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Mechanisms of visible photoluminescence in porous silicon
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We propose a model for porous silicon, an irregular structure obtained by removing some silicon
atoms randomly from a perfect silicon crystal. It is shown by using two-dimensional clusters with a
tight-binding model that this model exhibits the energy-gap widening and the nonexponential decay of
the photoluminescence (PL), which are in good agreement with the observed properties of porous sil-

icon. In this model, the energy-gap widening is due to the localization of eigenstates caused by the ran-

domness of the structure. The distributions in both size and position of the localized eigenstates, i.e., a

statistical effect, yield nonexponential PL decay which is describable by the stretched exponential func-

tion. A dynamical effect due to electron and hole hopping between the eigenstates explains the observed

strong energy dependence of the PL lifetimes.

I. INTRODUCTION

The recent discovery of visible photoluminescence (PL)
from porous silicon has stimulated a great deal of interest
in this material. There are several proposals for the
mechanism of this PL. Canham' has suggested the
silicon-wire nanocrystal as a porous silicon structure to
explain the visible light emission by band-gap widening
and relaxation of the momentum selection rule due to the
size effect. This idea also has been proposed independent-
ly by another group. Cullis and Canham later observed
a structure of chained ball-like nanocrystallites rather
than pillarlike crystals under an electron microscope. On
the other hand, Brandt et al. have attributed the origin
of the PL to siloxene derivatives present in porous silicon
due to the similarity between the PL spectrum of porous
silicon and that of siloxene derivatives.

Xie et al. have observed a nonexponential PL decay
in the microsecond region, and considered this slow de-

cay to be related to some surface states of nanocrystal-
lites. Vial et al. have proposed nanocrystallites sur-
rounded by SiOz walls as the porous silicon structure.
They have explained the observed dependence of PL life-
times on PL energies in terms of the tunneling of carriers
across the SiOz wall. The nonexponential PL decay has
been well described by the stretched exponential func-
tion. Analysis employing this function has shown that
the PL decay rate and the nonexponentiality increase
with increasing PL energy. In addition to the PL life-
times in the microsecond region, a diverse range of PL
lifetimes ranging from picoseconds to microseconds has
been reported. '

There are several theoretical works, semiempirical'
and first-principles" ' calculations based on the quan-
tum wire model. These works have shown that the quan-
tum wire exhibits both the band-gap widening and the
direct gap consistent with the observed PL spectrum.
The quantum size effect on excitons in the quantum dot'

has also been examined, using the effective-mass theory
to yield the band-gap widening and the indirect-to-direct
conversion of the optical transition.

The calculations for optical matrix elements have pro-
vided estimations of radiative lifetimes of localized exci-
tons that indicate they may be larger than a microsecond
for the quantum wire, "and vary from a nanosecond to a
millisecond corresponding to the range of diameters from
—1 to -3 nm for the quantum dot. ' However, the PL
decay properties are determined by both radiative and
nonradiative processes. The experiment has shown the
nonradiative process to be dominant at room tempera-
ture. Craig' has suggested that the diverse range of PL
lifetimes observed in experiments should be related to the
localization of electron states in the irregular structure
within the porous structure. Gosele and Lehmann, ' as a
result of their absorption experiments, have proposed
that porous silicon consists of an interconnected silicon
skeleton which implies irregularity of the structure.

In this paper, we propose a primitive structure of
porous silicon, an irregular structure obtained by remov-

ing some silicon atoms randomly from a perfect silicon
crystal. We assume that in this structure most dangling
bonds of silicon atoms are terminated by hydrogen
atoms, while the remaining dangling bonds act as nonra-
diative recombination centers for electrons and holes.
We consider that Si-H bond formation prevents recon-
struction around vacancies. ' Therefore, this structure
partiaBy retains an original crystal symmetry, which is
consistent with experimental facts. ' ' In this structure,
a large number of electron states are localized due to ran-
domness of this structure. This results in a reduction of
the widths of both valence and conduction bands and,
therefore, energy-gap widening. This is demonstrated
with two-dimensional Si clusters by using a tight-binding
model. In this way, we will show that creating this struc-
ture is quite an efficient use of band-gap widening com-

pared to the simple reduction of the crystal size.
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In the present model, localized states can exist even in
infinite clusters due to the randomness of the structure.
This is related to the quantum percolation problem.
However, we do not devote ourselves to the quantum per-
colation problem in depth in the present paper.

