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Electron-electron-scattering-induced size efFects in a two-dimensional wire
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The differential resistance of wires dejned in the two-dimensional electron gas in an (Al, ca)As
heterostructure is observed to first increase and then decrease with increasing current. It is demon-
strated that this behavior results from the interplay of an enhanced electron-electron-scattering rate
(due to current heating of the electron gas), and the partly difFusive nature of boundary scattering
in the wire. The data are identified as an experimental observation of the Knudsen maximum and
the Poiseuille Sow regime in electron transport, and confirm an analogy between electron and gas
Bow that has been anticipated since the 1950s.

In classical diffusive transport, the effects of electron-
electron scattering on the resistivity are diKcult to ob-
serve. The reason is that normal electron-electron scat-
tering (NEES) does not change the total momentum of
the electron distribution, while resistive umklapp pro-
cesses are rare in bulk simple metals. However, it has
been pointed out that NEES should inHuence the re-
sistance of small wires with nonspecular boundary scat-
tering, provided that the bulk mean free path tb exceeds
the wire width W. At low electron temperatures, NEES
causes electrons whose original trajectory is along the
wire axis to be deHected towards the boundaries, where
their momentum can be dissipated. This process, the
electronic analog of the Knudsen effect in gas-How dy-
namics, increases the resistivity. At higher electron tern-
peratures, the electron collision rate increases strongly,
causing an increase in the time needed for the electrons
to reach the boundary of the wire. In this regime, where
the mean free path L„between NEES events drops be-
low W, the resistivity actually decreases with increasing
electron temperature, a situation known as the Gurzhi
effect. This is the electronic analog of the Poiseuille gas-
How regime.

Experimentally, only indications of NEES effects have
been found. Most experiments were performed on potas-
sium, which to a good approximation has a spherical
Fermi surface. However, the observed changes in the re-
sistance as a function of lattice temperature were limited
to about 0.01'%%uo of the total resistance, because of the lim-
ited tb and the onset of electron-phonon scattering. Yu
et al. reported a negative temperature derivative of the
resistivity (dp/dT) of potassium wires at temperatures
around and below 1 K. However, an interpretation in
terms of the Gurzhi effect was disputed, since at these
temperatures I, , ) W. In a later publication by Zhao
et al. , it was shown that the negative dp/dT can be
attributed to metallurgical imperfections. Observations
of a positive dp/dT in wider wiress were interpreted by
Movshovitz and Wiser as a Knudsen-like behavior due to
the combination of relatively infrequent, normal electron-
electron and electron-phonon collisions. A similar mech-

anism was proposed to explain an anomalously strong
positive dp/dT in very thin potassium films. 's However,
until now there has been no observation of electronic
Poiseuille How, nor has there been an observation of a
"Knudsen maximum" in the resistance at the crossover
between Knudsen and Poiseuille How regimes.

Here, we present a study of Knudsen and Gurzhi phe-
nomena in two-d. imensional wires, fabricated from high-
mobility (Al, Ga) As heterostructures. Using this material
to study NEES effects offers the advantages of a long tb,
the absence of umklapp processes, and a weak electron-
phonon coupling. We demonstrate a clear and unam-
biguous observation of the Knudsen and Poiseuille How

regimes, as well as the Knudsen resistance maximum, in
a single experiment. The resistance changes caused by
NEES processes can be larger than 10'%%uo of the total re-
sistance. We model our observations using a theoretical
scheme that allows the calculation of NEES effects on the
resistance for arbitrary t„, tb, and W. From the magni-
tude of the Knudsen effect we obtain information on the
boundary-scattering parameters.

The wires used for the experiments are defined elec-
trostatically in the two-dimensional electron gas (2DEG)
of (Al, Ga)As heterostructures. We use electron-beam
lithography to fabricate TiAu gates that define wires of
various dimensions. We report in detail on three differ-
ent samples. Wire I has a width W = 3.9 pm, and a
length L = 20.2 pm. It is fabricated from a wafer of
electron density n = 2.2 x 10 cm and lb ——12.4 pm.
Wires II and III both have W = 4.0 pm; wire II has
L = 63.7 pm, and wire III L = 127.3 pm. For wires II
and III, n = 2.7 x 10 cm and Ib ——19.7 pm. Trans-
port measurements are carried out in a cryostat at zero
magnetic field. The differential resistance is measured
with standard low-frequency lock-in techniques, using a
100 pV ac voltage.

