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The validity of the wide-band approximation is discussed and, in particular, the efFects of the speed of
the ion and the position of ion orbital energy relative to the band are considered. It is shown that care is

needed in interpreting the integrals involved using generalized functions and that, for slow ions and a
wide band, the wide-band approximation is valid for orbital energies well within the band, partially valid

at the band edges, and invalid outside the band. Equations are also derived for mixed bands including

the situation where the band can be divided into two parts, a narrow band and a wide band.

I. INTRODUCTION

There has been much recent interest in the mechanisms
involved in the neutralization of ions scattered from solid
surfaces. The predominant processes are resonant charge
transfer (RCT) and Auger charge transfer. In theoretical
studies of both of these, when the participating energy
band of the solid is wide considerable simplifications can
be obtained using the wide-band approximation
(WBA). ' However, the validity of the approximation
has not been widely discussed, although see the review ar-
ticle by Brako and Newns and Refs. 1 and 2. Also
relevant are the papers by Sulston, Amos, and Davison
who used the WBA in the case where the surface density
of states (SDOS) has a semielliptical form to illustrate
how the behavior of the final neutralization probability
depends on the bandwidth and the interaction strength
and by Tsuneyuki, Shima, and Tsukada who considered
the effect of the bandwidth for different types of SDOS.

Essentially the WBA involves an approximation of the
inverse Fourier transform of a SDOS by a 5 function and,
by implication and assumption, the width of the band,
rather than its structure, is the important feature.
Indeed, the archetypal WBA can be considered as de-
rived for a band with a uniform density. In this note, we
use the theory of generalized functions to discuss other
band structures which lead to a WBA equivalent to that
found for a uniform band density. In addition, we exarn-
ine what effect the position of the energy of the ion, rela-
tive to the band, has on the effectiveness of the WBA.
We find that for satisfactory results the ion energy and
the band energies must be in resonance and that MBA
should not be used in quasiresonance calculations.

Since our main objective is to investigate the WBA
rather than consider RCT in general terms, we have
chosen to illustrate the theory with a simple set of cou-
pled differential equations from the many-electron theory
(MET) of RCT. Although this corresponds to the
most elementary theoretical model of RCT the ideas can
be readily applied in other situations including the theory
of Auger charge transfer. ' In Appendixes A and 8 we

briefly discuss the effect of more elaborate models on our
analysis of WBA. We find that, with minor adaptions,
the discussion of the validity of WBA remains essentially
unchanged for these more sophisticated models.

II. PRELIMINARIES

The simplest model of RCT describes a situation in

which an ion with a completely vacant valence orbital up

approaches a surface and interacts with a band in the
solid with n band orbitals I P„,k =1, . . . , n I, each dou-

bly occupied by electrons with opposite spins. Using the
MET, the initial state, with the ion far from the surface,
is

where bar (no bar) indicates u (P) spin. When the ion is

near the surface, the interaction between the ion and sur-

face can cause an electron to transfer from a band orbital
to up. If %k is the singly excited configuration describing
this transfer from Pk or Pk and we write the time-

dependent wave function for the system as

4'= ~ ao%o+ g bk%k exp iEut-
k=1

(2)

(P„ l Vuo )= u„V(t), (4)

with Eu the energy of (1), then the equations satisfied by
the time-dependent coefficients are

Gap
i =&2V(t) g ukbk,

dd k=1

dbk
i =(eo e„)b„+V—'2uk V(t)au, k =1,2, . . . , n .

dE

This set of first-order linear differential equations has to
be solved subject to the initial conditions ao( —oo )=1
and bI, (

—oo )=0. In deriving (2), the interaction poten-
tial Vis assumed to have matrix elements
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where we have chosen pk real so that the vk are real con-
stants independent of time. The parameters eo and ek are
the orbital energies of uo and pk, respectively, and we
take the center of the band as the energy origin. Strictly,
uo and, hence, eo will depend on time, but, for
simplification, we treat eo as a constant equal to its aver-
age value during the time when the ion-surface interac-
tion is strong. This simplification does not affect the
analysis of the applicability of the WBA and the more
general case is discussed in Appendix A. Also, in our
model, the wave function (2} does not contain
configurations which allow for an electron to move back
from the atom into an originally unoccupied orbital with
an energy above the Fermi level. The effect of including
such a configuration is discussed in Appendix B.

Integrating the equations for IbkI and substituting
leads to

ao = —2V(t) f ao(u) V(u)

X g vk expIi(ek —eo)(t —u) )du .