Based on the above model, and solving master equa-
tions describing PL processes, we show that the PL inten-
sity exhibits nonexponential decay closely describable by
the stretched exponential function, as experiments have
revealed. We consider not only radiative and nonradia-
tive electron-hole recombination, but also electron and
hole hopping between their eigenstates via phonon-
induced tunneling. The nonradiative recombination is as-
sumed to be a dominant process in the decay of the PL
intensity according to experimental facts. We show that
the distribution of the nonradiative transition probability,
i.e., a statistical effect, causes the stretched exponential
decay of the PL intensity, although the PL lifetime and
nonexponentiality are not strongly dependent on the PL
energy. When the dynamic effect due to electron and
hole hopping is taken into account, it especially affects
the PL decay, which explains the experimentally ob-
served dependence of PL lifetime on PL energy.

In Sec. II, we present the finite two-dimensional cluster
model, whose energy gap and eigenstates are calculated
by a tight-binding model. The relation between the
energy-gap widening and localization of the eigenstates is
also shown. In Sec. III, the master equation based on this
model is presented with its numerical results. We also
discuss the origin of the stretched exponential decay of
the PL intensity. The discussion and conclusion are
given in Secs. IV and V, respectively.

II. ELECTRONIC STRUCTURE OF POROUS SILICON

We show the energy-gap widening and localization of
eigenstates of the porous structures using two-
dimensional Si clusters. Electronic states are calculated
using the tight-binding model proposed by Pandey and
Phillips, which reproduces very well not only the
valence band but also the band gap and the bottom of the
conduction band of Si in the diamond structure. For in-
teractions between Si and H atoms, Pandey's parame-
ters are used, which reproduce very well the energy lev-
els of SiH4 and Si2H6 molecules.

As can be seen from two-dimensional Si clusters illus-
trated in the top view of Fig. 1, the structures are gen-
erated by fractional and random removals of some atoms.
The structure generally contains several mutually in-
dependent clusters, among which we choose the largest
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FIG. 2. (a) A Si skeleton of a cluster representing porous si
icon consisting of 350 atoms: ~, Si atoms; 0, vacancies. (b) A
Si skeleton of a regular cluster consisting of 350 Si atoms: 0, Si
atoms; 0, vacancies.

TABLE I. Energy gaps of clusters representing porous sil-
icon and regular clusters.

cluster and calculate its electronic states to see the band-

gap widening. Smaller clusters generally have larger en-

ergy gaps. All dangling bonds of Si atoms are terminated
by hydrogen atoms to prevent dangling-bond states from
appearing in an energy gap. For simplicity, we neglect
the relaxation of silicon atoms from their bulk positions.

For example, the cluster consisting of 350 Si atoms is
illustrated in Fig. 2(a), where the black and white circles
represent Si atoms and vacancies, respectively. This clus-
ter is the largest one picked up from a structure obtained
by a random removal of a fraction 0.2 of Si atoms in an
original cluster consisting of 450 Si atoms. The calculat-
ed value of the energy gap of this cluster is 2.06 eV. On
the other hand, the value of the regular cluster consisting
of 350 Si atoms illustrated in Fig. 2(b) is 1.51 eV. A regu-
lar cluster means a cluster having smooth facets and no
vacancies inside. For comparison, the original cluster,
consisting of 450 Si atoms, and the infinite two-
dimensional cluster have energy gaps of 1.39 and 1.49 eV,
respectively. The results of energy gaps for other exam-

Fraction
Number of

Si atoms Regular cluster

Energy gap (eV)
Cluster for

porous silicon

FIG. 1. Two-dimensional Si cluster in top view.

