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We study here the stability of soliton and polaron excitations in a single strand of trans-polyacetylene

as a function of the strength of the electron-electron correlations as well as the doping level. We proceed

by first solving exactly the continuum version of the Su, Schrieffer, and Heeger Hamiltonian for the

single-particle states that arise when electrons are added to a single polymer chain. The role of on-site

( U), nearest-neighbor ( V), and bond repulsion ( F) Coulomb interactions are then obtained from a first-

order pcrturbative calculation with the exact single-particle states. By minimizing the total energy, we

are able to determine the relative stability of polaron and soliton configurations. We show that, at a
fixed doping level, a polaron lattice is favored over a soliton configuration provided that U and V exceed
critical values. However, as the doping level is increased, we show that the critical values of U and V at
which a soliton lattice converts to a polaron lattice increase significantly beyond experimentally accepted
estimates. 8' is also shown to favor solitons. We estimate that at a doping level corresponding to the
insulator-metal transition (5%), U=4 eV and V=0.4 eV, a soliton lattice is 0.6 eV lower in energy than

the corresponding polaron lattice. If we argue that the insulator-metal transition in polyacetylene re-

sults from the onset of a polaron lattice at 5%, then our work places restrictions on the magnitude of
such effects as interchain coupling which have been proposed in the literature as a principal player in the
metal transition in polyacetylene.

I. INTRODUCTION

Because the ground state of trans-polyacetylene is two-
fold degenerate, polyacetylene is a Peierls band-gap insu-
lator at half-filling. The degeneracy arises from the
periodic arrangement of alternating double and single
bonds (which constitute a commensurate charge-density
wave) along the polymer backbone. Su, Schrieffer, and
Heeger (SSH) have shown that the dimerization of the
ground state of this polymer can be accounted for by a
one-electron —phonon model with a periodic lattice dis-
tortion. ' On physical grounds, one would suspect that
because an on-site Hubbard U favors a uniform charge
density, the tendency to dimerization at half-filling would
desist if Hubbard-type interactions were turned on. A
curious feature of trans-polyacetylene, however, is that
electron correlations enhance dimerization at half-fiBing
(Ref. 2 and references therein). This result, first estab-
lished within the context of the extended Peierls-Hubbard
models (see, for example, Ref. 3), certainly hinted that the
phonon SSH model can only partially account for the
ground state as well as condcuting states of this polymer.
Subsequent perturbative calculations, ' Monte Carlo, '

self-consistent numerical, and exact studies on finite
systems have substantiated the finding that short-range
electron correlations most likely dominate the dimeriza-
tion process in the ground state.

Away from half-filling, there have been relatively few
studies of the role of electron correlations in trans-
polyacetylene. Such studies are of utmost importance if
the precise mechanism of the insulator-metal transition in

polyacetylene is to be understood. The most dramatic ex-
perimental feature that a theory of the metal transition in

polyacetylene must explain is the sudden onset of a Pauli
susceptibility at a doping level of 5 —6%.9 The lack of
any discernible spin susceptibility below a doping level of
5—6% supports the view that charged solitonic rather
than electron or holelike excitations form in the lightly
doped form of the polymer. Such excitations populate
the midgap states and are spinless. Kivelson and Heeger
have suggested that the onset of a Pauli susceptibility in
polyacetylene results from a transition from a soliton to a
polaron lattice. ' Although this model would account for
the Pauli susceptibility, it is inconsistent with the intense
infrared active vibrational (IRAV) modes observed in the
experiments of Kim and Heeger. " Kim and Heeger have
observed that the intensity of the IRAV mode (a signa-
ture of solitonic excitations) increases as the doping level
is increased. Nonetheless, it is believed that a transition
to some kind of polaron lattice must obtain if itinerant
spins are to form in the metallic state of trans-
polyacetylene. %ithin the SSH one-electron —phonon
model, ony soliton exeitations are stable, at all doping
levels. Consequently, recent work on the metal transition
in polyacetylene has focused on extensions of the SSH
model that support polaron formation. ' ' For exam-
ple, Mizes and Conwell' have shown that interchain cou-
pling as well as chain breaks stabilize polaron formation
in trans-polyacetylene. These results were established for
short chains containing at most one polaron. Attempts
to explore the stability of polarons in single strands of po-
1yacetylene have focused onm perturbative studies of the
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SSH model ' appended to an on-site Hubbard U. ' For
values of U as large as 4.2 eV, it was found that solitons
were favored over polarons regardless of the doping level.
However, such studies treated the interactions at the
Hartree level, and hence could not definitively answer the
question as to the fate of polarons in single strands of
trans-polyacetylene.

