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We study the screening of a macroscopic electric field in a crystalline dielectric. Density-functional
perturbation theory provides the static dielectric constant (or tensor) as a bulk property; we give
a formulation which extends the local-density approximation, and specifically we discuss its im-
plementation within gradient-corrected schemes. We briefly consider the relevance (if any) of the
so-called “gap problem” to static linear response. As a case study, we perform an ab initio calcu-
lation of the dielectric constant in silicon within a popular gradient-corrected local-density scheme.
We find that the gradient corrections reduce the discrepancy found so far between local-density
predictions and experiments in covalently bonded materials. The amount of this reduction is sizable
if the calculations are performed at the experimental equilibrium lattice constant of the crystal,
while however, it is only marginal when the calculations are carried out, at the calculated lattice
constants, consistently within each given theoretical scheme.

I. INTRODUCTION

The electronic ground-state properties of a condensed-
matter system at zero temperature are, in principle, ex-
actly described by the density-functional theory (DFT).!
Any change in the electronic ground state induced by a
static external influence is within the scope of DFT as
well: it is therefore obvious that the macroscopic dielec-
tric constant (or the macroscopic dielectric tensor in non-
cubic solids) is a well defined macroscopic ground-state
observable, which has an exact expression within DFT.

DFT is an exact theory, and as such, it would be only
formal and useless to tackle real systems until a workable
computational scheme is provided to implement it. Its
genuine power stems from the fact that such schemes are
provided by simple physical approximations which can be
implemented completely from first principles. For case
studies of moderate complexity—including those consid-
ered in this work—a very high computational accuracy
can be achieved with affordable computer resources.

By far the most popular approximation to DFT is the
local-density approximation (LDA),* which has provided
over the past 15 years a large number of results: even
limiting ourselves to the work done on Si systems (solids,
surfaces, clusters), literally thousands of papers have ap-
peared. Most physical properties of Si are reproduced (or
predicted) by DFT-LDA within a few percent:>~¢ a no-
table exception is the dielectric constant e,, whose value
is substantially overestimated by LDA. This feature was
found by Baroni and Resta in 1986,% and then confirmed
by several other calculations.5™® As for the magnitude
of such an overestimate, it depends on which value of
the lattice constant is used in the calculation, and also
to which experimental data are the theoretical results
compared. Both these issues are discussed below. At
this point, let us just mention that the amount of the
overestimate is something between 12% and 18%. In
order to cope with this rather surprising failure, some
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authors®! have performed calculations within a quasi-
particle scheme, i.e., in a framework which is deliberately
outside the scope of DFT. In this paper we assume a dif-
ferent viewpoint: we calculate the dielectric constants of
Si within DF'T, but abandoning the LDA. Specifically, the
approximation used in this work includes gradient correc-
tions (GC) to the LDA. Whether such GC are definitely
an improvements over the LDA or not—particularly for
Si and other covalently bonded materials—is presently
under debate:!112 this work provides therefore an im-
portant piece of information on such an issue.

Among the large number of proposed forms of the GC
(Refs. 13 and 14) we decided to concentrate on the pro-
posal of Becke!® for the exchange part and Perdew!® for
the correlation part. Actually, at present these expres-
sions seem the most appealing candidates to describe
both finite and extended systems. Furthermore the pseu-
dopotentials generated within this scheme are smooth
and transferable, and they require little extra workload
as compared with standard LDA.

The main success of GC is a definite improvement of
the calculated cohesive energy of molecules and solids,
while the improvement on other physical quantities of
interest in solids is not so striking.!? In part this could
be due to the fact that GC has been often tested on ma-
terials and properties where LDA is already a very good
approximation (such as, e.g., most properties of simple
semiconductors). In some cases where LDA was known
to fail badly (such as, e.g., hydrogen-bonded systems),
GC did provide an outstanding improvement.!” For this
reason we decided to concentrate on one material prop-
erty which is in the range of DFT, but where LDA could
be effectively improved upon.

Our computational scheme is the density-functional
perturbation theory (DFPT) of Baroni, Giannozzi and
Testa,” which allows a very good control on the numer-
ical convergence of the results. In particular it offers
the possibility of performing very accurate calculations
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of the linear-response properties of solids, overcoming
some problems of the more traditional dielectric-matrix
approach. Furthermore we will show that within DFPT
the GC can be introduced in a very simple and natural
way.