(5)

2V(t) f— ao(u)
00

X V(u} f (y)expIi(t —u)yjdy
13

Xexptieo(u —t)Idu . (7)

Here p(y) is the SDOS referred to an origin, y =0, at the
center of the band, the bandwidth is 2p and p satisfies the
normalization condition

f g(y)dy=i . (8)

Essentially for the WBA we replace

yexpi t —uyyP

by m.p '5(t —u) so that (7) becomes

dao V (t)
irp ao (10)

In Eqs. (7) and (10}it is assumed that gvk = l. If this
condition is not satisfied then p should be multiplied by
the factor g vk. Apart from this the constant p in (10)
has to be chosen to take into account the range of in-
tegration over u. in (7}, which is from —oo to t rather
than —ao to ao, and to allow for the effect of the position
of eo which affects the approximation through the factor
expieo(u t) in (7). —This is discussed in Sec. IV of this
paper where we consider the validity of the WBA.

Since ao( —ao )= 1 we can integrate (10) to obtain

For a dense band we may replace the sum over k by an
integral. Essentially

vk P(ek }~yk ~yk ek+1 ek
2

so that

n. V (x)
0=exp ' —p

so that the probability of electron transfer and ion neu-
tralization is

nV (x)P= 1 —lao I
=1—exp —2p„dx (12)

where p& is the real part of p. As this last point implies,
there are some circumstances when the constant p, is
complex but I', the quantity of physical interest, depends
only on the real part of p. This is because the imaginary
part of p gives rise to a phase factor for ao which can be
allowed for as a perturbation of eo and in turn causes a
perturbation in the value of ps. Thus there is no loss of
generality if, when p, is complex, we replace it in (10) and
(11)by its real part (see, also, Sec. VI).

For P» I"„V (x)dx, we have P=O and negligible

probability of electron transfer. In the opposite situation,
for p « f "„V(x)dx, we have P = 1, so that for large in-

teraction strengths electron transfer is guaranteed. These
conclusions are in line with the numerical results found
from direct integration of Eq. (2) for a semielliptical
SDOS (Ref. 5) but they do not rely on any particular
choice of SDOS. Rather, they constitute a generic prop-
erty for a class of SDOS. To examine the properties of
this class we need to consider the theory of generalized
functions. This is done in the next section where it is
shown that, for large p, the behavior is the same as for a
uniform band.

III. THEORETICAL BACKGROUND
ON GENERALIZED FUNCTIONS

In this section we review the theory of generalized
functions and the main theorems which are useful for the
WBA. This theory follows closely the development given
by Lighthill, "which in turn relies on the earlier work of
Temple'2 and Schwartz. ' More recently, the theory has
been considered by Burrows and Colwell' in the context
of its pedagogical aspects.

Following Lighthill, we define a good function to be
one which is everywhere differentiable any number of
times and is such that it, and all of its derivatives, are
0((x

~
) as (x

~

—+ 00 for all N. Also, a regular sequence
of good functions If„(x)I is one for which, for any good
function F(x), the limit

lim f f„(x)F(x)dx (13)
1f~ oo oo

exists. Given these preliminary definitions, the definition
of a generalized function can be constructed: A general-
ized function f (x) is a regular sequence ff„(x)f of good
functions, and two generalized functions are said to be
equal if the corresponding regular sequences are
equivalent, in the sense that they give the same limit in
(13). Then, for any good function F(x), the integral

f f (x)F(x)dx (14)

can be defined as the limit in (13).
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Some further definitions are required. The first of
these is that the Fourier transform, g(y) (say), of a gen-
eralized function f (x) is defined to be the sequence
[g„(y)] where g„(y) is the Fourier transform of f„(x). A
similar definition holds for the inverse Fourier transform.

In illustrating how this applies to the WBA, it is
simpler, initially, if we restrict the discussion to SDOS
which are symmetrical about the band center. Later, in
Sec. VI we show how nonsymmetrical SDOS can be
treated. In the context of generalized functions, we point
out that the regular sequences of good functions associat-
ed with symmetrical SDOS will consist of even functions
only. Let us write the SDOS in the form

where u (y) is the Heaviside function. The corresponding
inverse transform result is

1 sin (Px}
llm

2
=5 x)

px
(24)

Thus comparing (19) and (24) we see that g3(p, y ) can be
approximated closely by g, (p,y ) for large p although the
bandwidth of the former is 4p rather than 2p, the band-
width for g, (p,y ).

