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We study a class of kinetic-energy functionals suitable for orbital-free first-principles molecular
dynamics and assess their validity for the study of simple metals. With a simple functional which
guarantees correct behavior to second order in perturbation theory and approximates higher-order
terms, we find that for Na accuracy is already achieved, while Al is reasonably well described. The
simple functional can be readily generalized to include higher-order terms.

I. INTRODUCTION

Recently, there has been a considerable effort invested
in devising methods based upon the Car-Parrinello (CP)
strategy'! in which the computational effort scales lin-
early with system size (so-called order-N methods).>3 A
straightforward implementation of first-principles molec-
ular dynamics (FPMD) with a Kohn-Sham (KS) real-
ization of density-functional theory? leads to an algo-
rithm which scales as the cube of the system size, due
to the orthogonalization of the KS orbitals. New KS-
based schemes have been proposed which do scale lin-
early. However, these methods depend either upon the
possibility of localizing the KS orbitals? or upon the finite
(short) range of the density matrix, and it therefore does
not seem likely that they will be applicable to metals (for
which the density matrix elements decay algebraically at
long range). We have examined another approach which
is based upon the use of an orbital-free density functional
in place of the KS scheme.®

Leaving aside, for the moment, the difficulties asso-
ciated with finding a suitable functional for the kinetic
energy (which is the subject we take up in this paper),
we emphasize the tremendous advantages of formulat-
ing FPMD in this way, especially for metals. First, the
electronic calculation is formally of order N. Secondly,
it is of order N in practice, at least for metals, since
the calculation can be “conditioned”® so that the FPMD
time step in the CP scheme does not decrease with in-
creasing system size (equivalently, the number of steps
used in finding the electronic ground state does not in-
crease with the system size due to convergence problems
when conditioning is applied). An associated benefit is
the fact that the ability to perform adiabatic FPMD ef-
ficiently does not depend upon the existence of a gap
in the spectrum of quasiparticle states, as it does in the
KS scheme.® Thirdly, since wave functions do not enter
the functional, Brillouin-zone sampling is not required to
calculate metallic properties accurately.

The Hohenberg-Kohn theorem,” cornerstone of the
density-functional theory (DFT), guarantees that the
electron density alone is sufficient to determine the
ground-state properties of the electronic system. In par-
ticular, within the Born-Oppenheimer approximation, it
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determines all the ionic properties of a condensed-matter
system. However, direct applications of the theorem to
such systems have been scarce to date since no energy
functional of sufficient quality has been available. While
the exchange-correlation part can be approximated in a
surprisingly accurate way with local-density approxima-
tion (LDA), the same procedure applied to the kinetic
part yields the Thomas-Fermi (TF) functional, which is
known to have a number of problems:®° no binding, di-
vergence at the nuclear position, etc. While the use of
LDA for exchange correlation, or indeed a total neglect
of this term, usually gives only small corrections to the
linear-response function (LRF), the same approximation
to the kinetic energy gives qualitatively incorrect results:
for example, the induced electron density decays expo-
nentially rather than as r—3.1°

Attempts to improve the TF functional systematically
by use of a gradient expansion about the uniform gas
do not capture the essential physics for description of
condensed-matter systems. The linear-response behav-
ior remains incorrect and for stronger perturbations this
expansion, when applied to the calculation of atomic and
molecular energies, leads to unsatisfactory results if trun-
cated to the fourth order,!' and higher-order terms di-
verge. This is not surprising since the expansion param-
eters are'? s = |Vp|/p?/3 and t = |[V?p|/p*/3|Vp]|, which
both diverge when exponentially decaying densities are
introduced.

The kinetic-energy functionals which we examine here
are designed to incorporate several important limiting
forms. The uniform limit is represented by the TF func-
tional and the correct behavior of the kinetic energy to
second order in density fluctuations about uniform is
built in, which guarantees the correct linear response.
The large-s limit, important for obtaining converged so-
lutions with pseudopotentials of realistic strength, is han-
dled by including the von Weizsicker (vW) functional.'®
There are numerous possible functionals which incorpo-
rate these limits and we begin by examining the princi-
ples on which these functionals are based. Using a quite
general form for the second-order functionals, we then
assess their validity for FPMD and discuss their short-
comings. For the reasons given above, we focus on simple
metals. Finally, we discuss possible improvements and
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assess the prospects for the orbital-free methodology as
a general approach to metals.

