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Aharonov-Bohm-type efFect in graphene tubules: A Landauer approach
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In this paper we show that (1) for graphene tubules an axial magnetic field can induce a semimetal-

semiconductor transition periodically at zero bias. This is an Aharonov-Bohm-type effect and is general-

ly true for thin cylindrical conductors; (2) the Landauer approach can be used to estimate the conduc-

tance of individual tubules measured by scanning tunneling probes as a function of applied bias, temper-

ature, tubule geometric factors, and magnetic field. Numerical calculations are presented showing that

the conductance modulation should be observable even at room temperature.

Recently graphene tubules have been produced using
an arc-discharge evaporation method similar to that used
for fullerene synthesis. ' A monolayer graphene tubule
consists of a honeycomb network of carbon atoms, and
can be imagined as a cylinder rolled from a graphite sheet
with a diameter of several nanometers. The synthesis of
graphene tubules has stimulated many theoretical studies
on their structural and electronic properties. Tubules
with different diameter and chirality are predicted to
have different energy-band structures, hence different
conducting properties. About one-third of the possible
tubules are semimetallic with zero band gap, while the
remaining two-thirds are semiconductorlike with a
nonzero band gap. The first objective of this paper is to
show that an axial magnetic field can induce a
semimetal-semiconductor transition periodically with a
period of h/eS, S being the cross section of the tubule.
This is an Aharonov-Bohm-type effect arising from the
dependence of the electron wave function on the vector
potential, and is a general phenomenon for thin cylindri-
cal conductors.

The most direct way to check this prediction is to use a
scanning tunneling probe to measure the conductance of
individual tubules. It is thus important to develop a
quantitative theory for the conductance of a tubule as
measured between contacts. To our knowledge, all previ-
ous theoretical work has focused on calculating the band

gap. This only provides qualitative information regard-
ing the conduction properties and does not take the con-
tacts into account. The Landauer approach ' based on
calculating the transmission through a finite-size sample
has proved to be very useful in interpreting experiments
in mesoscopic physics involving the conductance of small
structures as measured between large contacts. The
second objective of this paper is to show how this ap-
proach can be used to estimate the conductance of indivi-
dual carbon tubules as a function of (a) applied bias, (b)
temperature, (c) tubule geometric factors, and (d) magnet-
ic field. A numerical example is presented showing that
the conductance modulation in a magnetic field should be
observable even at room temperature under reasonable
values of bias.

Let us first explain why we expect an axial magnetic
field to induce a periodic modulation in the conductance.
If there is no magnetic field then the electron eigenstates

can be written in the form -exp[ikcC]exp[ikL L], where

C and L represent the position along the circumference
and the axis direction, respectively. The cylindrical
geometry leads to quantized values of kz given by
kc(2m'R ) =2nn, where R is the radius of the cylinder and

n is an integer. A uniform magnetic field B applied along
the axis of a cylinder leads to a vector potential A point-
ing along the circumferential direction and having a con-
stant magnitude of Ao =BR /2 everywhere on the surface
of the cylinder. The resulting eigenstates are obtained
simply by multiplying the zero-field eigenstates by the
factor exp[ ieAoC—/A'] This c.hanges the quantization
condition to

[kc—(eAo/fi)](2mR) =2nm.

kc(2srR ) =2nn+(eBS/A) . . (1)

As a result the allowed values of kc are changed by a
magnetic field leading to a modulation of the density of
states and hence the conductance. However, the allowed
values of kc are the same everytime the quantity eBS/A'

changes by a multiple of 2~. So we expect the conduc-
tance to change periodically with a period equal to
(h /eS). This is true even if the cross section is not exact-
ly circular.