A fourth example is the even function which is 1 in the
interval [0,(k —1)p], where k & 1, goes linearly from 1 to
0 in [(k —1)P,(k+1)P] and is 0 for t &(k+ 1)P. This
leads to the result

S(py)=
2

g(p y }
1

(15) 1 sin(Px)sin(kPx )
lim =5x

p~ oo px
(25)

so as to emphasize its dependence on bandwidth, and
consider the special case of a uniform SDOS so that

lyl p-
g(p, g)=g&(p, y)= '0 (16)

We have for any good function F(y)

lim f g, (P,y)F(y)dy= f F(y)dy . (17)

Now the sequence [exp —(y /n ) j is a regular sequence
for 1, so that 1 is a generalized function and we can con-
clude that

For 0 (k (1 the equivalent result is k5(x).
These last examples illustrate that for the WBA we do

not need the symmetric SDOS to be uniform but only to
possess the property that, when regarded as a generalized
function, g(p, y) satisfies the analogue of (18). This im-

plies that any such symmetrical SDOS can be approxi-
mated by a uniform density for sufftciently large p, and
that the validity of the WBA can be determined by con-
sidering a uniform SDOS and g, (P,y ).

IV. THE VALIDITY
OF THK WIDE-BAND APPROXIMATION

lim g, (P,y)=1
p —+ oo

(18) Writing the SDOS as in (18) and using the inverse
Fourier transform we have

in the sense that they are equivalent generalized func-
tions. Taking inverse Fourier transforms we obtain

1f g(p, y )exp(iyt)dy = f g(p, y )exp(iyt)dy
00 2 —p

si
lirn

p~ oo 7TX
=5(x) . (19) f(p,t)—

However, the choice of a uniform SDOS is not neces-
sary to produce 5(t). Consider as an alternative the
Gaussian SDOS

so that (7) becomes, after a change of variable s = u —t in

the integral,

g, (p,y) = 3 (p)exp[ —~y'/4p'],

where

(20)
dao O

2V(t) f— a0(t +s) V(t +s)
dt 00

XrtP 'f(P, s)exp(ieas)ds, (27)

A(P)=2P f exp[ —
my /4P ]dy

Since lim& „A(P)= 1 we have the generalized function
limit

lim g, (P,y)=1 .
P—+ ao

Taking inverse Fourier transforms

(21)

lim A(P) —exp( —x P /m. ) =5(x) .
p~ oo 7T

(22)

Clearly this means that the structure of the band need not
be uniform.

As a third example we can consider the triangular
function

g3(P y)=(1 —lyl/2P)[tt(y+2P) —tt(y —2P)], (23)

where we have used the fact that for the symmetric
SDOS we are considering at present, f(p, s ) is a real even
function. In the WBA it is used as a member of a se-
quence for 5(s) but it is not enough simply to replace
f(p, s) by the 5 function; some care must be taken in
evaluating the resulting integral. We now consider three
aspects of this: (a) the role played by the limits of integra-
tion in (27); (b) the effect of the position of e0, which
affects the approximation through the exponential factor
in the integral in (27}; (c) the significance of the velocity
of the ion which partly determines the range of V(t).
The last two points are related to the question of how far
we can take the p~ ~ limit for f(p, s) independently of
the remaining terms in the integrand.

Firstly considering the range of integration for the in-

tegral on the right-hand side of (27), it might be thought
that, having replaced f(p, s) by the 5 function, the in-
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for good functions F(s). The consistency of this approxi-
mation is now discussed.

We consider a sequence for 5(x) consisting of even
functions Ip„(x}]such that

0
P~ x x=2 (29)

and
0

lim f g(x)p„(x)dx =0 (30)

for any good function g (x) for which g (0)=0. An exam-
ple of such a sequence is

' 1/2
n

p„(x)= — exp( —x'n')
7r

(31}

and all the examples of f (n, x) considered in Sec. III are
of this form. Using Taylor's theorem with any good
function F(x), we have

tegral could be treated as if the limits corresponded to the
full range ( —Oo, ~ } so giving (10) with @=2. We wish to
argue that this procedure is incorrect. In principle, the
integral of 5(s) with respect to s from —Oo to 0 is
undefined since the value obtained depends on the se-
quence used. However, f (f3,s ) is an even function of s as
are the other functions considered in the preceding sec-
tion so that the sequences associated with symmetric
SDOS in the WBA are even functions. This is an impor-
tant factor and to emphasize it let us denote the 5 func-
tion obtained from such sequences as 5+(s). The approx-
imation to be invoked is that in these circumstances the
integral from —Do to 0 is one-half the integral from —00

to 00, so that

f 5+(s)F(s)ds = ,'F(—0) (28)

f exp fikPs] V(t+s)au(t+s)ds .
ITS

(34)

When the product of a0 and the interaction potential
satisfies the same conditions as before, the large P
behavior of the integral will be determined by the first
three terms. Combined together they have a real part
which is

unimportant when eo has no P dependence. The first

condition should hold for slow ions and the second when

eu is in resonance with the band. When both of these are
the case we obtain (10) with p = l.