It is the purpose of this paper to address the issue of
the role of short-range correlations along single strands
of trans-polyacetylene as a function of doping. An on-site
Hubbard U as well as a nearest-neighbor repulsion V will

be used to describe the electron correlations. The contin-
uum model of Takayama, Lin-Liu, and Maki (TLM) will

be used to describe the SSH one-electron —phonon mod-
el. ' It will be shown that even in isolated chains a transi-
tion toward a polaron lattice can be achieved as the in-

teraction strength increases. We find, moreover, that
doping appears to favor a soliton state. In addition, we

consider the role of a bond-charge Coulomb repulsion
term W. It has been suggested that W stabilizes a pola-
ron lattice. Exact numerical calculations of the ground
state of short chains using this term at half-filling have
demonstrated a transition from a dimerized to a fer-
romagnetic phase. ' We have performed calculations in-

cluding this term in the total Hamiltonian, and show that
contrary to accepted wisdom W favors a soliton lattice
over a polaron lattice as a function of its strength and

doping level in the chain.
A formalism will be presented that starts from the con-

tinuum TLM Hamiltonian, ' which is known to support
both polarons and solitons as stable excitations. ' The
doping dependence will be determined by calculating the

energy levels of localized excitations that form in the

midgap region when electrons are added to a single
strand. The wave functions for these states will be ob-
tained by using an inverse scattering theory for
reAectionless bound states. Because the resulting wave

functions extrapolate smoothly from soliton to polaron
excitations when the position of the bound-state energies
in the gap is tuned, we will minimize the total energy
with respect to these discrete energies in order to deter-
mine the stable configuration of solitons or polarons. The
first-order perturbation theory for the full Hamiltonian
will then be used to determine the role of correla-
tions. '

II. FORMALISM

The starting point of our analysis is the extended
Peierls-Hubbard model

~TLM+~U+~V+~W ~

where Art M is the continuum TLM Hamiltonian'

1 f dx 6(x)
'

27Th, vF

+ f dx %t[ iu~o, B +b,(x—)cr, ]'p . .

In Eq. (2), 4'=(u, u) is the two-component spinor, u& the
Fermi velocity, b,(x) the order parameter, and the o, 's

are Pauli matrices. Parameter A, denotes the elastic ener-

gy coupling constant, and the convention 6=1 has been

&r =V+n n, +, , (4)
J

where n, =c',c, is the number of electrons with spin s on
site j, c„ is the annihilation electron operator, and

n =nj &+nj& The inclusion of off-diagonal terms has
been restricted in our calculations to the bond-charge
repulsion term

~w = W g(Br, I+ &
)

I

where BI t+, =g, (cl,cI+, , +cI+, ,ct, ). We have ignored
other usually considered "mixed" term involving both
on-site and bond-charge effects, primarily because W ap-
pears to play a more relevant role than the mixed term.
However, the main conclusions of this paper will be
based primarily on on-site and nearest-neighbor interac-
tions. The W term will only introduce minor corrections.