This phenomenon should be observable in graphene tu-
bules using a scanning tunneling probe. There are two
possible configurations, but we will only consider the
configuration with the axis of the tubule perpendicular to
the substrate so that the current flows parallel to the axis.
The other configuration (the axis of the tubule is parallel
to the substrate so that the current flows along the cir-
cumference) is similar to that studied using mesoscopic
rings. "

We choose the carbon-carbon bond direction of the
honeycomb lattice as the x axis, so that the chirality an-

gle 0 is the angle between the axis of the tubule and the x
axis [see Fig. 1(a)]. For simplicity, we consider only the n.

band, and neglect effects caused by the finite tube curva-
ture such as the mixing of cr and m bands and the interac-
tion between p, orbitals. We also neglect any Peierls dis-
tortion. The dispersion relation for the tubule can be ob-
tained from a tight-binding calculation

E(k) =+to'1/ 1+4cos (k~bo)+4cos(k bo)cos(3k„ao),
(2)
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where t0 is the nearest-neighbor overlap integral. a0 and
bo are defined in Fig. 1(a).

Equation (1) defines a set of straight lines whose slope
depends on the chirality angle E9 and whose density de-
pends on the radius of the tubule R. Equation (2) is used
to generate a set of constant energy contours in the k -k
plane. The number of intersections (within the first Bril-
louin zone) of the straight lines with a particular constant
energy contour gives the number of allowed transverse
modes M (E) at that energy [see Fig. 1(b)].' The effect of
an axial magnetic field is simply to translate the straight
lines perpendicular to their length. This changes the
number of modes.

Figures 2(a) and 2(b) show M(E,B =0) for a tubule
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FIG. 2. The number of modes for a graphene tubule with its
circumferential vector c pointing along y (0=0') having N
atoms along the circumference and a magnetic field along the
axis: (a) N =300, B =0; (b) N =301, B =0; (c) N =300, B =3.06
T; (d) N=301, B =3.06T.

(b)

-2

0
kx

0FIG. 1. (a) A two-dimensional sheet of graphite (a = 1.42 A).
The tubule is formed by rolling the sheet into a cylinder whose
axis points along L The unit vector alon. g the circumference is
denoted by c. (b) Equation (1) defines a set of straight lines
whose slope depends on the angle 0 and whose density depends
on the radius of the tubule. Equation (2) is used to generate a
set of constant energy contours in the k„kyplane. In the figure

0
we show the lines for 0=16.1 and r =2.4 A. The number of
intersections (within the first Brillouin zone) of the straight lines
with a particular constant energy contour gives the number of
allowed transverse modes M (E) at that energy.

having its axis along the x axis (8=0) with different num-
bers of atoms along the circumference (N =300 and 301).
Whenever N is a multiple of 3, the number of modes at
the Fermi energy, M(E =0), is nonzero indicating a
semimetal; but for other values of N, M (E =0) is zero in-
dicating a semiconductor. Tubules with other geometric
factors can be analyzed in the same way. Figures 2(c) and
2(d) show the variation in M(E =0) at 8=3.06 T for
N=300 and 301. It is clear that an axial magnetic field
can turn a semimetal into a semiconductor and vice ver-
sa. The next question is whether the effect can be ob-
served under usual experimental conditions.

The Landauer formula expresses the linear-response
conductance as measured between two contacts or reser-
voirs. Experimental measurements using scanning tun-
neling probes typically involve high bias and tempera-
ture, so that a more general version of the Landauer for-
mula is needed. This is easily done if we neglect all in-
elastic processes inside the tubule. '

We consider a single-layer graphene tubule deposited
on a substrate and probed by a scanning probe [see Fig.
3(a)]. We adopt the model shown in Fig. 3(b). There is a
tunneling barrier between the probe and the tubule due to
the air gap. Since the nature of the contact between the
tubule and the substrate is not known, we allow for a
small barrier. A fraction geV of the applied bias is
dropped across the air gap and the remainder (1 —

rI )e V is
dropped at the tubule-substrate interface as shown in Fig.
3(c). We assume that the substrate and the probe are
maintained in local equilibrium with electrochemical po-
tentials p& and p2, respectively. The current is given
b io

I= f dE M(E)t(E, V)[f(E —p, ) f (E —p, )], —

(3)

where f (E —p) is the Fermi factor, Vis the applied bias:
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due to this term. The other two terms arise from the ad-
dition of energy channels for conduction around p& and