Indeed, this result will hold even if we do not take the
P~~ limit. Suppose P is large but not infinite. The
function f (P,s) can be neglected, i.e., set to zero, outside
the interval [ n—P ',0] with n =5—6, so that the lower
limit of —oo in the integral on the right-hand side of (27)
can be replaced by n—P ' If. ~eu~ &&P, the exponential
term in the integral can be replaced by unity from which
value it will change only negligibly in [ —nP ',0]. Simi-
larly, provided the product au(t +s)V(t +s) varies only
slowly for nP —' & s &0, and for all values of t, which is
likely to be the case for slow ions, then it can be replaced
by ao(t) V(t) and taken outside the integral (cf. Refs. 3
and 4 and the local time approximation in Ref. 15).
There remains only f (P,s) in the integral and that can be
evaluated to give the one-half factor. Thus under the
conditions stated we again obtain (10) with p= l.

We now turn to the case where eo does play a role.
This occurs when it lies at a band edge or outside the
band so that the condition

~ eo ~
&&P does not hold. To see

the consequences of this we write eu=kP, apply the in-
verse Fourier transform with the uniform density of
states in (27) and consider

F(x)=F(0)+xF'(u} (32) sin(1+ k)Ps sin(1 —k)Ps
(35)

for some v between x and 0. Since F(x) is a good func-
tion, it follows that

f F(x)p„(x)dx =F(0)f p„(x)dx

+f F'(u)xp„(x)dx . (33)

and an imaginary part

sin(Ps )sin(kPs )I,k, s —2'trs
1T S

(36)

The first term on the right-hand side of (33) is just —,'F(0)
and, letting n —+ 00, the second vanishes by (30), so giving
(28). Unfortunately, this is not quite sufficient to deal
with (27) since other terms in the integrand may have
some P dependence; this is equivalent in the above
analysis to having F(x) dependent on the limit n —+DO.
Even in such a case, (32) and (33) still hold but (30}may
not when g (x)=xF'(v) so the second integral in (33) may
not be zero. Essentially we need to assume that F(x)
remains a good function for all n.

When these results are applied to (27), it is consistent
to replace f(P, s) by 5+(s) and to use (28) provided the
remaining functions comprising the integrand are good
functions with derivatives of order P '. Because the
variable for ao and V in (27) is t +s, this is equivalent to
assuming that their product is slowly varying over any in-
terval O(P }, while the exponential involving eo is

The imaginary part (36) is easy to deal with since by
(25) we see that for large P

I(P, k, s) = rrs5+(s)h (k), (37)

while for large P and
~
k

~
& 1 so that eo is inside the band

and we have resonance

where h ( k) =k for
~
k

~
& 1 and sign( k }otherwise.

Consequently, on substituting (37) into (34), it follows
that the imaginary part of (34) will be small for large P,
tending to zero as P~ ao.

The behavior of R(P, k, s} is more complicated and for
large P depends critically on the size of k. For large P
and ~k ~

&&1 so that eo is well out of the band we have
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R (P, k, s) =—[5+(s)+5+(s)j . (39)

However, for k = 1 or k = —1 the value of p needs to be
larger for (39) to be invoked. For example, when k = —1

we need p large enough so that [sin(1+k)ps] les
=5+(s).

For the special case when ~k
~

=1, which corresponds
to the ion energy eo exactly coinciding with the edge of
the band,

R (P, k, s) =—5+(s) . (40)

f(P,s)

In general, therefore, on substituting the appropriate
R (p, k, s) from (38), (39), or (40) into (34) and (27), we ob-
tain (10}with @=0for eo well outside the band and @=1

for eo well within the band. With eo near a band edge p
can take any value between 0 and 1. This implies that the
WBA should not be used for quasiresonance calculations
but only where the energy of the ion is in resonance with
the band. In principle eo depends on time so that, if we

can ignore the interaction effects before eo reaches reso-
nance with the band, the WBA may be invoked for a
large bandwidth 2p. Thus the validity of the WBA usual-

ly will not depend on eo at t = 00 or t = —00 but only on
its behavior during the time interval where the interac-
tion between ion and surface is strong and the time
dependence of eo in that interval must be such that it is in

resonance with the band for a significant time if the WBA
is to produce trustworthy results.