Selective Joule heating of the electron gas in the wire is
achieved by passing a dc current I through the wire. Such
current heating is possible by virtue of the weak electron—
acoustic-phonon coupling in the (Al, Ga)As-2DEG sys-
tern, and has proven very useful for the study of ther-
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moelectric phenomena in nanostructures. ' The wires
studied here are equipped with opposing pairs of quan-
tum point contacts in their boundaries. Since the ther-
mopower of the point contacts is quantized, we can
determine the electron temperature T in the wire, as
a function of I, from a simple thermovoltage measure-
ment, as described previously in Ref. 12. We find that
for ~I~

& 20@A, and a lattice temperature Tj & 2 K,
the electron temperature T in the wire is approximately
given by

T = TE + (I/W) p C,

where p is the resistivity of the channel. The constant C
depends on the wire, and is of order C = 0.05 m K/W.
We have verified that TI does not increase notably until

~I( & 40 yA for wire I, and until ~I~
& 20 pA for wires II

and III. The electron temperature T is directly related to
the electron-electron scattering time v„, according to

1 E l(k.Til 1-~(E. il 11/——'qual 1 (2)
T (T) h E EF j ikBT) EkF j
Here q is the 2D Thomas-Fermi screening wave vector
(q = me /2xs„sob ).

In Fig. 1 we show our data on the differential resis-
tance (dV/dI) of wire I, obtained for Tj between 24.7 K
(top trace) and 1.5 K (bottom trace). First, consider
the lowest curve in Fig. 1, taken at Tj ——1.5 K. One ob-
serves, at low current levels (~I~ & 8 pA ), a narrow region
with increasing differential resistance dV/dI, resulting in
a resistance maximum at )I~ 8 pA. For larger currents
(8yA & ~I~ & 40 pA), we have a remarkable decrease in
dV/dI with increasing ~I~. Finally, at still larger currents
(~I~ + 40 pA), dV/dI increases approximately paraboli-
cally with I. Only in this regime, we find from a nearby
thermometer that the lattice temperature of the sample
increases considerably, implying that the quadratic be-
havior of dV/dI is due to Joule heating of the lattice, in
combination with the linear increase of the 2DEG resis-
tivity due to electron-phonon scattering for 4 K & T& &
40 K.'4

However, for the nonmonotonic behavior of dV/dI at

lower current levels (I & 40 pA) lattice heating efFects
can be ruled out. To see whether NEES could in princi-
ple be responsible for our observations in this regime, let
us estimate l„at ~I~ 8 pA. From Eq. (1) we have T—
6 K. Equation (2) then yields l„=v~w„- 5 pm, where
v~ is the Fermi velocity. We thus have l„=W, roughly
the condition one anticipates for the Knudsen resistance
maximum. The subsequent decrease in dV/dI we at-
tribute to the Gurzhi effect. For example, for I = 15 pA
Eqs. (1) and (2) lead to t„= 0.8 pm « W, well into
the regime of Poiseuille How. Thus we tentatively assign
the increase and decrease of dV/dI at the lowest current
levels to the electronic Knudsen and Gurzhi effects, re-
spectively.

As can be observed from Fig. 1, increasing the lattice
temperature Tj infiuences the dV/dI vs I trace in two
ways. First, the magnitude of dV/dI at zero heating cur-
rent increases (note that the data in Fig. 1 are plotted
without an additional ofFset), and second, the NEES fea-
tures at low current levels disappear with TI, the Knud-
sen effect much more rapidly than the Gurzhi effect. This
behavior can be understood as resulting from two mech-
anisms. Due to enhanced electron-phonon scattering tg

decreases with increasing TI. In addition, a higher TI also
implies a shorter l„at zero heating current, resulting in
a more Poiseuille-like How pattern in the wire without
any current heating.

Obviously, the Knudsen effect can only be observed
when S' ( l„& lp. These requirements explain why
we are only able to observe the positive dV/dI region at
the lowest T~ in wire I . In addition, they also imply a
much stronger Knudsen efFect in samples with larger ra-
tios ls/W, such as our wires II and III. Data on dV/dI for
these samples are shown in Figs. 2(a) (wire II) and 2(b)
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FIG. 1. Di8'erential resistance dV/dI of wire I as a function
of heating current I for lattice temperatures of (from top to
bottom) 24.7, 20.4, 17.3, 13.6, 10.4, 8.7, 4.4, and 1.5 K.

FIG. 2. DifFerential resistance dV/dI vs I for (a) wire II,
and (b) wire III for lattice temperatures of (from top to bot-
tom) 4.5, 3.1, and 1.8 K. At higher current levels, dV/dI ex-
hibits a quasiquadratic increase with current, similar to that
in Fig. 1.
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(wire III). In these samples the initial increase in dV/dI
indeed is much more distinct, leading to a pronounced
Knudsen maximum at [I[ = 7.5 pA . Again, the current
regimes of increasing and decreasing dV/dI are consis-
tent with the conditions for the electronic Knudsen and
Gurzhi effects. Moreover, we see that the total increase
in dV/dI in wire III is twice the increase in wire II. This
proportionality to L rules out a contact-resistance effect
as an explanation for the anomalies. Finally, we remark
that in wire III the increase of dV/dI in the Knudsen
regime is larger than 10% of the total wire resistance.