Atomic (Hartree) units will be used throughout the
paper, unless otherwise stated.

II. CONSTRUCTION OF THE
KINETIC-ENERGY FUNCTIONAL

A. Limiting forms

Although the Hohenberg-Kohn kinetic-energy func-
tional T'[p] is not known in general, several limiting forms
have been established:

(a) For a uniform system,

T = Trp = ck/drp5/3(r), (2.1)

where ¢, = 2(3n2)%/3.

(b) For a slowly varying perturbation, the gradient ex-
pansion,

TGEZT((;IJI%+TC(;2];+"'

1
=Trr + 7 dl‘]Vp]z/p + - (2.2)

(¢) For a rapidly varying perturbation, the von
Weizsacker functional,'3

1 1 1
Tow = %/drpivzpf =3 /dr|Vp|2/p= QTézé. (2.3)

(The second equality, although not true in general, is
valid in the practical cases of vanishing or periodic
boundary conditions.) It is believed® that T,w is the
asymptotic behavior of T in the case of rapidly vary-
ing densities, TTp being the lowest-order correction. The
T.w functional, moreover, is exact for the ground state
of a system with one or two electrons, or in which the
one-electron wave functions do not overlap.
(d) For small perturbations, the correct form is ob-
tained from linear-response theory (LRT).” This implies
62T/6pzlp0 = —~1/x0, (2.4)
where §/dp is the functional derivative, pq is the average
electron density, and xo is the LRF of the noninteracting
homogeneous electron gas, i.e. the Lindhard function.®
It is important to notice that it is this term that gives
rise to the celebrated Friedel oscillations, which are an
essential feature of any description of metals.?

B. Earlier work

In the past, several attempts have been made to use
one or another of these forms for atomic, molecular, or
solid systems. The validity of the gradient expansion up
to the fourth order for molecular binding has been exam-
ined by Perdew et al.!! and found wanting in this case.
On the other hand, T,w has been used fairly success-

fully to compute lattice parameters and bulk moduli in
simple metals'? and has been used in the calculation of
embedded-atom potentials.'> Many authors have tried
to improve upon the simple second-order gradient ex-
pansion and the vW functional by using some interpola-
tion between the two, either by writing simply'®!7 T =
%fdr{VpP/p, A € [},1], or using Padé approximants.®
In all cases the interpolation parameters were determined
by a suitable fit to other data, such as Hartree-Fock
atomic energies. Analogous expressions were obtained
via semiclassical expansions.®

A common problem to all these approaches is that
they do not satisfy Eq. (2.4), and hence they do not
give Friedel oscillations. This is most easily seen by
linearizing the kinetic-energy functional and taking its
Fourier transform.!® They approximate the exact lin-
earized kinetic-energy kernel but do not have the tiny
but all-important singularity at 2ks. For example, nth-
order gradient expansion gives an nth-order polynomial.

C. A family of kinetic-energy functionals

Our aim is to construct a kinetic-energy functional
which incorporates the largest possible number of exact
limits, in the hope that it turns out to interpolate well
between them. This approach has been suggested by sev-
eral workers. We write a general trial functional which
embodies most of these suggestions as follows:

Tulp) = Trr + Tow
+//dr dr'Ap*(r)Ko(r — ' )Ap*(r'), (2.5)

where Ap = p — pg and a > 0 is a parameter. This
functional satisfies, at least asymptotically, the limiting
conditions (a) and (c). If K, is chosen such as to satisfy
Eq. (2.4) and (K,(r)) = 0, the limit (d) is also satisfied.
This is equivalent to saying that, in reciprocal space,

1/x0 — 1/xvw — 1/x71F
KQ(G) == 2(a—1)
2a2Qp,

. (2.6)

2 being the system volume (whose appearance here is due
to our definitions of Fourier transforms), xtr = —ks /7>
the Thomas-Fermi LRF, and y,w = —élls:ji/37r2G'2 the
von Weizsiacker LRF.

