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Electronic structure of single- and multiple-shell carbon fullerenes
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We study the electronic states of giant single-shell and the recently discovered nested multiple-
shell carbon fullerenes within the tight-binding approximation. We use two diBerent approaches,
one based on iterations and the other on symmetry, to obtain the vr-state energy spectra of large
fullerene cages: C24p, C54p, Cg6p, Cy5pp, Cgy6p, and C2g4p. Our iteration technique reduces the size
of the problem by more than one order of magnitude (factors of 12 and 20), while the symmetry-
based approach reduces it by a factor of 10. We also 6nd formulas for the highest occupied and
lowest unoccupied molecular orbital energies of C6p 2 fullerenes as a function of n, demonstrating
a tendency towards a metallic regime for increasing n. For multiple-shell fullerenes, we analytically
obtain the eigenvalues of the intershell interaction.

INTRODUCTION

The discovery of a simple technique for the pro-
duction in bulk quantities of fullerenes has triggered
intensive research on these carbon molecules and the
search for other forms of carbon. Subsequently, a type
of carbon multiple-shell structure composed of multi-
layered needlelike tubes has been discovered by high-
resolution transmission electron microscopy. 2 Quite re-
cently, giant nested shells of multiple-shell fullerenes (also
called hyperfullereness) have been synthesized by in-

tense electron-beam irradiation. Essentially they consist
of a composition of concentric spherical fullerene cages.
The innermost cage is a C6p molecule which is encap-
sulated by giant fullerenes C24p, C54p, . . ., one follow-

ing the other. 4' The interlayer spacing coincides with
that for bulk graphite (3.34 A). A recent investigation
on the stability of these diverse forms of carbon shows
that multiple-she11 structures are most energetically fa-
vorable among them. Specifically, a very recent paper
shows that a stability transition from single to multi-
layer fullerenes occurs when the number of atoms ex-
ceeds 6000. Moreover, the concentric carbon multiple-

shell structure containing no dangling bonds provides a
challenge to graphite (comprising flat sheets of carbon
hexagons) for the most stable form of pure carbon.

The structures and energies for several multiple-shell
carbon molecules have recently been carried out by us-

ing realistic atomic potentials" and molecular mechanics
calculations. As yet there has been little spectroscopic
information available regarding the electronic properties
of the multiple-shell fullerenes, besides total energy calcu-
lations. The exact diagonalization of a local orbital ma-
trix scales as Ks (for an N-dimensional matrix). The or-
thonormalization step in plane-wave methods also scales
as N . These two examples illustrate typical bottlenecks
encountered when studying one of the central issues of
condensed matter theory: to compute the energetics of
very large systems. Different suggestions on how to min-
imize this formidable problem have recently attracted a

lot of attention (see, e.g. , Ref. 9). Here, we explore dif-
ferent ways to reduce this diKculty by using two very
dissimilar approaches: one based on iterations and the
other on symmetry considerations. The iteration method
reduces the size of the problem, N, by more than one or
der of magnitude (factors of either 12 or 20 depending
on the chosen initial state) For i.nstance, it reduces %
by about a factor of 20, from 2940 to 154, for the C294p
fullerene molecule. Furthermore, it can provide some pre-
cise analytic results for the eigenvalues. By using a differ-
ent method based only on symmetry arguments, we can
reduce N by a factor of 10. These two approaches give
the same results for the energy eigenvalues. However,
several distinct features of the first method that make
it very convenient include the following: it requires the
diagonalization of a fewer number of matrices, each one
of them smaller in size, and every one of them with all

their elements real.
Here we focus on a simple model of the electronic states

of the giant single-shell fullerenes, and multiple-shell car-
bon molecules with the number of shells up to seven. The
strategy used in this work includes two parts. First, we

treat each C6p„2 fullerene as a 60n -site nearest-neighbor
tight-binding model. Each site corresponds to one radi-
ally directed carbon ~ orbital. Since the x orbitals pro-
vide the dominant contribution to the conducting prop-
erties of the molecules, the o orbitals (being mainly re-
sponsible for the elastic properties) are not taken into
account. In spite of the slight differences between bond
lengths and structure curvature in these molecules, we

have assumed a uniform hopping amplitude t for all the
fullerenes under consideration. This assertion is moti-
vated by the fact that results in C6p changed insigni6-
cantly by considering the two difFerent hopping integrals.
These icosahedrally-symmetric C6p 2 molecules will be
studied for n = 1, 2, . . . , 7 (i.e., Cso C240, C540, C060,
C 1500& C2160& and C2040)

In the last part of this work, we use an intermolecular
tight-binding model to account for the weak intershell in-

teraction between the fullerene layers and analytically ob-
tain its eigenvalues. It is important to stress that the sim-
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pie tight-binding approximation yields reasonable quan-
titative results for the energy levels of each individual
fullerene, especially for those near the Fermi level.
Furthermore, the intermolecular tight-binding model has
also been applied to the electronic states of solid C6o.