Consider the generalized Hartree-Fock wave function
for the valence band ~V) =IIcl&c ~ ~0), where I and m

refer to the continuum states. The total state containing
n polarons or solitons can be represented simply as

~4) =IIc &c&& ~V), where u and P refer to the bound

states inside the gap. The expectation value of Eq. (I)
with respect to ~4), according to the atomic oribital
representtion used in obtaining (2), is given by

) = f dx a(x)'
27TXUg

+ ink, f dx 0' [ iufo28„+6—(x)o, ]P,
k, s

(&u) =Ua f d x[ Z& OZto+Z$ 3Z(3],

(&„)= Va f dx g[Z,O(Z, O+4 0)
—Z„—Z, ~

—Z, 3(Z,3+Z 3)],

(%w) =2Wa f dx g[ —Z,o+Z„+Z,'3
(8)

+Z,r(Z, ~+2Z )]+2WN, (9)

where Z„=gknk, 4ko; 'Irk, with cro the identity matrix,

nk, the occupation number for state (k, s), N the total
number of electrons in the chain, and a the intersite dis-

tance.
For the amplitudes on the odd and even sites we have

chosen the ones that satisfy the eigenvalue equation for
the TLM Hamiltonian:

used. The numerical values for the parameters are taken
from Ref. 1. With our use of 0.

2 instead of the conven-
tional o.3, u and u correspond directly to amplitudes for
even and odd sites of the chain, respectively. On-site
and nearest-neighbor electron correlations are described
by

%tr = Urn tn (
J

and
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—vf 8„v„(x)+b(x)vk(x)=e„u„(x),

vf B„uk(x)+6(x)uk(x) =e'k v/, (x) .
(10)

1E,„M
= Jdx a(x)'+ y n„,e„.

2&kvf k, s

(12)

The sum has to be carried out over continuum as well as
discrete states of the chain. For a chain of length I.,
periodic boundary conditions are imposed such that
kL =2mm+Pk, where Pk =g,". 2 tan 'k/k, for n excita-
tions in the chain. In order to calculate Eq. (12) for the
n-excitation state, we need the order parameter h(x).
The following development leads to the solution. Equa-
tion (10) can be decoupled straightforwardly as

—B„v„(x)+U, (x)v„(x)=A.„v„(x),
—B„u„(x)+U, (x)u„(x)=A,„u„(x),

where

(13)

1 Bb,(x) + 1
[~( )p

Bx v&2

(14)—186(x) 1
[

2 z

BX Vf2

the parameter /(,„=I/vf [co„—b, ], and e and o stand for
even and odd, respectively. These one-dimensional
Schrodinger equations can be solved by the inverse
scattering technique. * In this account, the U, , are
determined in terms of the set of /(, „defined in Eq. (13).
Then we can proceed to find the minimum of E~LM by

Vf

The energies E„=+Qbo+k vf refer to the conduction-
and valence-band states. Electrons added to the system
will occupy states which lie in the midgap region.
Electron-hole symmetry guarantees that each electron
added will produce two states symmetrically located with
respect to @=0. These discrete states also satisfy (10),
but with their respective energies ///„=+Qh// —k„vf.
For all cases, u and U satisfy the normalization constraint

fdx[lul'+lvl']=I .

The expectation value of ELM can now be written as

where 5E=Er„M Er„M—, p=g;k, , and k;vf
=Qh, —ro; where co s are the energies of the levels in
the gap. The notation n+ denotes the occupation num-
ber for the negative and positive ith level in the gap. The
energy Ert M is calculated from Eq. (12) using h(x) =b,,
and carrying out the summation over k with the corre-
sponding boundary condition kL =2m' In thi. s way the
quantity in Eq. (18}is the creation energy for the excita-
tions introduced in the gap.

In order to calculate the energy of the full interacting
Hamiltonian (1), we now have to determine the ampli-
tudes u„and v„ that describe the bound states in the
midgap region. To this end, we must solve the eigenvalue
equations (10) for the bound-state energies instead of the
continuum energies ek. In analogy to inverse scattering
for reAectionless potentials, the wave functions of the
bound states in the gap are given by

2Q —k„x—k x 2k„e 'u„(x)e
u (x)=e 1 —g k„+k (19)

where v (x) =sgn(co )( —1) +'u ( —x). The distorted
valence- and conduction-band states are given by

eo eo eo ~ n mwhere A"„=e "'e "(e " /k„+k ). A relation
between the set of [a,",I and the set of [co;I will be
developed in the Appendix. Once this is achieved, [a/, )

mill be the only undetermined set of parameters which
are subsequently fixed by applying Eq. (15). The deter-
minant in Eq. (17) has been evaluated explicitly for the
n-excitation case. The expression is given in the Appen-
dix, where we have defined JV, , =—det( A +I).