0.3
0.25
0.2
0.15
0.1

144
306
350
376
416

2.393
2.194
2.062
1.858
1.684

1.651
1.525
1.511
1.504
1.493
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FIG. 3. Amplitudes of the several elgenstates of the porous-slhcon cluster conslstlng of 350 S1 atoms (a) HOMO (b) LUMO (c)
second HOMO, (d) second LUMO, (e) third HOMO, and (fl third LUMO. The amphtudes are larger at the atoms shaded more dark-
ly. The four classes of shading correspond to the regions of the amplitude from —,

' "+' to —,
' " of the maximum ~ith n =0, 1, 2, and 3.

ples are shown in Table I, in which clusters have been ob-
tained by random removals of Si atoms in various frac-
tions from the original cluster consisting of 450 Si atoms.
It can be seen in this table that the clusters generally have
larger energy gaps than regular clusters consisting of the
same number of Si atoms.

We show that the energy-gap widening of the structure
as seen above is related to the localization of the eigen-
states. We calculate the amplitude of the nth eigenstate
on the ith Si atom defined by

where C "' is the component of the a-type orbital of the
nth eigenstate on the ith Si atom, and CHj' is that on the

jth hydrogen atomic orbital. In the second term on the
right-hand side of Eq. (1), the summation runs over hy-
drogen atoms bonded to the ith atom, i.e., the amplitude
on each hydrogen atom is assigned to a Si atom bonded
to it. The amplitudes of several states [HOMO (highest
occupied molecular orbital), LUMO (lowest unoccupied
molecular orbital), etc.] for the cluster consisting of 350
Si atoms are illustrated in Fig. 3. Those for the regular
cluster are shown in Fig. 4. In these figures, the ampli-
tudes are larger at the atoms shaded more darkly. Com-
paring Figs. 3 and 4, we see that eigenstates of the cluster
representing porous silicon are more localized than those
of the regular cluster.

In order to examine in detail the degree of the localiza-
tion of the eigenstates, we calculate the participation ra-

FIG. 4. The same as Fig. 3, except for the regular cluster consisting of 350 Si atoms.
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tio of the nth eigenstate define by

(")= N g(P("))2

0.7

0.6-

0.5-

(a}

where 1V is the number of Si atoms. If a state is localized
on M Si atoms, y'"'-M/N, since P "'-M '. The re-
sults for y'"' around Fermi levels are shown in Figs. 5(a)
and 5(b) for the porous cluster, and in Figs. 6(a) and 6(b)
for the regular cluster. Comparing Figs. 5 and 6, we see
that the cluster representing porous silicon, having a wid-
er energy gap, exhibits much more localization of the
eigenstates than the regular cluster. Moreover, it can be
seen in Fig. 5 that in this cluster the degree of localiza-
tion varies irregularly from state to state. The position of
the localization center also varies from state to state. In
particular, relatively extended states appear irregularly
over a whole range of energy. The amplitudes for two ex-
amples of the extended states, which are indicated in
Figs. 5(a) and 5(b) by arrows, are illustrated in Figs. 7(a}
and 7(b), respectively. This feature is in contrast to the
case of the regular cluster: Most of states are delocalized
in almost the same degree. The distributions in both po-
sitions and sizes of the localized eigenstates yield a large
variety of nonradiative transition probabilities. This
causes the nonexponentia1 decay of the PL intensity as
shown below.
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FIG. 6. (a) and (b) The same as Fig. 5, except for the regular
cluster.