P2.
For quantitative calculations one could assume specific

barrier heights and calculate each of the three terms. But
we feel that this is not warranted since little is known ex-
perimentally about the actual barrier heights. Instead we
assume that (a) the bias is low enough that the first term
in Eq. (6) is negligible; (b) the voltage is dropped largely
between the tip and the tubule, so that the third term is
negligible. Thus Eq. (6) simplifies to

28G(V)= fdEM(E)t(E, V)Fr(E —iui) . (7)

At low temperatures the thermal broadening function
Fr(E) can be replaced by a 5 function so that the conduc-
tance is given by

28G(V)= M(p, , )t(pi, V) . (g)

geV
'I(

FIG. 3. (a) A graphene tubule sandwiched between the scan-
ning tunneling microscopy tip and the substrate. (b) A model
for the structure shown in Fig. 1(a). (c) Energy-band diagram
where p&

=EI+e V, p2= E~ —(1—g)e V. The value of
(0 g~ 1) is determined by the ratio of the two tunneling bar-
riers.

I(V)= f dEg(E, V),
P2

where

(4)

p, =p2+eV and t is the average transmission probability
per conducting mode.

Following Bagwell and Orlando, ' we can express the
function [f(E —

p&) f(E —p2)] as —a convolution of a
bias function [8(E—pi ) 8(E —

iu2) ] —and a thermal
broadening function FT(E) and rewrite Eq. (3) as 3.0
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Thus the conductance at low temperatures is proportion-
al to the number of modes at an energy equal to the Fer-
mi energy in the probe. The effect of temperature is to
average the zero-temperature conductance over an ener-

gy range of several kli T around (ju, ).
The average transmission probability t(E, V) can be

approximately written as the product of the probability
for tunneling through the barriers and the probability for
transmission through the tubule. The former could be es-
timated by, for example, the WKB method whereas the
latter will depend on the length I. of the tubule and can
be written as A, l(L+A, ) where A, is the free path. ' Short
tubules with I. &&X are desirable in order to avoid con-
ductance fluctuations associated with scatterers.

Figure 4 shows the calculated conductance of a tubule

(a) V=OmV

g (E, V) = fdE'M (E')t(E', V)Fr(E E')—
and

af (E)
T BE 4k, T'-" 2k, T

(5b)

It is often more revealing to 1ook at the conductance
obtained by differentiating Eq. (4):

G(V)—: = f dE ' +egg(iM„V)
ai ~ ag(E, v)
av ~, av

+e(1—g)g(p2, V) .

The first term arises from the change in the transmission
t(E, V) under bias. This change is primarily due to the
lowering of the tunneling barrier(s) [and the consequent
increase in t(E, V)) when an electric field is applied. Close
to equilibrium this term vanishes because p, =p2. But at
high bias a significant part of the conductance could be
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FIG. 4. The conductance of a single-layered tubule (8=0',
N=300, t =const, g=1) vs magnetic field at 4.2 and 300 K for
two values of the bias voltage: (a) V=O and (b) V=10 mV.
(Conductance 6 is normalized to 2e t/h. )
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(at V =0 and 10 mV) with 8=0 and 300 (N) atoms along
the circumference. This corresponds to a tubule of radius
11.7 nm assuming a single-layered cylinder. Large tu-
bules tend to be multilayered, but since the interlayer in-
teraction is one-tenth of the intralyaer interaction, ' it is
reasonable to view different layers as independent con-
ductors in parallel. Each layer will then exhibit an A-B
effect with a characteristic period (and phase) determined
by its diameter and chirality. This will tend to dilute the
overall conductance modulation so that tubules with
fewer layers are more desirable. Single-shell tubes have
been synthesized but their diameter tends to be small (-1
nm at present stage). For such small diameters a com-
plete cycle of A-B oscillation would take a very large
magnetic field. However, for tubes with specific chirality
the semimetal-semiconductor transition could occur at

reasonable magnetic field. For simplicity we set the aver-
age transmission t equal to a constant and neglect any
barrier on the substrate side (g-1). The detailed conduc-
tance characteristics will change if these assumptions are
modified, but the broad features should remain the same.
The main point is that a modulation in the conductance
should be observable even at room temperature under
reasonable bias.
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