With the order parameter in hand, we can now solve
explicitly for E&IM. We are particularly interested in the
creation energies for excitations introduced into the gap.
Let E&LM be the energy of a uniformly dimerized on-
doped chain. The creation energy for an arbitrary num-
ber of excitations in the gap is

4vfp 4 co.
5E= +—g/o, tan ' + g(n'+ n—' )/i/;,

7T 7T; ki vf

(15)

n

2k„e 'u„(x)e
uk(x)=e'"" 1 —g k„—ik

(20)

where /u= tro„. . . , /v„I. The minimizing set of [co, I
will be used to calculate the minimum energy of the
stable configuration of electronic excitations. The order
parameter is given then by inverting Eq. (14):

V
2

h(x) =6,+ (U, +U, ) .
(16)

ln det( A +I)
dx (17)

For very long chains, the inverse scattering theory
yields

A useful approximation that much facilitates calculations
is given by inserting (20) in the second equation of (10),
and considering that the wave functions are slowly vary-
ing functions of the distance. In this limit

ikvf + h, (x)
u/ (x) =sgnEk

~ ~

u/ (x)
k

(21)

The above expressions define the amplitudes for the wave
functions up to a normalization factor that is subsequent-
ly determined by applying Eq. (11). The amplitudes of
the wave functions in the continuum as well as those in
the gap are now determined solely by solving the system
given by (19). Details of the calculation, and explicit ex-
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pressions for u„ in the n-excitation case, are given in the
Appendix.

Thus far we have provided a means for calculating
variationally the interacting creation energies of the n-
excitation system for infinite chains. To consider finite
chains, we proceed as follows. The condition for the van-
ishing of the potentials U, , at the boundaries of the sys-
tem imply that lim„+„b(x)=+A,„as can be checked
by Eq. (14). This means physically that at and near the
boundaries, the system returns to the alternating bond
configuration corresponding to uniformly dimerized
chain. In order then to be able to consider smaller chain
lengths and still be able to use inverse scattering theory
we only need to impose lim„+r zzb, (x)=+A„which is

exactly the same condition except that now L enters ex-
plicitly in the caculation of the order parameter. Impos-
ing this boundary conditon on the second equation of
(16), and using the fact that U, , = —2(d /dx )lnW, „
we obtain

A(x) ho= G—(x)+D (L), (22)

where G(x) = —vf(d /dx )In( W, W, ). The quantity
D(L), has to satisfy the conditions D(L)= —G(+L/2)
and limr +„D(L)=0. The first condition defines D and
the second condition follows directly from the properties
of W, , as outlined in the Appendix. Now, applying the
boundary condition on the first equation of (16), we ob-
tain the relation

b(x)= f dx(U, —U, )=f(x)+C(L), (23)

VSE=
7TjlE

L
0

+
L

W0

LW'
8

L
We

2Vf+ (C —5, )+ 2+ — gk, .

27TXVf

+ —geo;tan ' + g (n'+ —n' )cg, . (24)
7T; k;Vf

where f(x)= —
vf [W0/W, —W,'/W, ]. Again, from the

boundary conditions it follows that
C(L)=b,, f(+L/2). —A relation can be found between

D and C using the above equations, namely
D(L)=C(L)

Because our objective in this paper is to determine to
what extent polarons are stable given their intrinsic at-
tractive long-range interactions, we concern ourselves
with an even number of extra electrons in the chain.
Also, for simplicity we consider only even-number
chains. Thus having even numbers of excitations and
sites in a chain restrict further the boundary condition to
b, (+L/2)=h, . Incorporating the modifications to the
order parameter given by Eqs. (22) and (23) into Eq. (12),
for the energy of the noninteracting part of the full Harn-
iltonian we obtain

Note that from the limiting properties of W; „as
outlined and shown in the Appendix,
limr „([W,'(L /2)/W, '(L /2)]+ [ W, (L /2)/W, (L /2) ])
=2+;k;, Eq. (18), as expected. The energy of the full

Hamiltonian (1) as a function of the length of the chain
can now be calculated by inserting the wave functions de-
scribed above into Eqs. (7)—(9), and adding the contribu-
tion from the noninteracting part as given by (24). The
configuration of the energy levels that render the energy a
minimum will be given by Eq. (15) using the total in-

teracting energy instead of E~i M. The nature of the final

state, either a polaron or soliton state, will be determined
by the lowest energy of the two configurations.