HI. TIME EVOLUTION OF PL INTENSITY

A. Master equations

Now we proceed to discussions of the time evolution of
PL intensity on the above model. After electrons are ex-
cited from lower occupied levels to upper unoccupied lev-
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FIG. 5. (a) and (b) Participation ratios of the eigenstates
around the Fermi level for the porous-silicon cluster. The ar-
rows indicate extended states whose amplitudes are illustrated
in Fig. 17.

FIG. 7. The aznplitudes of (a) the thirteenth HOMO and (b)
the eighth LUMO for the porous-silicon cluster, which are indi-
cated by the arrows in Fig. 5.
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dn; =g y,"(1 —n, )n —g y, (1 n—)n;,
dt

J

(3)

els, both electrons and holes hop between localized or ex-
tended eigenstates via phonon-induced tunneling. This
process is described by the master equations for the oc-
cupation numbers of the eigenstates:

tive recombination is described by adding new terms to
the right-hand side of Eq. (3). We rewrite the electron
occupation numbers as n,."(=n, ) for electrons in upper
levels as n, '")(=—1 —n, ) for holes in lower levels, and as

n,("'(=n, ) for electrons in the dangling-bond state. The
equations for these numbers are given by

where n, is an occupation number of the ith eigenstates,
and y; a transition probability from the jth eigenstate to
the ith one. Assuming weak coupling between electron
and phonon, we use the following model for the
transition probabilities:

—g(E, E )/Ri.o h
——(.E. E, )/kT—

f E EyoS,Je
' ' '", for E &E, ,

(4)

where E, is the energy of the ith eigenstate, T is the tem-

perature, and k is the Boltzmann constant. The S," is an

overlap defined by

dn"'
1

dt

=g y,"(1 n—
,
")n" gy—;(1—n ")n, '

J

+g y,
' (1—n ')n "'

J

—gy';(1 —n'"')n "—ga;jn 'nj"',
J J

=y yJ;(1 n"—')n'"' y—y;J(1 n'—"')n "'

J J

+y y,', (1 —n,'"')(1—n,"')
J

(d) (h) y ( ) (

J J

(8)

(9)

(g) alldS =~P"P'J'
ij ~ I I

I

where the summation runs over all Si atoms and PI' is

defined by Eq. (1). The Inultiphonon process is reflected
by the factor exp( TJ)E; Ej—~

Ifico~h—), i.e., the exponen-
tial dependence on the phonon number, ~E; Ej ~

lfiej~h-,
where co h is a maximum phonon frequency. The
coefficient g depends weakly on the temperature, and is
of order of unity. We use g=1 for simplicity. The yo is

an electron-phonon-coupling constant independent of the
energy. This model of y; satisfies the detailed balance
condition:

n(d)
=y y,', (1 —n,(")n,("—y y,', (1—n,

"))n,
'"'

J J

+g y,
' (1 —n,

'" )(1 nj"')—
J

y y~ n (h)n (d)

J

(10)

respectively. The last terms in the right-hand sides of
Eqs. (8) and (9) represent the electron-photon interaction.

a; is assumed to have the following form:

VlJ
yoS(, e

—bE, /kT —(E.—E,. )/kT
e ' ', for Ej &E,

—bE, IkT
for E.&E;,

where 4Ej is the activation energy for the transition
from the jth to the ith states, and yo is an electron-
phonon-coupling constant independent of the energy.
This expression can be derived from the assumption of
strong coupling between electron and phonon. The
dangling-bond states are introduced by removing some
hydrogen atoms terminating dangling bonds. The radia-

y;j(1 —n;)n =y, (1—n )n, ,

n, = [1+exp(E, IkT)]

In addition to the above process, there are two kinds of
processes for electron-hole recombination: radiative
recombination and nonradiative recombination. The
former results in photoluminescence. We consider the
latter to proceed as follows: electrons (holes) lose their
energies through electron-phonon interaction, and are
trapped in dangling bonds, and then holes (electrons)
move nearby to recombine. This process also can be de-
scribed by Eq. (3) with different transition probabilities

y given26 28
by

n '(t =0)=A ga;, exp[ o[EO (E, E—, )] ],——
J

n "'(t =0)= A pa; exp[ cr[EO (E—E, )]'], — —
J

and

n'"'(I =0)=0.S,

(12)

