ref. 17, along with a comparison be-
tween the potential used here and that of Stillinger and
Weber.”

The phonon-frequency densities of states for diamond,
BC8, and ST12 are shown in Fig. 6 for pressures of
0, 5, and 10 GPa. The general shape of the graph
for diamond at the higher frequencies at ambient pres-
sure is in good agreement with experiments on silicon.'®
There is a higher density of low phonon frequencies than
that found!® experimentally, although the values of these
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FIG. 6. Calculated phonon spectra for (a) diamond, (b) BC8, and (c) ST12 structures at pressures of 0, 5, and 10 GPa.
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frequencies are in good agreement. The low-frequency
modes are bond-bending modes and hence extremely sen-
sitive to the C parameter in the potential. We note that
the same potential is here being used to give structural
energies as well as phonon frequencies. There is no reason
to expect that energies associated with bond distortion
should be related to those arising from bond formation.

The largest numerical discrepancy with experimental
results in silicon is the optic branch of the spectrum,
where some of the frequencies are up to 30% too low.
We have found that it is possible to rectify this by a
reparametrization of the model, including these frequen-
cies in the fitting procedure. This introduces some other
discrepancies and we do not believe that the resultant
model is any more similar to silicon than the original.
It does, however, enable us to test how robust the for-
malism is, and how our results are affected by differ-
ent parametrization. A reparametrization with the op-
tic branch centered on 15.5THz,'® with cohesive energy
and diamond lattice parameter unaffected, resulted in a
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change of only 0.3% in the BC8 free energy and 0.1% in
ST12 at 1000 K (and less at low temperatures). The ef-
fect on the BC8-ST12 free-energy difference at zero pres-
sure ranged from 0.1% at 0 K up to 8% at 1000 K. The op-
tic modes depend almost entirely on the bond-stretching
forces, which are virtually the same in BC8 and ST12
due to their similar bond lengths. In comparing free en-
ergies, this systematic error tends to cancel out. This
gives a physical explanation of the robustness of our re-
sults against typical errors introduced by the empirical
model.

It is interesting to note that there is a range of for-
bidden frequencies in the higher range of the spectrum
for the ST12 structure. As pressure increases, the gap
increases from 0.5 THz at ambient pressure to almost 1.5
THz at 10 GPa.

We have picked out the frequencies of the zone-
center phonons for comparison with Raman spectroscopy.
The variation in frequency with pressure of zone-center
phonons in BC8 [see Fig. 7(a)] is remarkably similar
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to that measured experimentally in silicon.2° We find
that the low-frequency modes are almost unchanged with
pressure, consistent with the TA phonons in most tetra-
hedral semiconductors. These may even be anomalous
in that their frequency is slightly reduced with pressure.
We associate the lack of anomalous modes in the sim-
ulation to the lack of explicit bond-length dependence
in the term which describes the low-frequency modes.
This implies that the effective force constants for these
modes are unchanged or even slightly weakened by pres-
sure, giving low or negative Griineisen parameters. The
Griineisen parameters have been calculated for the zone-
center modes shown in Fig. 7 and are shown in Table II.
In Fig. 7(b) we plot the equivalent quantities for ST12.
In this case there are no experimental data.

The predicted Gruneisen parameter for the diamond
TA(X) phonon is extremely small (0.15), only a tenth of
that for bond-stretching modes, but non-negative. This
mode is dominated by the bond-bending term, and the
Griineisen parameter is always positive for models with
this type of bond-bending term, because the third deriva-
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tive of (cosf + 1/3)? is sinf(8 cost + 2/3) which is nega-
tive for all angles occurring in BC8, ST12, and diamond.

Since the entropy calculation requires a sum of (loga-
rithms of) frequencies, and not a product, the absolute
error in this quantity, regardless of sign, is the important
feature. This is small.

VI. FREE ENERGIES

From the phonon calculation, we can calculate the
temperature-dependent vibrational free energy and total
vibrational energy associated with all three structures.
Since we are able to calculate the phonon density of states
we can simply obtain the partition function of the vibra-
tions using Bose-Einstein statistics from which we can
find the thermal properties of the structures in the har-
monic approximation. Graphs of this temperature de-
pendence are shown in Fig. 8 at ambient pressure. We
notice that the vibrational free energy for ST12 is sig-
nificantly lower than that for BC8, which contrasts with
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the structural cohesive energy which is lower in BCS.
Note that the difference in vibrational free energy for the
BC8 and ST12 structures increases with temperature,
and whenever this difference is larger than the difference
in structural energy ST12 silicon will be favored.