A comment on Eq. (22) is in order. Because the in-
verse scattering formalism requires that U, , (L/2)~0
then the vanishing of the potential at the boundaries is
true as long as h(x) ~A, and Bb,(x)/Bx ~0 at x =L /2.
By adding parameter D (L) in Eq. (22), we are effectively
adding parameter D /vf to the potentials U, „as can be
checked by direct substitution of Eq. (22) into Eq. (14).
This means that the parameter D has to be a small num-
ber. Because D (L) is a decreasing function of the length
of the chain L, in order to maintain D small, L cannot be
taken to be arbitrarily small. As a consequence of this,
our calculations cannot be applied to arbitrarily high
concentrations (small L) Acrite. rion that gives good nu-

merical results is that minimum value of L should not be
smaller than the combined widths of the excitations in
the chain. That is, if there are n polarons of width d each
in a chain, L should satisfy L ~ nd.

III. RESULTS

Because of the complexity of the expressions for the
functions W, , and the wave functions for both continu-
um and bound states, the minimization calculations as
well as the calculations for the energy were carried out
numericaly. In the doping process, each added electron
will introduce a new bound-state energy parameter m, .
This means that for n added electrons there will be an n-

dimensional set of co; s on which the energy must be mini-

mized. Such a multidimensional minimization is far from
straightforward numerically. We have chosen to use al-

gorithms that make use of the derivatives of the function
to be minimized. Though time consuming, this pro-
cedure exceeds the efficiency of convergence reached by
interpolation methods. Also, because we are concerned
with doping of two electrons at a time for each chain, the
computational time for the rninimizations in each subse-
quent doping step more than doubles. Results mill be
presented for two, four, and six electrons added to a
chain. For comparison purposes, all results will be
presented in terms of the concentration n /N, where X is
the number of sites in the chain. We will only consider in

the doping process the addition of extra electrons to the
chain. Electron-hole symmetry guarantees that hole dop-
ing will yield identical results. As is well known, the oc-
cupations of the soliton and polaron states differ. This
fact will prove to be relevant because the interactions will

contribute in each case according to their occupations.
For negative doping, the polaron state possesses a half-
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filled uppermost state, while the soliton state has a doubly
filled state.

For comparison purposes we define hE—:E —E„
where E and E, are the corresponding interacting
creation energies for a polaron and soliton configurations,
as described at the end of Sec. II. The point at which
hE =0 marks the transition from one to the other
configuration. In Fig. 1 we present AE a function of U
for the cases of two, four, and six extra electrons in an
%=200 chain. It is calculated for the case of V= 8'=0.
The value for U at which AE =0 indicates a point beyond
which a polaron state has lower creation energy than a
soliton one. We call this critical value for U, U, . The
fact that the soliton state reaches a point at which its
creation energy surpasses that of the corresponding pola-
ron state can be understood in the sense that an on-site
repulsion term will be most costly for those
configurations containing double occupancy of the same
site, or in our case to the same state. Thus after the in-
teraction strength increases beyond U, the polaron
configuration of singly occupied states has a lower total
energy than the doubly occupied one for the solitons. An
alternative way of thinking about these results is that
electron-electron repulsions are needed in order to stabi-
lize a polaron lattice, because the interaction between po-
larons is intrinsically attractive and long range. One
point to note is that U, increases as the number of added
electrons increases. This is the same as saying that for in-
creasing concentration (from 1% to 3%) the on-site
repulsion needed to drive a transition increases. One
might expect the contrary by noting that the slope of 4E
for greater numbers of electrons seems to increase. The
crucial relationship, however, is that the value of hE at
U=O increases much faster as the doping increases.