(14)

where Eo and o. are parameters. The constant A is deter-

mined by a total number of excited electrons. The PL in-

tensity is given by

I(E,t)=gga, n,"n' "'5[E "(E.; .E )] —. (—15).
l J

Equations (8—10) are solved numerically with a cluster
consisting of 151 Si atoms, as illustrated in Fig. 8, in

which a hydrogen atom bonded to each shadowed Si
atom is removed to introduce two dangling bonds. The
eigenenergies E,. and the overlaps S,-. for this cluster are
calculated by the tight-binding model. We chose the De-

aij =ao ij

where uo is the electron-photon-coupling constant in-

dependent of energies, and S, is the overlap defined by

(5). Equations (8)—(10) are solved with the initial condi-
tions
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FIG. 8. A Si skeleton of a porous-silicon cluster consisting of
151 Si atoms. A hydrogen atom bonded to each shadowed atom
is removed.

-3

100 200 300 400 500
TIME

bye frequency for silicon in the diamond structure to be
the phonon frequency co h. Hereafter, we treat only the
case of the temperature T =300 K. We assume the ac-
tivation energies hE,J to be constant for simplicity. Then
the exponential factor exp( bE; /—kT) can be included
in the coupling constant yp, since we are not concerned
in this paper with the temperature dependence of the PL
intensity.
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B. Stretched exponential decay

Before presenting numerical results for Eqs. (8}—(10),
we show that the distribution of the nonradiative transi-
tion probability (statistics) causes the stretched exponen-
tial decay of the PL intensity. This stretched exponential
behavior is preserved even under the dynamical effect due
to the electron and hole hopping, although it is somewhat
modified, as shown in Sec. III C.

We assume according to experimental fact that nonra-
diative recombination is a dominant process in the relax-
ation of the PL intensity, and that the radiative recom-
bination acts only as a perturbation. Now we ignore the
electron and hole hopping process and set yp=ap=0 and
n '=0. 5 in Eqs. (8) and (9). [Equation (10) is ignored. ]
We consider initial conditions such that all electron and
hole states have the same occupation number initially,
i.e., cr =0. Then we obtain the time evolution of the oc-
cupation numbers of electrons and holes to be
n,"0- exp( —

A, ;r) and n "'~ exp( —
A, ;r), respectively,

where the decay constant A, ; is given by the sum of the
nonradiative transition probabilities y,'J. The time evolu-
tion of the PL intensity can be written as

l I

0.01 0.02 0.03 0.04 0.05

FIG. 9. (a) Time evolution of the PL intensity for the PL en-

ergy E =2.5 eV: the one given by Eq. (16) {solid curves), and

the 6tting with the stretch exponential function (broken curves).

(b) Distributions of the decay constant A, for the PL energy
E =2. 5 eV: the histogram calculated by Eq. (19) and the fitting

with function (I8) (a solid curve).

and the fittings with the stretched exponential function
exp[ —(t/r)~] (the broken curves). We see in these
figures that the fittings are very good in the time region
t &50. The fitting for E =4.0 and 4.5 eV are also very
good for t )50. The values of p and r are plotted by the
crosses in Fig. 12. It can be seen that without the elec-
tron and hole hopping process, both p and r are not
dependent on the PL energy. On the other hand, the
dynamical effect due to electron and hole hopping yields
the strong energy dependence of both p and r, as seen in
Sec. III C.