Our main result is that GC does contribute to reduce
the discrepancy between theoretical and experimental di-
electric constant, even if the reduction of the error is not
so marked as in the case of cohesive energies. The main
problem is due to the fact that GC weakens the strength
of covalent bonds, so that the lattice constants are gen-
erally slightly overestimated and bulk moduli are largely
underestimated. This effect also affects the value of the
computed dielectric constant. This fact can be seen by
comparing the values of the dielectric constant calculated
within LDA and GC at the experimental lattice constant
and at the theoretical equilibrium lattice constant. In
the former case the GC scheme would appear an impor-
tant improvement over LDA, while it is only marginally
better in the latter.

In Sec. II we outline the theory of the electronic di-
electric constant within DFT, stressing that it is indeed
a bulk ground-state property of a solid. In Sec. III we
give a very brief summary of the DFPT restricting to
the case in which the perturbation is represented by a
uniform static electric field. In Sec. IV we clarify some
misunderstanding about possible relationships between
static linear response and the so-called “gap problem.”?2!
In Sec. V we discuss the implementation of DFPT within
a GC scheme for exchange and correlation energy. Fi-
nally in Sec. VI we report our results on Si and compare
them with previous calculations and with a critical inter-
pretation of experimental data.

II. THE MACROSCOPIC DIELECTRIC
CONSTANT

The macroscopic dielectric tensor is defined as

P

Foo=1+ 4ng—E, (1)
where P is the macroscopic electronic polarization lin-
early induced by the (screened) field E; in a cubic mate-
rial such a tensor obviously reduces to a constant. The
early computations of €, in semiconductors, including
Refs. 5 and 6, used a dielectric-matrix formalism. In
more recent studies, DFPT (Refs. 7 and 20) has proved
to be a very convenient alternative: such an approach will
be extended here beyond its original LDA formulation.
When a perturbation (such as a macroscopic field) is ap-
plied to the solid, the Kohn-Sham (KS) Hamiltonian® is
written as Hks + AVks, where AVks is a screened poten-
tial, to be determined self-consistently; the correspond-
ing KS orbitals are then ¢; + Ap;. Basically, DFPT is a
self-consistent scheme which directly provides—as shown
below—orbital derivatives: in our case d¢;/0E. Once
these orbital derivatives are known, one can write the
polarization derivative in Eq.(1) for a finite sample of
volume V as:
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where f; is an occupancy factor (either 2 or 0), and
c.c. indicates the complex conjugate. It proves useful
to transform the dipole matrix elements using the iden-
tity

C:;(pi> + c.c., (2)

(el Vo)
(pilrles) = —in G s, @)
where E; are the KS eigenvalues, and the velocity oper-
ator v is defined as

Py Vsl (4)

e

vV = %’[HKs,r} =

p is the canonical momentum operator, m. is the electron
mass, and the last term is nonvanishing only if nonlocal
potentials appear in the KS Hamiltonian. This is indeed
the case whenever norm-conserving pseudopotentials are
used,'®1° as in the calculations reported here.
Straightforward manipulations transform Eq.(2) into

8P ieh fj — f, 0501'
S T (s j i\ o ) 5
where we have exploited the fact that |0p;/0E) may be
chosen as orthogonal to |p;).

III. OUTLINE OF DENSITY-FUNCTIONAL
PERTURBATION THEORY (DFPT)

In order to proceed further, we need a self-consistent
scheme providing the derivatives of the wave functions
and of the KS potential with respect to the perturba-
tion. The first step consists in writing the first-order
corrections to the wave functions as

1AV i
Ag; = Z%%%M? (6)
J#i * 7

from which the first-order density An is trivially obtained
in terms of AVks. As a second step, we look for an inde-
pendent relationship providing instead AVks in terms of
An: iterating over these two steps, the self-consistency
goal is reached.

The self-consistent perturbation potential AVks is
written as

AVks = AVext + AVy + AVic, (7)

where AV, is the bare perturbation (in the present case
the potential of the unscreened field), and the remaining
two terms are the Hartree and exchange-correlation con-
tributions, respectively. The Hartree term is linear in the
induced charge density:

AVi(r) = 62/ dr' An(r)/|r — '], 8)
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or in shorthand
AVy = vAn, (9)

while the exchange-correlation contribution is linearized
as

AVie > frcAn. (10)
The functional derivative defining this linear term is

Vi (r) _ 0 Exc[n]
Sn(x)  sn(E)on(r)’ (11)

fxc(ra l'/) =

where E,. is the exchange-correlation energy functional.
The operator f,. is real symmetric, and negative definite:
its expression in a GC scheme is discussed below; more
details about DFPT within LDA can be found in Refs. 7
and 20.