Functionals of this kind (or equivalent) have been pro-
posed with a = 1 (Ref. 19) and a = 5/6 (Ref. 20). An-
other possibility is & = 1/2; with this choice it is possible
to satisfy also condition (b), since in this case the long-
wavelength components of the kinetic-energy functional
must obey the gradient expansion in the linear regime.
This is akin to the approaches quoted above®%7 but in
this case the exact LRT is retained. In this sense, it is
the optimal approach of this kind in metals.

Recently, Perrot!® proposed a slightly different form:

Tplp] = Ttr + Tvw

+//drdr’P(r)Ka(r - r')P(r'), (2.7)
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vA 5/6 .
where P(r) = g%—e(pws - Po/ ) and v = \/% This
form has the correct scaling for pg — 0 and hence it
should be more suited for low-density systems.

Chacén et al. (CAT)?' have proposed yet another

form:
8
Tcart = gck /dr p(r)]o‘z/s(r)
3
~gon [ dro®3(e) + Towlol, (2.8)

/ dr'r(|r - v'|, p(r))p(r’),

p(r) (2.9)

where T is chosen such as to satisfy Eq. (2.4). This form
presents a few technical problems of its own, but is oth-
erwise based on the same physical principles as Eq. (2.5),
especially when o = 5/6. As we shall see, there are sub-
stantial reasons to believe that the specific form in which
limits (a)—(d) are implemented makes no real difference
in the physical results; therefore Tcat will not be explic-
itly studied in the present work.

The above functionals all incorporate exact linear re-
sponse and the correct uniform and large-s behavior.
Where they differ is in their implicit representation of
the higher-order response functions and it is this property
which we examine in the present work. In an important
paper, Wang and Teter2® have discussed how functionals
of the chosen general form could be extended to guar-
antee correct results at the third order of perturbation
theory. We will return to a discussion of their findings in
the final section.

III. RESULTS FOR SIMPLE METALS

Since our target problems are simple metals we dis-
cuss in this section a comparison of the results obtained
with various kinetic-energy functionals which fit into
the general scheme with experimental results and with
Kohn-Sham calculations on sodium and aluminum. The
kinetic-energy functionals are combined with the stan-
dard Coulomb (Hartree) and Ceperley-Alder exchange-
correlation functionals?? and with local pseudopotentials
which have already been examined in Kohn-Sham calcu-
lations. The kinetic-energy functionals are distinguished
by the parameter o, and we choose Ty (Perrot), Ts/6
(Wang-Teter), and T /3. In order to illustrate the contri-
bution of higher-order terms in perturbation theory, we
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also give results obtained from linear response theory—
note that this LRT result involves linearization of the
exchange-correlation functional as well as linearization
of the kinetic-energy functional. The comparison with
LRT is also significant because the effective pair poten-
tials which are normally used in simulation of metals are
derived by an application of linear-response theory to a
suitably chosen pseudopotential.?® Thus our work only
represents an advance over this effective potential ap-
proach if we can demonstrate that good results can be
obtained with transferable pseudopotentials which are so
strong as to be outside the linear domain.

A. Sodium

In Table I we compare the calculated values of several
physical properties of sodium using different function-
als. All results have been obtained using a Topp-Hopfield
pseudopotential?4 which is a local, norm-conserving po-
tential which correctly reproduces the lowest excitation
energy of the isolated atom in a Hartree-Fock calcula-
tion. We use a plane-wave cutoff of 11 Ry, which gives
an excellent convergence for all of our functionals. Our
formation and migration energies for the vacancy were
calculated with a 128-atom cell (which gives convergence
within 0.01 eV).

We see from the table that the lattice parameter, bulk
modulus, and vacancy-formation energy for 71, T5/6, and
Ty /2 are obtained with a precision similar to that of state-
of-the-art KS calculations?® and experiment. The Kohn-
Sham results were obtained with a 54-atom cell and ex-
tensive Brillouin-zone sampling (corresponding to 112 k
points in a single-atom unit cell).

The results for Ty, T5/¢, and T}, are similar to each
other. They are also quite similar to the results obtained
with LRT; this supports the idea that sodium can be
reasonably well described by pair potentials. We also
include in the table results obtained with the modified
Perrot functional Tp, Eq. (2.7); these are similar to the
T, results as would be expected for the electron den-
sity (rs = 3.93) in sodium. These results should also
be compared with previous calculations using the von
Weizsicker functional (Ref. 14: B = 0.0805 Mb) or a
generalized Weizsicker functional (Ref. 16: B = 0.072
Mb, a = 7.80 a.u.).