The histograms in Figs. 9—11(b) represent the distribu-
tion of the decay constant A, calculated by Eq. (17).
Equation (16) shows that the time evolution of the PL in-

tensity is given by the Laplace transform of the distribu-
tion function g (A, ). Therefore, g()t, ) for the stretched ex-
ponential decay is given by the inverse Laplace transfor-
mation of exp[ (t/v)~] It—s asym. pto. tic form is obtained
by using the saddle-point method:

g(k)=gga 15[E (E, Ei)]5[A,—(A, , +A,—.—)] . (17)

I(E, t) ~ gg a,"exp[ —(A, , +A, . )t]5[E (E; E )]- — .

l J

~ J g(A, )exp( —
A, t)dA, , (16}

0

where g (A, ) is the distribution function of the decay con-
stant A, given by

In the numerical calculations, the function
5[E—(E; E )] in Eqs. (16) and (17—) is . replaced by the
Gaussian function (mlo } ' exp( cr[E (E, EJ)]—), ——
with o =10 eV . Hereafter, we use yp=1, i.e., times are
scaled by yc '. Figures 9—11(a) show the time evolution
of the PL intensity given by Eq. (16}for the PL energies
E =2.5, 3.0, and 3.5 eV (the solid curves), respectively,

V7p
g(A, )= (Arc) ' ~ exp[ —(Arc) ],

&2~P

where

v=P(1 —P)

rc=r[P(1 —P)'i"]

(18}

(19)

(20)
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FIG. 10. The same as Fig. 9, except for E =3.0 eV. FIG. 12. The parameters Ig and r of the stretched exponential

decay as functions of the PL energy: 0, pp=0' Cl pp=0. 5' ~,
yp=1; X, the simplified calculations with yp=0.
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(b} E=3.5eV

Function (18), with the same values of P and r as used in
the fitting of I(E,t), is plotted by the broken curves in
Figs. 9—11(b). It can be seen that the histograms for
E =3.0 and 3.5 eV fit very well with function (18) for
A, &0.035. On the other hand, the fittings are not very

good for A, )0.035, which corresponds to the deviations
of I(E, t) from the stretched exponential function in the
short-time region t & 50. This is also the case for E =4.0
and 4.5 eV. For E =2.5 eV, the fitting of the histogram
with function (18) is very poor, and the values of P and r
deviate from those for other energies, though the fitting
of I(E,t) with the stretched exponential function is rath-
er good. We consider this to be due to statistical error,
i.e., in the present small cluster the number of electron
and hole states contributing to this PL energy component
is insufBcient for this to be regarded as statistically
correct.
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(0
c}

I
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I
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FIG. 11. The same as Fig. 9, except for E =3.5 eV.

C. Dynamical eÃect

Now we take into account the dynamical effect due to
electron and hole hopping by solving Eqs. (8)—(10) nu-

merically. Times are scaled by yo '. We use ao=10
We have found that the results are insensitive to the
value of ao as long as ao is suSciently smaller than yo,
e.g., ao=10 . We vary the value of yo to examine the
effect of electron and hole hopping. Finally, we choose
Eo =3.0 eV and o = 10 eV in Eqs. (12) and (13), assum-
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ing a total number of exited electrons to be equal to 12.
%e have found that the decay property of the PL intensi-
ty is insensitive to a total number of exited electrons.
This is due to the following: n '« 1 and n "'« 1 for al-
most all of the eigenstates, and n "' is nearly equal to 0.5
at any time. Therefore, Eqs. (8) and (9) are almost linear
except for the last terms representing the radiative
recombination, which act only as a perturbation.

The results of the time evolution of the PL intensities
for y0=0, 0.5, and 1 are shown in Figs. 13, 14, and 15, re-
spectively. The 5 function in Eq. (15) has been replaced
by the Gaussian function (mlo) '~ exp( oE ),—with
o =10 eV . The PL intensities are given in Figs. 13(a),
14(a), and 15(a) as functions of the PL energy, where the
different curves correspond to different times. On the
other hand, they are given in Figs. 13(b), 14(b), and 15(b)
as functions of time, where the different curves corre-
spond to different PL energies. In the latter plots, the
curves can be 6tted in the region t &50-100 with the
stretched exponential function exp[ (t lr—)~], using
different values of P and r for different PL energies. In
the short-time region t &50-100, the curves deviate
slightly from the stretched exponential function, similarly
to Figs. 9—11(a).