The values of U, can be collected and plotted as a
function of decreasing X, as in Fig. 2, where the x axis is
n /N( =% ). Nearest-neighbor interactions have been in-
cluded in this figure for values of V=0.2 and 0.4 eV.
The results presented are only for the case of two elec-

0.8—

0.6—

o.4—

0.2

0 I 2 3 4 5 6 7 8 9

U(eV)

FIG. 1. hE as a function of on-site repulsion U for two
(solid), four (dashed), and six (dotted) electrons in a chain of
N =200 ( V= W=0).

7-
6

5- oo
C5
CP
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0.5 1 1.5
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2.5

FIG. 2. Critical on-site repulsion U, vs concentration for two
electrons in the chain. The results presented are for V= W=O
(circles), V=0.2, W=O (diamonds), and V=0.4, W=O (trian-
gles). Phases I and II stand for stable regions of polarons and
solitons, respectively.

trons in the chain, but the general trend is true for any
amount of doping. The upper region marked I and the
one marked II correspond to regions where polarons and
solitons are favored, respectively. The trend of increasing
U, as a function of concentration is clear, demonstrating
that given some value of U at 0% in phase II the soliton
phase will persist. If one were to start in phase I, howev-
er, there would be a concentration beyond which solitons
would be favored. The result that V shifts the curves
downward, therefore favoring polarons, can be explained
in terms of charge distributions. Because the charge dis-
tribution for a soliton is more localized than in polarons,
and is only distributed in either even or odd sites, an
overlapping soliton-antisohton pair will gain more in-
teraction energy from the V term than the corresponding
polaron system. Thus V as well as U favors the polaron
systems as a function of their strength.

In Fig. 3 we have considered the case of V= 8'=0 for
two, four, and six electrons in the chain. The pattern
shown in Fig. 3 as the number of electrons is increased
suggests that there is a limiting boundary for large n and
E (but fixed n IN. We have extrapolated this behavior
and presented a limiting curve as a dashed line. The lim-
iting curve seems to exhibit the same behavior as do the
others. This means that increasing concentration will not
yield a polaron phase had we started in the soliton phase.
We conclude then that it is unlikely that on-site repulsion
is responsible for the metal transition as a function of
doping, although it does yield a transition as a function of
its strength. Also from Fig. 2 we see that, for increasing
nearest-neighbor repulsion V, a smaller U, can be
achieved. However, nearest-neighbor repulsions ulti-
mately stabilize the soliton phase once the doping is con-
sidered.

The nondiagona1 term 8'has been considered in Fig. 4,
where we present a phase diagram of 8', vs V at a value
of V=4 eV for N =200. The values for 8; have been
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12
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FIG. 3. Critical on-site repulsion U, vs concentration for
V= W=O. The solid line corresponds to two, circles to four,
and diamonds to six electrons. The dashed line represents an
extrapolation to a system with an infinite number of doped elec-
trons.
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FIG. 4. Critical value of 8'vs Vat U=4 for %=200. Cir-
cles correspond to two (1%), and diamonds to four electrons
(2%).

calculated in the same way as was done for the values of
U, . At a fixed value of Uand V, the value of Wat which
AE =0 is W, . The bond-charge W term is seen to have a
different behavior from the other two terms. As a func-
tion of its strength the system, if in phase I, is driven into
phase II; that is, it breaks the polaron state into a soliton
phase. On the other hand, W follows the same behavior
as a function of the number of electrons in the chain, as
do V and U. That is, it moves the boundary toward
higher V, thereby destabilizing the polaron phase as a
function of doping.

Some general statements can be made regarding the
closure of the gap, based on the behavior of the bound
state levels as a function of doping. By examining the set
of Ice; ] that minimizes the energy for the noninteracting
as well as the interacting cases, the expected general

trend that the levels start to form bands is observed.
There are bands in the middle of the gap and at the
symmetrically located levels for the soliton and polaron
configurations, respectively. Up to the doping levels
achieved in this paper (around 3%) the levels seem to
reduce the gap down to a value of the order of 0.3 eV.
The widening of the bands as a function of doping seems
to obey a power law. Future work will consider relevant
physical quantities (e.g. , the magnetic susceptibility) mak-
ing use of a more detailed analysis of the rate of closure
of the gap as a function of doping.