The phonon dispersion curves of Na have been previ-
ously calculated using the T} functional;® T 2 and Ty /¢
do not give significantly different results. One might con-

TABLE I. Calculated physical properties of Na compared with experimental results. aja¢: lattice
parameter (a.u.). B: bulk modulus (Mbar). E}: formation energy of the ideal vacancy (eV).
E%: formation energy of the relaxed vacancy (eV). En: migration energy of the vacancy (eV). KS
results from Ref. 25. Experimental results from Ref. 30.

T1/2 T5/6 T1 TP LRT KS Expt.
Qlat 8.11 8.14 8.14 8.11 8.04 7.65 7.98
B 0.069 0.065 0.065 0.061 0.072 0.091 0.064-0.079
E} 0.45 0.50 0.52 0.50 0.45 -
E} 0.36 0.37 0.37 0.40 0.36 0.35
E.. 0.05 0.13 0.03 0.06 0.03
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sider this trivial, since in sodium LRT seems to work.
However, we found that straightforward LRT gives a
systematic overestimation of the phonon frequencies by
about 10% (this is in agreement with the original findings
of Topp and Hopfield?*). To solve the apparent paradox,
one has to realize that pseudopotentials used in ab initio
calculations, like Topp and Hopfield’s, are usually chosen
to be norm conserving to ensure maximum transferabil-
ity. By contrast, pseudopotentials constructed for use
within LRT with the aim of deriving effective pair po-
tentials are optimized so as to have the smallest possible
amplitude.?® Therefore, if one uses a pair potential con-
structed in that way one obtains excellent results for the
phonons; however, this is not a guarantee that if the same
pseudopotential is used in a different environment, like
the one surrounding a defect, results of similar quality
will be obtained.

B. Aluminum

For aluminum (Table II) we used a local pseudopoten-
tial due to Goodwin et al.,26 which has been extensively
used in Kohn-Sham calculations. We found the Goodwin
et al. potential to require a plane-wave cutoff of 28 Ry for
convergence with our functionals (as manifested by con-
verged forces). Aluminum provides a much sterner test of
the orbital-free functionals than sodium, as its pseudopo-
tential is considerably stronger. In fact, we find that, at
variance with sodium where the density just manages to
stay positive everywhere within LRT (but becomes neg-
ative if the full nonlinear exchange-correlation term is
included), in aluminum it becomes strongly (of the or-
der —pp) negative inside the ionic core. Although the
core region is believed to be unimportant for the chemi-
cal bond, such a negative density does not bode well for
the transferability of effective interatomic potentials or
for the calculation of cohesive energies and similar quan-
tities.

1. Structural energies

For aluminum it is possible to make an extensive com-
parison with Kohn-Sham results with a local pseudopo-
tential that are well converged with respect to Brillouin-
zone sampling, since Robertson et al.2” have recently pre-
sented an extensive compilation of total energies for a
wide variety of crystal structures. This comparison is
shown in Table III. We see from the first line that the
orbital-free functional gives an excellent value for the en-
ergy of the stable crystal (fcc). To demonstrate that this

TABLE II. As in Table I, for Al. LRT, KS, and experi-
mental data from Refs. 26 and 28.

T2 Ts/e Th LRT KS Expt.
Qjat 7.49 7.63 7.67 6.72 7.60 7.64
B 0.69 0.72 0.70 1.44 0.79 0.74
E} 0.21 1.38 1.63 -0.26 0.64

5223

TABLE III. Calculated total energy for fcc Al (top row),
and energy differences with respect to the fcc structure (lower
rows). KS data from Ref. 27. VL stands for vacancy lattice
(one atom out of four missing); sc for simple cubic; DIA for
diamond). Energies in eV.