Now we will consider the effect of larger incident ve-

locities, which implies that the ion is close to the surface
only for a short time so that the interaction potential
V(t) will have large values only for a small time interval
around t =0. In terms of such commonly used potentials
as exp —a ~t and exp at, th—e parameter a will be large
and, therefore, around t =0 the potential will change rap-
idly for small changes in t Thus th.e condition that V(t)
be slowly varying over any interval O(P ') will not hold
and, in general, the WBA ought not to be used for fast
ions. Usually in these circumstances ~ao(t)~ exhibits os-

cillatory behavior which cannot arise in the WBA.
However, there is a rather special case where a form of

WBA does hold for fast ions. Suppose the interaction is
significant only within the interval [

—T, T] and for most
of the interval it is constant. This means that V(t) will

have a large variation only near the points —T and T.
For such a V(t), the lower limit of the integral in (27) is
—( T + t}. When T &p, we have that

f(p, s)ds=q & —,
' . (41)

Thus [f(p,s)] is a sequence for Zp5+(s) rather than
5+(s). This is illustrated in Fig. 1 which shows f(p, s)
and where the shaded part denotes the area 2q. If eo is

small and transient effects due to the large changes in

V(t) at the points —T and T can be neglected then we

can still invoke the WBA provided we include the extra
factor q.

V. A NUMERICAL EXAMPLE

We consider the simple interaction potential

~o
gati &T

V(t)= 2T'
0 otherwise

(42}

Taking @=pa+i@i and using (11), we can write ao in

phase-factor form as

ao(t) =exp y„(t +—T)exp i yl(t + T—), (44)

where y =mp, VoT p 'l4. Substituting into (43), the

phase factor can be considered as a perturbation to eo

and, after making a change of variable x =y —co+pl,
with appropriate change of limits to P, and Pz, the con-

sistency condition becomes

P2f f exp[i(t —u)(x ir~ )]dx du =n—p . (45)
P)

As explained earlier, the significant part of p is the real
part. Concentrating on this and integrating over u, we

obtain

For small incident velocities the interaction time 2T is

large whereas when T is small we have a model for large
incident velocities. We take the band to be a uniform

band of width at 2p. For consistency of the WBA we

need the right-hand sides of (7} and (10) to be equal.
With the above potential this becomes, for —T ( t (T,

f f exp[i (t —u)(y —eo)]ac(u)dy du =mpao(t) .P
—T —P

(43)

FIG. l. The significant part of f(i3,s) in the case of fast ions.
For fast ions, the interaction strength is efFectively zero outside

~
s

~

& T so that the shaded area indicates the only part of f(P, s )

which is used.

Re[I, +I, expy„(t + T) J
=~@„

where

, pt , p2
I, = f-dx =tan '- —tan

t'~ (r~+ix) r~ rR

rg+p2+—ln
r~+Ã

(46)

(47)
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ReI2 = p(—t + T)+ytiI(t +T),
where

(50)

(51)

and

=ytiI ——
I sin(qP2} —sin(qP, )) . (52)

These can be solved using a standard Runge-Kutta
method where p (0)=0 and

I (0)= tan —tan
XR XR YR

(53)

The effects of changing the bandwidths, the position of
eo, and the velocity can be considered by varying P, and

P2 and other parameters. It turns out to be most con-
venient to vary P„P2, and the parameter m defined by

and

ya cost(t + T}xI x sinI (t +T)x )ReI2 = + dx
@~~ +x 2 y'„+x'

(48)

Since yii =xiii VOT P 'l4 Eq. (46) is a very complicat-
ed implicit equation of JMR. If the WBA is correct, the
solution of this equation should give values of pii equal to
0, 1 or —,

' depending on the position of eo. Equation (46)
also depends on time t and the values of pz should be in-

dependent of t W. e now examine how far these tests of
consistency are satisfied. To evaluate I2, we define

(49)
Isi y'„+x'

so that

co=0 and that P, —Pz=2P so that we can see that when

eo is at the center of the band, for sufficiently large P, we

obtain pz = 1. For a displaced position when P, = —1250
and Pz=3750 again IMii =1 and only at the band edge

(Pi=0,Pz=5000) do we obtain pit =—,'. For eo outside

the band it is only valid to consider small changes in ac(t)
so that we have only used m =0.9. We can see that near
the band edge pz =0.5 but as the value of ep moves fur-

ther away from the band p& =0.
Since the interaction potential has the simple form of

(42) the results in Table I can be interpreted in an alterna-
tive way, namely that we are testing the WBA. From
(54}, we can interpret a change in the value of m from 1

to 0 as due to varying t from —T to T while keeping the
other parameters fixed. For Eq. (46) to be satisfied the
left-hand side should show no variation with t, this is
equivalent to the right-hand side of (56) showing no vari-
ation with m for fixed values of P, and Pz. This is borne
out extremely well for most of the cases considered in the
table. One exception is Pz

—P, =400 so the bandwidth is

smaller than the other cases considered but even in this
case the variation is quite small. However, for ep out of
the band we cannot use p,„=l. We conclude that, while

this underlines the danger of using WBA in such situa-
tions, where eo is out of or near the band edge, in the
more usual situations the numerical calculations com-
pletely confirm the theory developed.