In conclusion, we have shown how a transition from
solitons to polarons in trans-polyacetylene can be
achieved as a function of U alone, or U and V. W seems
to break or dissociate polarons into solitons. This is re-
lated to other findings at half-filling, in which Wincreases
dimerization. ' In all the cases shown above an increase
in concentration, via the decrease of the length of the
chain or by increasing the number of electrons in the
chain, ultimately favors solitons up to the concentration
of 3%. However, we have no reason to believe that this
trend will not continue to doping levels beyond 3% and
into the metallic regime. We are then faced with the
original question: what drives the onset of spins in po-
lyacetylene? It has been proposed by several authors that
interchain coupling effects must be included to describe
the onset of the metal state in polyacetylene. Current es-
timates of the interchain hopping matrix element are
around 0.15 eV. ' Based on our calculations, we can now
estimate if an effect of this magnitude is sufhcient to des-
tabilize the soliton lattice at 5%. At a doping level of
5%, where U =4 eV, and V =0.4 eV, we estimate that a
soliton lattice is more stable than the corresponding pola-
ron one by 0.6 eV. Interchain coupling effects of 0.6 eV
or higher would certainly then be sufFicient to break up
solitons on single chains. However, based on the esti-
mates in the literature of t~, it is unlikely if such effects
are ultimately responsible for the transition from a soli-
ton to a polaron lattice in trans-polyacetylene at the
metal-insulator transition. Further calculations which in-
clude short-range electron corrections are clearly neces-
sary to settle the precise role of interchain coupling on
the insulator-metal transition in polyacetylene.
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APPENDIX

Before deriving the exact expression for the wave func-
tions, we define some of the notation to be used in this
Appendix. We will define objects with an arrow over-
head to indicate the vector form of that set, e.g. ,
k=(k, , kz, . . . ) and 5=(5,, 5~, . . . ), whose dimension
(number of elements) is given by the number s of levels
(electrons) introduced into the gap. Subscripts on these
objects indicate the same vector, but with the subscript



49 PHASE DIAGRAM FOR STRONGLY CORRELATED DOPED. . . 5155

element omited. For example, k, =(k2, k3, . . . ), so that
this new vector has dimension s —1. A matrix L of di-
mension 2' 'Xs whose elements are either I or —1 will
be used. Its row vectors L„will be denoted for conveni-
ence by two indices. The first index n denotes how many—1 elements it has, and the second m denotes which row
vector it is. The definition of this L matrix is given
below. By the dot product L„-k, for example, we
denote the dot product of the specified L„row vector
with It. If a superscript is included such as L„' 5„ the
dot product is carried between the 5 vector, whose s ele-

ment has been omitted, with the L„row vector, whose
element number 1 also has been omitted. A matrix P will
be used, and it is constructed in the same way as the L
matrix, but with dimension 2 X(s —1) instead. In
both cases P„(j)or L„(j}refer to the element j of the
row vector of the respective matrix. The rules for the
construction of the L matrix, and so for the P matrix, are
given below.

The wave funcitons that solve the system (19) were de-
rived by induction, and are given for any number s of lev-
els (s & 1) by

$ —2
s s s —2 n

go,Jexp —1/2 y5; (, ,)s y y aq 'C» F, [P„' x ,'(5, —P„—+[2n+1—s]5, )]
e J&q i=1 n=Om=1

for q =1, and

(Al)

q
—1 s

uq
—

Cr) q CrqJe
e J(q J&q

s —2~' ')—I/2(5 i
—5 )

sqg a„C„Fq[g x —
—,y„]

n =0m =1
(A2}

for q & 1, where Fq[ ]:—sinh[ ], or cosh[ ] for q even or
odd, respectively Also g. =—It P„,o.;.=k; —k and

trix ( A+I), as defined in the paragraph containing Eq.
(17),

q
—1

J =2
$ —2

a'„=5,.P„+ g 5, +[2(n —s)+5]5, .
I =2

Other symbols used above are defined as follows:

(A3)

(A4)