When a macroscopic field E acts on the solid, it proves
useful to write the self-consistent perturbation potential
AVks in a slightly different way from Eq. (7), separat-
ing the macroscopic field from the microscopic one (also
called local field). The potential of the screened macro-
scopic field—due to both the bare and the Hartree terms
in Eq. (7)—is written as —eE-r, while the remaining m:-
croscopic term is lattice periodical in the thermodynamic
limit. We therefore replace Eq. (7) with

AVKS =—eE-r+v.An+ fchnv (12)

where the term v.An amounts to solving Poisson’s equa-
tion.

The self-consistent loop is performed cycling over Eq.
(12) and Eq. (6), while the value of the screened field E
is kept constant during the iteration. Whenever Eq. (12)
is inserted in Eq. (6), the matrix elements of r are trans-
formed to the velocity form using again Eq. (3). Once
self-consistency is reached, one gets the orbital variations
Ay; induced by a given macroscopic field E, which are
exact to linear order in the field magnitude: hence the
field derivative to be used in Eq. (5).

All of the equations actually implemented in the
method have a simple and well defined expression for
the infinite periodic crystal in the thermodynamic limit,
where the index i is identified with the band index and
the Bloch vector altogether. A further very important
feature of DFPT is the fact that the (slowly convergent)
perturbation sums in Eqs. (5) and (6) are not explicitly
evaluated, and an alternative Green’s function scheme is
used in their stead. More details about these points are
given in Refs. 7 and 20.

IV. THE GAP PROBLEM
AND ITS IRRELEVANCE

We pause at this point to discuss the relevance (if any)
of the so-called “gap problem”?! to macroscopic linear
response in solids. The authors have found this to be
the subject of a frequently asked question at seminars
and talks. We take therefore the present occasion for a

thorough clarification of the issue.

Many of the linear-response calculations do actually
perform perturbation sums such as in Egs. (5) and
(6). Such sums are strongly affected by the terms
having the smallest energy denominators, and therefore
have a strong dependence upon the value of the mini-
mum valence-conduction gap: a gap reduction enhances
screening. It is well known for several years that DFT-
LDA calculations for semiconductors provide gap values
which are substantially smaller than the measured opti-
cal gaps. Hence it is tempting to trace back the LDA
overestimate of £, to this kind of failure: such reasoning
is nonetheless incorrect.

The first important point is that the differences in KS
eigenvalues must not be identified with optical transition
energies. In fact, even the ezact KS gap is believed to be
typically smaller than the optical gap,?1:22 but this fact
does not spoil the formulation given above from provid-
ing, in principle, an exact value of €,,. Besides energy
denominators, a key role is played by the f,. operator, as
emphasized in Ref. 5. A second point worth discussing
is the reason why one-particles energies—such as the KS
eigenvalues—enter the formulation at all. In fact, the
KS eigenvalues are unphysical quantities, and explicitly
appear in perturbation theory because of a mathematical
reason, i.e., expansion over a complete basis set. Static
linear response is a ground-state property, and has noth-
ing to do with the physical excited states of the system.

Of course, an alternative approach could be aban-
doning DFT since the very beginning, and studying
the dielectric response in a many-body Green’s function
framework. This would even provide the dynamical (or
frequency-dependent) dielectric constant e, (w), which is
outside the scope of DFT. In order to pursue this aim,
one should find approximate expressions for the two-body
Green’s function, and expand the perturbed state over
the physical (hole-particle) excited states of the unper-
turbed crystal. This is in fact the path currently fol-
lowed when studying linear response in molecules, at the
Hartree-Fock level,2®24 and beyond.?®

V. GRADIENT-CORRECTED
LINEAR RESPONSE

The first step beyond LDA is to assume that the ex-
change and correlation functional E,. depends locally on
the local density and on the density gradient:

Ey. = /dr naxc(n,Vn). (13)

From this, the exchange and correlation term in the KS
potential can be derived from standard calculus of vari-
ations:

3

oF g OF
ch—%—agla—ma"[a(aan)]v (14)

where the function F' is defined as F = ney, (n, Vn),
and 9,n is the a component of the density gradient. In
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order to evaluate linear response, DFPT requires the fy.
operator, Eq. (11). The functional dependence of Eq.
(10) is expressed as an explicit linear function of An and
its r derivatives, as

3
F
AV = Z 0z4 [ana B n)]A”

SR 9*F dAn
—az::mz::l 5—{3(3 n)o (aﬁ")] Oz

L. o°F 8*An
_;gz::{a(a n)a(agn)] dzo0zp (15)

Within LDA F is independent of the density gradient,
and only the first term in Eq. (15) is nonvanishing: one
thus recovers the standard LDA expression for fy..>2° To
compute this general expression within any GC scheme it
is necessary to evaluate analytically the derivatives of F,
while the derivatives of An can be computed numerically
in reciprocal space using a plane-wave representation of
the charge density.

Among the different GC implementations which have
been proposed in the literature, we have chosen the recipe
“Becke exchange plus Perdew correlation,”**16 which has
been the favorite choice of several other workers in re-
cent papers, including Refs. 11 and 17. Following Becke
and Perdew (BP), the explicit form of the energy density
reads

eBP — (LDA | 9—ip5 X2 {2*é0(n)e*¢ - g} . (16)

Here we indicated with eé!P# the expression of the ex-
change and correlation functional taken from the best
available electron-gas results, with the parametrization of
Perdew and Zunger.26 In Eq. (16) there are three terms
which depend upon the gradient of the charge density.
Switching from now on to atomic units (e?=hA=m=1)
they are written as

1|V
Xn:25| :le (17)
ns3
C(n) |Vn|
=0.192 . 18
G =1+6nX,sinh ' X,,. (19)

The function C(n) can be written in terms of
3\
=2 20
" (47rn> (20)

0.002568 + ar, + Or?2
1+ rs + 672 4+ 10443r3°

as

C(n) = 0.00 1667 + (21)
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and a = 0.023266; 3 = 7.389 x 107%, v = 8.723;
6 = 0.472; n = 0.0042. The reasons for the choice of
this functional form of ¢BF are explained in the origi-
nal papers, and well summarized by Ortiz and Ballone.?”
The important point to underline here is that this com-
plex expression has the correct low density limit, whereas
the exact electron-gas result?® is recovered in the limit
Vn(r) — 0. The numerical value of the parameters
is chosen in such a way to fit the calculated exchange
and correlation energies of selected atoms in their ground
state.

It is interesting to evaluate the fy. operator for a uni-
form electron gas. Owing to translational and rotational
invariance, this operator is diagonal and isotropic in re-
ciprocal space, i.e., it depends only on k=|k|. In the
GC case one applies Eq. (15), where only the first and
last terms are nonzero, and the Becke-Perdew f,. can be
written in the form:

dZFLDA .
fxc( ) - ‘8—2‘ + 23 (

(22)

where kp is the Fermi wave vector. The first (LDA) term
in Eq. (22) is a constant; within GC one gets the follow-
ing leading term, quadratic in k. This term in Eq. (22)
is proportional to the difference between the parameters
23n and C(n). This quantity turns out to be negative
for typical valence densities in solids. As already noted
by Ortiz,!! this seems to suggest that the Becke-Perdew
GC scheme enhances screening, in the case of a uniform
electron gas at least. In a nonuniform electron system,
the sign of the difference between the parameters 237)
and C(n) is not enough to assess whether the GC cor-
rection actually enhances or reduces screening. Several
factors contribute to the final result and not even its sign
can be easily predicted beforehand. After the full calcu-
lation, we find that GC, in fact, reduces screening in Si
(see below).

The above paragraph suggests an appealing way of as-
signing the value of the parameter 7, which could in fact
be taken from the second k derivative of fy. at k=0, as
calculated for the electron gas at different densities. Un-
fortunately this quantity is not known at the same level
of accuracy as the LDA value of fy., which is taken from
Monte Carlo quantum simulations.?® So far, a quantum
Monte Carlo study of the electron-gas linear response
has been performed only in two dimensions,?® while for
three dimensions the only available data are derived from
more approximated approaches.?’® The calculations on
the market grossly differ from each other in their low-
k behavior, and even disagree in the sign of the k=0
second derivative of fy.. Although the majority of the
available theories suggests a positive sign, some authors
propose a negative sign.3 For this reason we preferred to
perform our calculation with the value of = 0.0042, as
originally proposed by Perdew.'® If and when more accu-
rate and reliable electron-gas data will become available,
a reparametrization of the GC functional could possibly
improve the quality of the results.
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TABLE I. Lattice constant ao and bulk modulus By of
Si calculated in the present work. We compare the gradi-
ent-corrected results both with standard LDA and with ex-
periment.