We have applied our lattice-dynamics programs to
these relaxed blocks, which has enabled us to span the
entire pressure-temperature regime in calculations of free
energy. We are therefore able to calculate the total free
energy in the harmonic approximation:

G =Uggryct + Usip — TS + PV, (5)

at all points in the pressure-temperature phase space for
the ST12 and BC8 structures. The structural (cohesive)
energy Ugruet and PV can be obtained from either the
ab initio or empirical molecular dynamics and the en-
ergy associated with the vibrations U, and entropy S
are calculated from the statistics of the lattice vibrations.
Note that the temperature dependence on volume is not
included here since the harmonic approximation used in
the lattice dynamics does not incorporate thermal expan-
sion. The error in this assumption is relatively small since
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the volume of a tetrahedral semiconductor has a much
greater response to pressure than to temperature. For a
given temperature and pressure, the structure which has
the highest total free energy G will be favored.

Anharmonic contributions to the total free energy have
been estimated from molecular-dynamics simulations at
a range of temperatures using the empirical potential.
These results were obtained from runs with an adapted
version of the progam MOLDY2}?? using 768 and 1024
atoms running for 25000 time steps of 1 fs. Similar runs
for diamond yield similar results. Both the absolute and
differential contributions to the energy arising from an-
harmonic effects were found to be negligibly small, while
calculating them is extremely demanding computation-
ally. Consequently, we work throughout in the harmonic
approximation for the vibrational properties.

It is possible to derive the specific heat capacity from
these calculations, and in each case this was found to
be 25+ 1.5 Jmol ™!, indistinguishable from the harmonic
case. There is, of course, no electronic contribution to
the heat capacity in this model. One useful anharmonic
quantity which we do derive from the molecular dynam-
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Change in zone-center phonon frequencies with increase in pressure for (a) BC8 and (b) ST12 structures.
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ics is the thermal expansivity of the two structures. The
behavior of the third derivative is not included in the fit,
so we would not expect the expansivity to be very well
reproduced by the potential. However, we expect the
trend observed from the diamond phase through BC8 to
ST12 to be correct. We found values of 124+4x 1076 K—!
and 11 + 2 x 1078 K~! for BC8 and ST12 respectively.
These are somewhat smaller than the value for diamond
of 14.5 x 1078 K~! (about 20% higher than experiment).
We are unaware of any experimental measurement of ex-
pansivity in the metastable phases.

The empirical model predicts the difference in struc-
tural energy Usiruct, to be larger than in the ab initio
calculations for silicon. This will affect the position of
the stability field boundary in the phase diagram. For
internal consistency we have used the empirical potential
throughout to calculate a full pressure-volume phase di-
agram for ST12 and BCS8 silicon, which is shown in Fig.
9.

The main contribution to the vibrational free energy
comes from the low vibrational frequencies. These are
mostly the bond-bending modes, which are determined
by the C parameter in the final term of the potential.

TABLE II. Griineisen parameters for the modes shown in
Fig. 7 for silicon in the BC8 and ST12 structures.
BC8 ST12
0.51 0.59
0.47 1.63
0.88 1.66
0.35 1.36
0.25 1.82
0.58 1.37
0.57 1.20
0.29 1.01
0.99 0.76
2.15 3.80
2.31 1.51
1.31 1.34
1.06 1.33
1.25 1.09
2.44 1.22
2.23 1.14
2.57 0.92
2.56 0.56
2.54 0.95
2.52 0.83
2.49 0.89
1.04
0.97
0.97
0.95
0.73
0.86
0.86
0.96
1.01
1.01
0.87
1.01