To put our interpretation of the experimental data on a
more quantitative basis, we have calculated the effects of
NEES on the differential resistance of a two-dimensional
wire. Calculations starting directly from the Boltzmann
equation have only been carried out for certain limit-
ing cases. ' We have found a solution for arbitrary
l„,lb, and W using the Chambers method of electron
dynamics. Briefly, in this method one follows the path
of an electron until it relaxes at an impurity or the bound-

I

ary of the system, and then determines a weighted av-

erage of the path lengths. The resulting effective mean
free path jt,~ is related to the resistivity p of the wire by

ne

7TLV F

Using this method, Movshovitz and Wiser have obtained
analytical expressions for the effective mean free path in
a film and a wire. However, their calculation includes at
most one NEES event per electron trajectory, which lirn-

its its application to the range l„))lg, the initial part of
the Knudsen regime. We have extended this approach to
include multiple NEES events and adapted it to the two-
dimensional case. Our formalism allows us to evaluate
l,g in the Knudsen and Poiseuille flow regimes without
any further approximation. We assume that a fraction
p of the incident electrons is reflected specularly at the
boundary, the remainder being scattered diffusively, and
obtain for the effective mean free path at position x along
the width of the wire

4t '
(1 —&)

e-*~'"
l,g(z) =I —— du Ql —u2

71 0 ] pe
—w /au

du dz' [l,s (z') + l,fr(W —z') j e (* * )~'"8(z —z') +
0 tl O ] pe

—w/&u

where l = l& + l,,i, and O(z) is the unit step func-
tion. Finally, the average effective mean free path is ob-
tained from l,ir = (1/W) f dzl, p( )zNote th. at the
first two terms on the right-hand side of Eq. (4) can be
interpreted as a two-dimensional version of the Fuchs-
Sondheimer equation, while the third term takes the
electron-electron scattering into account. We plan to
give full details in a future publication. Equation (4)
is solved self-consistently using numerical methods. Fig-
ure 3 shows a typical result of our calculations for the
nonmonotonic dependence of l,g on l„ for given p and
lg, leading to the Knudsen and Gurzhi effects.

"To allow a comparison with experiment, l„ is related
to I using Eqs. (1)—(3). The resistance of the wire is ob-
tained from R—:V/I = hx/2e kgW + pL/W, where
the first term is the two-dimensional Sharvin contact
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resistance. i Then, dV//dI is evaluated numerically. In
Fig. 4 we compare the lowest-temperature data of Figs.
1 and 2 with the results of our calculation. Note that for
all three cases, the calculated dV/dI values are 60 —80 0
smaller than the experimental values. This is due to the
resistance of the wide 2DEG leading to the wires, which is
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FIG. 3. Calculated dependence of the effective mean free
path l,s on the electron-electron-scattering length l„(both
in units of wire width W), for fixed bulk mean free path
I& = 5.5 W. Boundary scattering is modeled by Eq. (5), with

n = 0.7. The dashed line indicates the asymptote that l,&

approaches for large /, . Note that for E, ~ 0, l,~ ~ lb.
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FIG. 4. A comparison of the low-temperature data of (a)
wire I (Fig. 1), (b) wire II [Fig. 2(a)], and (c) wire III [Fig.
2(b)] with our calculations. In the calculated curves, the
boundary-scattering parameter o. is 0.6 for wire I, and 0.7
for wire II. See text for further details.
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not included in the calculations. Furthermore, the lattice
heating effects at high current levels are not included in
our modeling. Apart from this, and given the sample-to-
sample variations in the value of parameter C in Eq. (1),
the agreement between experiment and theory is strik-
ing. To obtain this agreement, we made two further as-
sumptions. First, we assumed that due to depletion the
electronic width of the wires is slightly smaller than the
lithographic width; we have used W = ls/3. 5 = 3.5 pm
for wire I, and W = ls/5. 5 = 3.6 pm for wires II and
III. Furthermore, we have found that using a constant
value of p for all angles of incidence leads either to a too
large value for dV/dI at zero heating current, or a too
small Knudsen effect. In reality, p depends on the an-

gle of incidence t)I, such that p -+ 1 for grazing incidence
(8 ~ +vr/2). According to Ref. 18,

p(0) = exp[ —(o. cos8) ] . (5)

Using this expression in Eq. (4) —where u = cos8-
we obtain numerical results as in Fig. 4. Good agreement
with the experimental data is found with o. = 0.6 for wire

I, and o. = 0.7 for wires II and III. Theoretically, the
parameter n = 4vrb/AF, with h denoting the root-mean-
square boundary roughness. This implies a roughness of
about 2.5 nm in our gate-defined wires. Our values for
n are much smaller than the typical values (a = 25) for

potassium wires, and imply that some 80% of all bound-

ary collisions are specular, consistent with earlier mag-
netoresistance and electron-focusing experiments. It
would be of interest to perform further experiments on
wires with boundaries defined by, e.g. , reactive ion etch-
ing or ion exposure, where boundary scattering is much
more diffusive.

In summary, we have observed a nonmonotonic cur-
rent dependence of the differential resistance of two-
dimensional wires. Quantitative agreement is obtained
with a transport theory which combines normal electron-
electron scattering with partly diffusive boundary scat-
tering. Taken together, these findings are convincing
evidence of the occurrence of electronic Knudsen and
Poiseuille transport regimes.
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