T2 Ts/6 T LRT KS
fec 58.43  -58.33  -58.30  -59.08  -58.31
bee 0.13 0.07 0.06 0.34 0.07
VL 0.21 0.36 0.37 0.71 0.21
sc 0.28 0.34 0.33 0.88 0.40
DIA 0.77 0.80 0.53 1.98 0.89

agreement is not an accident and is the result of a correct
account of higher-order perturbation effects we make use
of an analysis suggested by Gillan?® which exposes the
importance of the higher-order terms. We perform a se-
ries of calculations for the crystal energy in which the
pseudopotential is scaled by a factor C which varies from
0 to 1. From a perturbation analysis we expect
E(C)=E® 4+ C?E® 4 C*E®) 4 ..., (3.1)
where E(© is the energy of the uniform electron gas of
density po plus the Madelung energy of the ions, and
the second-order energy E(?) is that associated with the
linear response. Both these terms are given correctly by
construction in our calculations. In Fig. 1 we plot

AE(C) = [E(C) — E(0)]/NC? (3.2)

[N being the number of atomic sites and E(C) — E(0)
the so-called electronic relaxation energy] versus C. The
C = 0 intercept is therefore E(?), the slope at C = 0
is E®| etc. Our results for AE(C) are compared with
those obtain by Gillan?® from KS calculations with the
same pseudopotential on a 27-atom cell. The straight
line shows his calculation of the third-order perturbation
result. It can be seen that the orbital-free results repro-
duce the KS ones very well over the whole range of C, at
least for the fcc crystal, and that the third-order result
is a reasonable tangent to these curves for small C.

The lower lines in Table III show the energy of other
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FIG. 1. Electronic relaxation energy per atom for the Al
crystal vs scaling parameter C. Third-order perturbation the-
ory (PT) and KS results are for a N = 27 atom cell (after
Gillan, Ref. 28).



5224 ENRICO SMARGIASSI AND PAUL A. MADDEN 49

crystal lattices and the differences from the fcc struc-
ture. It can be seen that the discrepancies with the KS
results become more pronounced as the lattice becomes
more open; the energy difference between bec and fec is
satisfactory but for the diamond and vacancy lattices it
is poorer. This indicates that the ability of functionals
of the form of Eq. (2.5) to represent the higher-order
perturbation terms is not constant and depends on the
coordination structure. It is also clear that the discrep-
ancies differ for the different kinetic-energy functionals;
we will discuss this point further below.

2. Vacancy

This pattern is also evident in comparison between ex-
perimental quantities and our calculations. The lattice
parameter and bulk modulus, which are properties of the
perfect fcc lattice, are reproduced well by the orbital-free
functionals, but the vacancy-formation energy is poor.
Note that for aluminum these quantities are well out-
side the domain of linear response theory. The disagree-
ment with experiment in the vacancy-formation energy
is not a consequence of using a local pseudopotential
since Gillan?® has obtained a good value for the vacancy-
formation energy in KS calculations with the same pseu-
dopotential.

As with the total energy, we can analyze the contri-
butions of different orders of perturbation theory by per-
forming calculations with a scaled pseudopotential. The
(unrelaxed) vacancy-formation energy E"C(C ) is given by

E¥(C) = E(N — 1,V(N —1)/N,C)
N-1

E(N,V,C), (3.3)

where E(N,V,C) is the energy of a system of N atoms
in volume V with pseudopotential scaling parameter C.
Again, in Fig. 2 we can compare values of

AE}(C) = [B}(C) - E}(0))/C* (3.4)

with the KS results of Gillan for the same quantity and

l: El
1.5 ’
: /// //
- ° ¥S /////
) 1.0 :Tl/z ,//‘/ //
i\>®/ r ; Tf/e // -
« : —PT /1/ //
£ o5} L
=) L
0.0 -

FIG. 2. Formation energy of the Al vacancy as a function
of the pseudopotential scaling parameter C. A 32-atom cell
was used, except for the PT and KS results,?® which were
obtained using a 27-atom cell.

with the prediction of third-order perturbation theory,
which is the straight line. The perturbation result is
for the 27-atom cell which was used in the KS calcu-
lations but it does not differ greatly from the infinite-
system value. The significant thing about this plot for
our general development is that it shows that the failure
of the orbital-free density functionals to give the correct
vacancy-formation energy in aluminum is primarily due
to a failure to represent the third-order perturbation re-
sults correctly.

The finding that there are important third-order con-
tributions to the vacancy in aluminium is also known
from effective-potential studies. Jacucci et al.2® showed
that effective pair potentials gave poor values and that a
substantial improvement could be brought about by in-
cluding a three-body potential derived from third-order
perturbation theory.