The values of P and r are plotted in Figs. 12(a) and
12(b), respectively, where white circles, squares, and
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FIG. 14. The same as Fig. 13, except for yo =0.5.
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FIG. 13. Time evolution of the PL intensities for @0=0ob-
tained by solving Eqs. (8)-(10): (a) PL intensities at various
times as functions of the PL energy (the values beside the curves
indicate times); (b) those for the various PL energies as func-
tions of time (the values beside the curves indicate PL energies
in eV). Time is scaled by yo
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FIG. 15. The same as Fig. 13, except for yo= 1.
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black circles represent results for yo=0, 0.5, and 1, re-
spectively. The most remarkable feature is that both P
and r depend strongly on the PL energy in the case of
yo%0, in contrast to that of yo=0. In particular, r has
an exponential dependence on the energy in the region of
E ~ 3 eV. These tendencies for go&0 are in good agree-
ment with the experimental behavior of the PL intensi-
ty. The deviation from the above tendency at E =2.5
eV is due to statistical error, as already mentioned.

In order to understand the origin of the energy depen-
dence of P and r, we examine in detail the time evolution
of the occupation numbers for electrons and holes. The
time evolution of the logarithm of the occupation num-
bers for electrons n ' in the energy region, 0(E (3.0
eV, is shown for several eigenstates in Figs. 16(a) and
16(b) for y0=0 and 1, respectively, where lower-energy
states have larger occupation numbers at t =0. Those for
holes have similar behavior, and have not been shown. In
these figures, the slope of each curve is equal to the decay
rate of each state. In Fig. 16(a), slopes of the curves vary
over a somewhat wide range, which means that the occu-
pation number of each eigenstate decays with its own rate
determined only by the nonradiative transition. This re-
sults in the stretched exponential decay of the PL intensi-
ty, with P much less than unity. On the other hand, the
slope of the curves in Fig. 16(b) varies over a narrower
range. This is due to the following fact: Electron and
hole hopping forces the system into the local thermal
equilibrium, i.e., the rapid decreases in occupation num-

bers of states having large nonradiative decay rates are
suppressed by electrons or holes flow from neighboring
states having smaller nonradiative decay rates, and vice
versa. As a result, the decay rates of the states become
close to each other, so that the PL intensity decays with P
closer to unity. The values of P are larger for lower PL
energy components, since they are contributed from the
smaller range of the eigenstates and, therefore, have a
smaller variety of the decay rate. In particular, as seen in

Fig. 16(b), there are low-energy states whose occupation
numbers themselves decay as exp[ —(tlat)~j with P) 1.
This is due to the large electron flow from higher states,
which initially exceeds the proper decay rates of the low-

energy states. This also causes the decay of the PL inten-
sity with P) l.

Electron and hole hopping causes the values of ~ to be
smaller for the higher PL energy components. This is be-
cause the cascade of electrons (holes) from higher (lower)
to lower (higher) states makes the lifetime of the higher
(lower) states shorter. As a result, the higher PL energy
components come to decay faster. The above situation
also occurs in the PL energy component of 2.5 eV, i.e.,
the values of P and r for yo+Q are larger than those for
@~=0. However, even in the case of y~&0, the values of
P and r for E =2.5 eV are smaller than those for E =3.0
eV.