In Table II we examine the effect of large velocities for
the special case discussed in Sec. IV. To do this we
choose m =0.9, Pz= —P, =2500, and increase
—1 (nm)/T, which corresponds to a decrease in T thus
giving a model for increasing velocities. We see that pz
decreases with decreasing T (that is increasing velocity)
corresponding to smaller values of q in (41). Again we
conclude that the numerical calculation confirms the
theoretical prediction that it is not only the bandwidth
but also the initial speed that is important in WBA.

ln(m) = —(T+t)nba VOT P 'l4 . (54)
VI. NONSYMMETRIC SDOS

AS COMPOSITE UNIFORM BANDS

In Table I, we test the effect of varying P, and P2 for vari-
ous m. For t =T

m = /ao(t)[ (55)

so that we can regard the results as testing the WBA for
various values of ~ac(T)~ and fixed T. We recall that

TABLE I. The variation of pz with m for different bands
characterized by P& and P2.

P2 m =0.9 m =0.7 m =0.5 m =0.3 m =0.1

So far we have considered only SDOS which are sym-
metric about the band center. Nonsymmetric SDOS can
be treated as sums of symmetrical SDOS (such as those
considered in Sec. IV), but with each of the constituent
symmetrical bands having a difFerent band center. The
arguments used earlier to show that the WBA can be as-
sessed using uniform bands only will hold in the more

TABLE II. The variation of pz for fixed m and decreasing T,
corresponding to increasing speed of the ion.

—200
—2000
—5000

0
—1250

0.5
10
50

200 1.02
2000 1.00
5000 1.00
5000 0.50
3750 1.00
5000.5 0.48
5010 0.17
5050 0.02

1.01
1.00
1.00
0.50
1.00

0.99
1.00
1.00
0.50
1.00

0.94
1.00
1.00
0.50
1.00

1.00
0.99
1.00
0.50
1.00

—1n(m)/T

1

10
500

1000
2000
5000

10000

1.00
0.99
0.35
0.18
0.09
0.04
0.02
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general case so it is enough to consider a composition of
uniform bands.

Let

p(e)

i(2P) ', fy
—y f (P,

0 otherwise (56)

be the SDOS for a uniform band of width 2P; with band
center at y =y, %e represent a composite uniform band
by the SDOS

p(y) = g cp, ( yP, ,y, ), (57)

pe
where the c; are positive constants. An example for n =2
is shown in Fig. 2.

Equation (7) will hold for the composite band provided
we change the limits of integration for y to include the
whole of the band. The new form for (9) is

FIG. 2. SDOS for a composite of two uniform wide bands.
%ith the orbital energy eo at A it is outside both wide bands; eo

at B is within one band and outside the other; eo at C is within

both bands.

n 02
pyexpi t —uy y= c, expi t —uy, p; x', , ,0 expi t —uxdx

band i=I 1

so that (27) is replaced by

dao 0 n

2V(—t}f ao(t+s)V(t+s)m g c;P, 'f(P, ,s)expi(eo+y;)s ds .
00 i=1

(58)

(59)

In this equation the energy origin is arbitrary and the pa-
rameters y; take into account the differing band centers
of each component of the composite band.

If every component band is wide, then we can replace
each f(13, ,s) by b+(s} so that

dao

dt
= —V (t)n g c,13, 'p, , ao(t) . (60)

The constants p, in (61) have the same properties as p in

Sec. IV. Thus, p, is 1, —,', or 0 depending on whether eo is

within, on an edge of, or outside the ith band. This is il-
lustrated in Fig. 2 where A, 8, and C are possible posi-
tions for eo. In this two component example the transi-
tion probability is given by

r

nonuniform and, considering Pig. 2, nonsymmetric sur-
face densities of states.