The figure shows up significant differences between the
different kinetic-energy functionals in their representa-
tion of the higher-order terms. It would appear that
the Ty, functional is performing better than T) and
Ts,6- However, this improvement is not so great as to
lead to good vacancy properties and our general conclu-
sion is that an explicit representation of the third-order
term needs to be added for a successful description of
this defect in aluminum. The heartening thing about
the comparison of the different functionals is that they
agree with each other and with the KS results about the
magnitude of the contributions from beyond third or-
der. If these results were “corrected” by substituting the
exact third-order term for the linear term in the expan-
sion of AE¥(C) the resulting vacancy-formation energy
would be within the range of experimental uncertainty.
This gives the hope that the higher-order terms are well
represented by the nonlinear terms arising from the von
Weizsacker and Thomas-Fermi functionals for problems
of this type.

3. Phonons
We complete the comparison with experimental results
for aluminum by showing the calculated (for technical de-

tails see Ref. 5) and observed phonon dispersion curves
in Fig. 3. The values from T5/¢ are not shown since

(100) (111)

300

200

w(cm™)

100

0

r K X r L
FIG. 3. Phonon dispersion curves for Al at 75 K, as calcu-
lated using orbital-free FPMD (crosses). Experimental data
(lines) from Ref. 30; KS values (squares) from Ref. 26.
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they always lie in between T; and Ty,;. The orbital-
free DFT results give systematically low phonon frequen-
cies throughout the Brillouin zone. The overall error
on the frequencies is about 10-20%. However, as can
be seen from the KS results at the X point using the
same pseudopotential,?® much of this discrepancy is due
to the pseudopotential and maybe LDA, rather than to
the kinetic-energy functional itself.

IV. DISCUSSION

This work was motivated by the desire to find an ab
initio order-N method for FPMD which works for sim-
ple metals at the level of accuracy of Kohn-Sham calcu-
lations and with the same degree of transferability. We
have shown that the orbital-free DFT-based method is
very promising in this regard. It already gives an excel-
lent account of sodium at a small fraction of the com-
putational cost of KS calculations which agree with ex-
periment. Furthermore, we have demonstrated that with
inclusion of a direct representation of the third-order per-
turbation terms we will achieve a similarly good account
of aluminum, including the vacancy. Borrowing from the
work of Wang and Teter?® we know that this can be
achieved without negating the advantages of the orbital-
free scheme, and work is in progress to implement these
terms. At this level, we believe that the technique will
become the method of choice for simulating a range of
metallic systems. Still more ambitious targets might be
achievable: Wang and Teter?? have already shown that,
with inclusion of the third-order term, an orbital-free
functional gives a very good account of the electron den-
sity in silicon. One potential limitation of the method is
that, as presently formulated, only local pseudopotentials
may be used. However, recent work on Green’s function
Monte Carlo methods has shown how nonlocality may be
represented without wave functions and it may well be
that similar methods could be employed here.3!

A simpler alternative to even an order-N FPMD

method for simple metals is to perform classical simu-
lations with effective interion potentials.?® The princi-
pal advantage which the ab initio approach should con-
fer over this procedure is a higher degree of transfer-
ability. Effective potentials are constructed from pseu-
dopotentials which are parametrized to minimize the im-
portance of higher-order terms (of higher order than lin-
ear response if pair potentials are used). Since the real
electron-ion interactions are outside the linear response
régime (even for sodium, as evidenced by the behavior
of the phonons calculated with the Topp and Hopfield
potential), this parametrization must depend upon the
electron density and the effective potentials are inconsis-
tent if used in problems where the density takes a dif-
ferent value. The orbital-free DFT approach incorpo-
rates the nonlinearity in both the kinetic and exchange-
correlation functionals. The kinetic-energy functionals
we have discussed here rely on the von Weizsacker and
Thomas-Fermi functionals to play this role but, as we
have stressed, a more accurate representation will be de-
veloped. The nonlinearity in the exchange-correlation
enters directly, through the use of an appropriate func-
tional, and also indirectly through the use of pseudopo-
tentials calculated with a nonlinear core correction;3?
we have already developed the nonlinear core correction
in the orbital-free framework. The local spin-density
formalism'® and gradient correction to the LDA32 are
easily implementable too. Finally, we remark that the use
of a first-principles scheme gives at any step the electronic
density of the system under study consistently with the
ionic positions and “for free.”
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