, ('„')
W, (x)= g g D„' cosh (L„k)x—

—,'L„' 5,
n=Om=1

s —1—
—,
' g 5, (n+2——s)5,

C„= P [k„—k, [P„(ri—5„,)P„(v—5„,)]]
n (vXq

(A5) where we have used the short-hand notation

and

q
aq = gP„(j),

j=l
(A6)

where a„=a„~'=1 and 5;&~ =8(i j—) is the norm—al
step function. Note that wave functions (Al) and (A2)
are given in terms of a set [5] instead of the set ta] in-
troduced in Eq. (19). The transformation was done for
convenience, and is given by

s
D„' =g [k; kj [L„(i)L„—(j)]] .

i(j
(A10)

Note that for s = 1 the only wave function is—5
u, =e '/2W, . The amplitude for the odd sites u can
be obtained from the relation u (x)
=sgn(~q)(-1)q+ luq(-x), and since it also satisfies a re-
lation similar to Eq. (19),

1 s P1. $'
exp g 5; —(s —2)5,

j=2, lj i =1
(A7}

2' —k„x—k x 2k„e 'u„(x)e
u (x)=e ' 1 —g k„+k (A 1 1)

for q =1, and

Pjq Pqj (6 I
—& )e e

J =2 Jq j=q+1 qj
(Ag)

for q ) 1, where p j k +kj The term 8; in the
denominator of u, which is the determinant of the ma-

it can be shown that W, (x)= W, ( —x).
The L, matrix is defined as follows. The first column of

this matrix is composed of +1 elements only, and the
rest of the matrix follows an ordering that exhausts all
the combinations of +1 and —1. The form used in this
paper for a given s, n, and m is as follows. Let the indices
i,j,k, . . . , I denote the individual L, row-vector element
positions ~hose values are equal to —1, where
i (j (k ( . - . (t (I, and there are n of them. Then
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L„(i)= —1 if &m (
n

s+1—I

S s+1—j
n —1

(A12)

s —k
L„(k)=—1 if

2
&m—

S j
n —1

s+1—k

n 2

s —I
L„(t)=—1 if

2
&m—

S S j
n —1

s —t

n 2 2

A11 other elements that do not satisfy these conditions are
equal to +1. Note that for a given m and n the first line

of Eq. (A12) completely determines the position of the
first —1 in the row vector i. Once this position is deter-
mined, it is used in the second line to determine the next
postion j, and so on. The matrix I' is constructed in ex-

actly the same way as the L matrix, but using s —1 in-

stead of s.
From Eqs. (A7) and (A8) we have a relation between

the set of [a,"] and a set of [5;], which turns out to be

convenient in our case. Now we present the relation be-

tween [5, ] and [co;], therefore establishing the depen-

dence of u on the energy levels. Let us define the quanti-

ty Q;
=k;vf /C(L)—, where C(L)=A, f(L/2), —as

defined in the text following Eq. (23). Also defining the
vector R = (R (,R z, . . . , R, ), where its individual ele-

ments are further defined by R; = tanhg, , we have

(A13)

for q =s, and

q p (s —2) q
(A14)

for q &s. Thus, starting from a given set of [co; ], by Eqs.
(A13) and (A14) we obtain the corresponding I 5; ]. The

values of [k, ] are determined by k;vf=-QA, —co;, so

that all the values of cr, and p, are determined. In con-

clusion, by the above developments the wave functions
(Al) and (A2) depend solely on the parameters [co;], the

energy levels of the bound states.
Now we proceed to show how Eq. (18) can be obtained

from Eq. (24). The sufficient relation comes from examin-

ing Eq. (A9) in the limit of L ~+~. Note that for very

large x we obtain W„(x)=—Do, cosh[(LO&.k)x], since the

largest term in the sum is the one in which all values of
[k;} are summed. For its derivative we then obtain

W,'(x)= (Lo, k)D—o, cosh[(LO, k)x]. Then the condition
follows that limI +„[W,'(x ) / W, (x ) ]=g, k, . Thus Eq.
(18) is obtained by considering that in this limit the quan-

tity C (L) b,o also vanis—hes.
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