Reduction in the C parameter softens these modes and
therefore increases the vibrational free energy. Hence for
lower C the minimum temperature at which the ST12
structure is more favorable is lowered. The first two
terms in the potential essentially determine the depth,
curvature, and position of the minimum of the structural
energy of a tetrahedrally bonded crystal, and therefore a
simple rescaling could be used to give a germaniumlike
potential which in effect would weaken the bond stretch-
ing and lower the corresponding phonon frequencies. As
noted above, this would retain the general shape of the
phase diagram, but lower the temperature required to fa-
vor the ST12 structure. However, the bond-bending term
in germanium will be even more significantly reduced, an
effect which can be traced back to the smaller overlap of
4s4p? orbitals on distortion. This also lowers the temper-
ature and the pressure at which the ST12 structure will
become stable over BC8. It makes ST12 germanium the
metastable depressurized structure at room temperature.
It therefore seems likely to be the case that BC8 germa-
nium will be favored only at low temperatures and low
pressures, perhaps forming on rapid depressurization.

VII. DISCUSSION

The agreement between experimental, ab initio, and
empirical results for the structural properties of high-
density phases of Si and Ge gave us confidence to proceed
with empirical calculation of a scale beyond what can
be achieved by ab initio techniques. As a result of our
calculations we find that, for a model whose parameters
are fitted to describe silicon, the BC8 structure becomes
unstable with respect to ST12 at high temperature and
pressure.

We note that both phases are metastable with respect
to diamond. Since they have very different topologies
from one another, it seems unlikely that a simple kinetic
path between BC8 and ST12 will exist. Consequently it
will not be possible to transform BC8 into ST12 directly
by heating—a more likely result is that the BC8 will sim-
ply transform into the true stable state, diamond, or to
yet another metastable state, Lonsdaleite.> However, in
view of the kinetic difficulty in transforming from 3-Sn to
diamond, it may be possible to depressurize silicon from
the 3-Sn phase at high temperature to a pressure above
6 GPa to form ST12 silicon.

Although the empirical model has not been explic-
itly parametrized for germanium, it is possible to make
some general comments. The parameter C' governs the
shear moduli and the vibrational frequency of the low-
frequency phonons. In germanium the shear moduli are
considerably smaller than in silicon, so a smaller value
of C would be appropriate. This would lead in turn to
a downscaling of the phonon frequencies, and therefore
of the entropies and entropy difference. In germanium,
therefore, we would expect that the transition tempera-
ture should be much lower than in silicon—perhaps below
room temperature. Thus it might be possible to produce
BC8 germanium by depressurization below room temper-
ature.
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VIII. CONCLUSIONS

The structural properties of BC8 and ST'12 silicon and
germanium are well described by a model designed for co-
valently bonded materials. This suggests that, although
the electrical properties of BC8 may be dominated by a
small Fermi surface, the primary contribution to bonding
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FIG. 9. Relative stability fields of ST12 and BC8 struc-
tures for silicon calculated from the vibrational free energies
for ST12 and BCS8 as a function of temperature and the struc-
tures found under pressure from the molecular-dynamics sim-
ulations.

Temperature (K)

comes from covalent bonds. The same model can then re-
liably be used to determine phonon spectra, based on the
covalent concepts of bond bending and bond stretching.

Although both structures are based on covalent bond-
ing, the bulk moduli are lower in the denser phases than
in diamond. This is because they are able to contract
both by bond shortening and bond bending, whereas di-
amond can contract only by bond shortening. As noted
previously,® both silicon and germanium can be described
with this model, the main difference being that the ra-
tio of bond bending to bond stretching forces is lower in
germanium.

The ST12 structure has a wider spread of bond an-
gles but more closely matched bond lengths. Its many
degrees of freedom allow it to take up external pressure
with internal relaxations, giving it a large compressibil-
ity. These internal modes also give rise to many low-
frequency phonon modes, making ST12 a high-entropy
structure and therefore favored at high temperature and
in germanium, where the large bond-bending distortions
are least unfavorable.

Both ST12 and BC8 germanium have been reported,
but the conditions in which they were made are not
clearly documented and seem to lack reproducibility.
ST12 silicon has not yet been found. Our calculations
suggest that by conducting high-pressure experiments at
different temperatures, the preferred phase can be al-
tered. In particular, it may be possible to synthesize
ST12 silicon by depressurization from §-tin at high tem-
perature.
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