IV. DISCUSSION
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A structure representing porous silicon may be regard-
ed as a set of component subclusters, which are less irreg-
ular than the whole. For example, the cluster illustrated
in Fig. 2(a) can be divided into several subclusters as illus-

trated in Fig. 17. It might be expected that eigenstates of
the whole cluster are given by a sum of eigenstates of the
subclusters. This is partially true, though the way of the
division into subclusters is not unique. Indeed, as seen in

Fig. 3, both the LUMO and HOMO are localized almost
within the largest subcluster A in Fig. 17. The second
and third LUMO's, illustrated in Figs. 3(e) and 3(f), re-

spectively, can be regarded as hybridized states between
LUMO's of subclusters 8 and C. However, this point of
view is not very helpful in analyzing the whole electronic
structure of the porous cluster. Moving from LUMO to
higher states, or from HOMO to lower states, we have
greater numbers of degenerated states of subclusters, and
the situation is too complicated to be explained in terms
of the hybridization. [For example, see Figs. 7(a) and
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FIG. 16. Time evolution of logarithms of the electron occu-
pation numbers for several eigenstates n ' for (a) @0=0and (b)

XO

FIG. 17. Subclusters in the porous-silicon cluster consisting
of 151 Si atoms. Different subclusters are marked differently.
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7(b).j Moreover, even states localized almost within some
of the subclusters are somewhat extended to others in
reality. This yields a wide distribution for overlaps of
eigenstates with dangling-bond states and, therefore, a
wide distribution for nonradiative recombination rates.

As seen in Sec. III, the PL decay in a very short-time
region is not fitted very well with the stretched exponen-
tial function, while experiments have shown very good
fittings in a whole time region. We can consider this
discrepancy to be due to statistical errors. The present
cluster has small numbers of both subclusters and dan-
gling bonds in it, so that the values of the overlaps of the
eigenstates with the dangling-bond states and, therefore,
the nonradiative transition probabilities are limited some-
what in a narrow region. In particular, it lacks large
values for nonradiative transition probabilities. If a clus-
ter is large enough to have a wide variety of subclusters
in size, and a large number of dangling bonds at various
sites, it could have a diverse range of decay constants to
exhibit the stretched exponential PL decay in a whole
time region.

Finally, we discuss the time scale of the PL decay. The
coupling constant yo is of the order of 10' s
Therefore, the present model has the decay time
r-50yo '-5X10 ' s (see Fig. 12), while experimental-

ly ~ is of the order of a microsecond. It should be noted
that the decay time is proportional to a density of dan-

gling bonds. In the present model, Nd/Ns; =,'» —10
where Ns; and Nd are the densities of Si atoms and dan-

gling bonds, respectively. In the realistic system,
Nd-10 ' cm if we assume it is of the same order as
that in amorphous silicon. ' Since Ns; —10 cm

we have Nd /Ns; —10 and, therefore, r-0.05 )Lts for the
realistic system. Now, remembering that yo includes the
factor exp( b—E;1/kT), and assuming hE, -.0. 1 eV, we

have exp( —b,E, /kT)-0. 01 for the room temperature
and ~-5 ps, which is comparable with experimental re-
sults. In this way, the present theory can reproduce
the realistic time scale for the PL decay.

V. CONCLUSION

We have proposed a model of the porous silicon struc-
ture. The model exhibits the energy-gap widening and
stretched exponential decay of the PL intensity, which
are characteristic features of porous silicon. The energy-

gap widening is due to the localization of the eigenstates
caused by the randomness of the structure, which brings
about an effect similar to the size effect. Various degrees
of localization of the eigenstates at various positions yield
a wide distribution of nonradiative recombination rates,
which is a cause of the stretched exponential decay of the
PL intensity. The observed exponential dependence of
the lifetime on the PL energy has been explained in terms
of the dynamical effect due to electron and hole hopping.

Though the present calculations have been limited to
the two-dimensional small clusters, the essential features
of the porous silicon structure have been revealed. The
present model contains only silicon and hydrogen atoms,
while experiments have pointed out the importance of
the role of oxygen atoms in porous silicon. This is a
problem left for the future. We believe that the present
model provides a good guide to better understanding the
structure and the properties of porous silicon.
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