VII. A MIXED WIDE AND NARROW BAND

It is possible to analyze also the case where there are
several bands, some narrow and some wide. The method
can be illustrated by considering the simplest example of
two bands, one wide and one narrow. Two typical situa-
tions are illustrated in Figs. 3 and 4. Figure 3 is an ideali-
zation of the band structure for the wide s-p band in

c1P1 c292P=1 exp vr ~ — +— . V (t)dt .
Pi P2

(61)

If eo is at position A we have p, =@2=0so that I' =0. If,
however, eo is at B we have p&=1 and @2=0, whereas

p, =p2=1 at C. In practice the simple analysis given
here will be complicated by the fact that eo depends on t
so that it is not at any fixed position. Returning to the
general expression (60) we find that, on integration, we
obtain the standard WBA results of (11)and (12) but with

pp ' replaced by g;=ic;p,. 'p;. Thus the WBA still
holds for a composite uniform band provided each corn-
ponent is itself a wide band. %e regard this as an impor-
tant result since it shows that the WBA may be used for

FIG. 3. SDOS for a composite of a uniform wide band with a
uniform narrow band at a band edge. At 3, eo is within the
narrow band and at the edge of the wide band; eo at 8 is outside
the narrow band and near the center of the wide band.
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p(e)

)e

FIG. 4. Similar to Fig. 3 but with the narrow band near the
center of the wide band. At A, eo is outside the narrow band
but we11 within the wide band; at b, eo is within both.

copper. A similar structure is found in the transition
metals but for these the d band is not completely full so
that our RCT equations (1) and (2) would need to be aug-
mented to properly account for that.

We will assume that the narrow band can be represent-
ed by a single band orbital P„, while the remaining band
orbitals in (1) are associated with the wide band. Apply-
ing the WBA to those orbitals, (3) can be replaced by the
following pair of equations:

row band case significant transitions only occur at or
near resonance we would expect that at B the major effect
is from the wide band, whereas at A we would have an
effect from the narrow band and, since p& =—,', a reduced
effect from the wide band. For Fig. 4, the conclusions are
similar with the wide band dominating at position A and
a cumulative effect at position B. For this case, however,
at position B, the effect of the wide band is not reduced
since pi 1.

An important example of this would arise where there
is a narrow band of surface states at the edge of a wide
band (similar to Fig. 3). A particular case of this arises
with Li+ scattered off Si(100), whereas full numerical
treatment of the MET equations produces results charac-
teristic of a narrow band since the Li+ energy is aligned
with surfaces states at closest approach. This is in line
with the theory of the previous paragraph.

This analysis shows that it is possible to combine the
two standard approximations, the narrow band and the
wide band approximations, for a more general situation.
In the case considered we have derived a new two-level
problem for the case of a narrow band represented by one
state and a wide band. Clearly the narrow band analysis
can be generalized to include more states, or to several
narrow bands, giving rise to a n-level problem for more
complex cases.

i (eu —e„)b—„i~2u—„V(t)au,

ao V (t)= —n p &c & au i v'2V(t—)u„b„,

db„
(63)
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where b„ is the coefBcient of the configuration describing
the transfer of an electron from the narrow band to the
ion and c2 =u„. Writing au(t) = 2 u(t)exp'(t) where

f V (u)du,
1 00

Eqs. (62) and (63}become

dAp = —i&2V(t)exp( —y(t) Ju„b„,

(64)

(65)

i (eu —e—„)b„i+2 Vu(t)e—xpry(t) J Au .

Equations (65) form a pseudo-two-level system and can
easily be solved numerically for Ap and b„and hence
ao(t). In extreme situations the solution is simpler, how-
ever. For example, with extremely large interactions
where V (t)))p„we have ~ao(t)~ =0 and P=1, so that
ion neutralization is very likely. Similarly, if P, » V (t}
the solution is closely approximated by the standard
two-level problem since y(t)=0 and so expjy(t)J =1;
consequently we would expect oscillations in the neutral-
ization probability as a function of the initial speed, typi-
cal of narrow band situations.

If we now consider the situation described by Fig. 3
where the narrow band occurs at the edge of a wide band
then p, =—,

' at A and p, =1 at B. Since in the pure nar-

APPENDIX A

eo =eo[z(t)], (A 1)

where z is the distance of the ion from the origin in the
substrate. Thus

dep de pdz

dt dzdt
(A2)

and for slow ions dz/dt is small. Furthermore we may
assume that deo/dz is not large so that eo(t) is small.
The time dependence of eo may be allowed for in (27) by
replacing f (P,s)exp(icos) with

In the cases where the ion does not get close to the sur-
face, it is a reasonable approximation to regard ep as a
constant. In general we can choose an origin for the
coordinates in the substrate (usually at the target atom}
so that the [ek J are independent of time, but in the situa-
tions where the ion gets close to the surface, up and ep
depend on time. In this Appendix we examine how the
analysis is affected by this time dependence.