LDA GC Expt.
ao (a.u.) 10.20 10.38 10.26
B, (kbar) 960 880 990

VI. RESULTS AND CRITICAL COMPARISON
WITH EXPERIMENTAL DATA

We have generated the pseudopotential for Si, in the
GC scheme. We used the method of von Barth and Car
already described elsewhere,3! performing both the all-
electron and the pseudopotential calculations within a
GC scheme. To check the accuracy of the pseudopoten-
tial we reproduced the lattice constants and bands of Si
already reported by Ortiz,!! obtaining exactly the same
results for the lattice constants and differences smaller
than 0.02 eV for the band energies. In Table I we report
our results for some structural properties, using both
standard LDA and the GC approximation. All the re-
sults have been checked for convergence with respect to
the cutoff energy and grid of special points. In particu-
lar the reported results are referred to 24 Ry cutoff and
28 special points in the irreducible Brillouin zone which
ensure a complete convergence in this semiconductor. It
is worth pointing out that while the lattice constant in
the GC approximation is only slightly overestimated, and
the error is comparable with the LDA underestimate, the
error in the theoretical value of the bulk modulus is much
larger. This finding is in agreement with the calculations
reported in Ref. 12.

The available theoretical DFT-LDA values of the di-
electric constants of Si are reported in Table II, together
with the results of our calculations performed both within
LDA and in the GC scheme. Even if there are small dif-
ferences between the reported theoretical values, mainly
due to the slightly different lattice constants and pseu-
dopotentials used in the computation, it seems quite clear
that for Si LDA values have an error of the order of 12—
18 %.

It is interesting to note that different authors do not
agree upon the experimental value to compare with the
theoretical result. In particular two different values for
Si are reported. The reason of the discrepancy can be
attributed to the difficulty of extrapolating to the zero
temperature limit measurements which are performed at
finite temperature. In this case, in fact, the derivative
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TABLE II. Electronic dielectric constants of Si. In the ta-
ble we report previous theoretical LDA values (BGT and BR
from Refs. 7 and 5, HL from Ref. 6, and LA from Ref. 10),
together with our results for different lattice constants. LDA
refers to standard theory, while GC are the gradient-corrected
results. For every entry, we report also the lattice constant,
when available. The * indicates computations performed at
the experimental lattice constant (see text).

ao (a.u.) €00 ao (a.u.) €oo
Previous results Present results
BGT,BR 10.20 12.7 LDA* 10.26 12.9
HL ? 12.9 GC* 10.26 12.4
LA 10.26 13.5 LDA 10.20 12.7
Expt. 10.26 11.4 GC 10.38 12.6

of the dielectric constant with respect to the tempera-
ture is quite large. In Ref. 32 the dielectric constant of
Si has been measured as a function of the temperature,
and a simple extrapolation gives the experimental values
reported in Table II. The different value reported for Si
is attributed to Ref. 33, but in this case no temperature
dependence is studied, and the value reported agrees well
with the T = 300 K value of Ref. 32.

We have calculated the static dielectric constant, both
at theoretical equilibrium volume and at the experimen-
tal one. These values show that the variation of the di-
electric constant with the pressure is quite high and for
this reason it is very important to choose the correct lat-
tice constant in the calculation. This choice is a kind
of ideological matter. Some authors prefer indeed to use
the experimental lattice constant: for such a choice, we
have shown in the present work that the GC is an impor-
tant improvement over the LDA| the error being reduced
to only 9% for Si. Our own policy, on the contrary, has
been to use throughout the computed equilibrium geom-
etry within the chosen theoretical scheme. Besides the
aesthetical concern of a completely ab initio picture—in
the sense sketched in Sec. I—we have found such a choice
absolutely essential when dealing with the piezoelectric
effect.®34 In the present study, we have found that the
sizable improvement (i.e., the screening reduction) due
to GC is partly compensated by the small lattice expan-
sion due to GC as well, so that the final theoretical GC
result is only slightly closer to the experiment than the
LDA one.
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