It can be shown that the equations are essentially un-
changed when up and ep depend on time, so that we can
treat this time dependence by reconsidering (3) with eo
depending on t. This dependence can be expressed by the
equation
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n
[rtf & (max/ez(x) [) (A6)

f(P,s )exp i—f eu(x } dx . (A3)
t+S

As discussed in Sec. IV, f(p, s)=0 unless ~s~ &np ' for
some relatively small n, so that we only need to consider
(A3} for np '&s &0. In this interval we may use
Taylor's theorem for eu(x) so that

f eu(x)dx =f [ez(t)+(x t)e—o(g)]dx, (A4)
t+S t+s

where y is between x and t. Thus

f eu(x}dx = eu—(t)s+rt (A5)
t+s

where

second case is when ep is initially in resonance, goes out
of resonance at t= —T&, and into resonance again at
t=Tz(T, , Tz&0). A similar analysis leads to tM=O,
—

T& & t & T2, and 1 otherwise.
Thus, provided ep can be determined throughout the

trajectory, the applicability of the WBA is not affected by
allowing up and ep to depend on t.

APPENDIX B

Here we briefly examine how our analysis is affected by
more sophisticated models of RCT. These models in-
clude configurations which describe the transfer of an
electron from the band into an initially unoccupied band
orbital via the atom. For these more general models Eq.
(3}has the form

Since eIt(x) is small and we have a wide band then ri will
be small so that (A3) can be approximated by

dap
i =&2V(t}g ukbk,

k=i
(81}

f (P,s )exp[ice(t)s] =f(P,s )exp[ik (t)Ps ] . (A7)

—1&k(t) &1 (A8)

then @=1 and the analysis is unchanged. In more gen-
eral situations lit, will vary, but for monotonic eu(t) during
both the inward and outward trajectories there are two
typical cases. The first of these is where ep is initially out
of the band, comes into resonance at t = —T, , and goes
out of resonance at t=T2. (T„T2&0 and for a sym-
metric trajectory T, =T2.) For this situation we may
take p=1 T, & t & T2, and 0 otherwise. This assumes
that we can ignore the effect of the transition periods at
t = —T, and t = T2, when eu is near the band edges. The

I

Thus the analysis developed in Sec. IV may be applied,
but k depends on t, and hence p depends on t. If,
throughout the interaction, ez(t) is in resonance with the
band so that

dbk
i =(eu ek )b—k+ v'2V(t)au+ gqk~ckj„uj V(t), (82)

dt

dckjp
i =(e —eu).c„+qk u. V(t)bk .

t
(83)

k =1, . . . , n, j=n +1, . . . , m +n, and p is an index for
the degenerate spin-state configurations whose
coeScients are ck, . Here [e [ denote the orbital energies
of the unoccupied band orbitals and the values of qkp de-

pend on the particular basis of the spin-state
configurations chosen. ' The equations are to be solved
subject to a~( —ao)=l, bk( —00)=ck ( —oo)=0. This
model would be applicable in the case where the band is
not full, as for a conductor, or for a semiconductor with a
narrow gap between two separate bands, one of which is
occupied. Integrating (83) and substituting into (82),
with 5k =ep,—ek and 6 =e.—ep, we obtain

dbk 2 2i =bkbk+v'2vkV(t)az iV(t)g—qfzvj f exp[ibj(u —t)]V(u)bk(u)du .
dt ~ 00

JP

(84)

Assuming both bands (or subbands) are wide and that the speed of the ion is slow, we can use WBA twice to obtain an
expression for au(t}. Using the WBA for the last term in (84} leads to

dbk 2i =hkbk+&2vkV(t)ao 'V ( )Pik bk
dt

(85)

so that

bk = i&2vk f —exp[ibk(u —t)]exp f p&k
—V (x}dx V(u}ao(u)du .

oo

(86)

Substituting into (81) gives

n= —2V(t) g uk f exp(ib«(u —t)exp f p, k
—V (x)dx V(u)ao(u)du .

Ic =1 t
(87)
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dao
2 p 0

= —p V'(t) —a (t) (BS)

which is of the same form as (10). Thus the more sophis-
ticated model leads to the same expression for ao(t) with
@2=0, —,', or 1 depending on the position of eo relative to

Note that the values of p&k incorporate the factor of —,
'

discussed earlier, the sums of qk over p, and the sum of
v. over j. In the case where eo is not in resonance with
the unoccupied band (or subband) we have p, k =0 for all
k. Applying the WBA we may write (A7) as

the occupied band (or subband). However, the neutral-
ization probability is now given by

Ia.«) I'+y Ic„,«)l'
kjp

(B9)

We note that for the separate bands (subbands) con-
sidered, for any particular time, eo cannot be in reso-
nance with both bands. In particular if, throughout the
interaction, eo is in resonance with the occupied band
(subband), then we have ck =0 for all t and the original
model is sufficient to describe the interaction.
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