SINGLE-SHELL GIANT FULLERENES

In the description of the electronic states of C60„2
molecules, we employ a tight-binding Hamiltonian
(Hiickel theory as, for instance, used for fullerenes in

Refs. 10—12) written as H = —Pi, l
t ct c~. Admittedly,

this is a simplified Hamiltonian: the "Ising model" for
the electronic structure. However, its understanding is
a convenient stepping stone to the study of more com-
plex models. Also, simple models are more accessible for
analytical or semianalytical approaches. Much more real-
istic and complicated tight-binding Hamiltonians can be
found, for instance, in Ref. 13 and papers cited therein.
For carbon C60, we have obtained closed-form expres-
sions of the eigenvalues and eigenfunctions for both x and
cr states as well as the Green function and local density
of states by using recursion and path-integral methods.
Here we focus on the giant fullerenes.

To obtain the energy spectrum, we use two entirely
different approaches, each one with its advantages. The
first approach we use here is our generalization of the
recursion method, which we call the "generalized block
recursion method. " Because of limited space, here we

present only a brief outline of this approach. We start
from two initial states, lup) and lvp), formed as

and

In lup) (lvp)), Ij) denotes the 7r orbitals on a pentagon
(hexagon), and

I

j') denotes those on the opposite (i.e., j
and j' are antipodes) pentagon (hexagon). Also 'P stands
for parity, with the value +1 or —1. Notice that these two
pentagon (hexagon) rings satisfy the prerequisite that a
fivefold (threefold) symmetry axis passes through their
centers. Further states are then iteratively generated by
the general recurrence relation

II If:) = u If ) + 4+& If +i) + t ' If'-i) (3)

where m designates states which are m hops away from
the initial state. The superscript designates various suit-
able states. On the left-hand side of Eq. (3), at most
three terms are nonzero for each application of H on

lf ). Among them, P and p can each take at most two
values among their several possible ones. The process
terminates after a finite number of iterations. The repre-
sentation of H thus becomes a "block-tridiagonal" form.

HOMO = —0.674 02n, (4)

and

ELUMO ——0.146 70n-13772

By taking t equal to the typical value of 2.5 eV, these ex-

However, the dimensionality of each block is not neces-
sarily the same. The main operational difference between
this approach and the standard recursion method is that
additional indices (a, P, and p) are needed to fully specify
the generated states, producing very simple values (i.e.,

+1, +2, and ~2) for the coefficients a's and 6's F. ur-

thermore, the standard recursion method is extremely
cumbersome to apply for Csp 2 (for n ) 1), while very
convenient for only n = 1.

The advantage of this approach lies in that it reduces
the task of diagonalizing the extremely large original
Hamiltonian matrix for C60 & to the diagonalization of
four much smaller matrices and provides precise analytic
results for some of the eigenvalues (e.g. , +1, +2, —3).
For instance, in order to obtain the whole energy spec-
trum of C24p, we only need to diagonalize two (due to
'P = kl) 14 x 14 (constructed from lup)) and two 18 x 18
(constructed from Ivp)) matrices instead of a 240 x 240
matrix. Thus, the dimensionality has been reduced by
(factors of 12 and 20) more than one order of mag-
nitude. In general, for C60„2 the dimensionality is re-
duced from 60n2 to 3n + n (5n —n) starting from
the initial state lup) (Ivp)). The relative size reduction is
(3nz+n)/60nz = 1/20+1/60n 1/20 [ (5n2 —n)/60n
1/12 —1/60n 1/12] for Iup) (Ivp)). Therefore, the di-

mensionality of the original giant fullerene problem can
be easily reduced by more than one order of magni-
tude. The lowest unoccupied molecular orbital (highest
occupied molecular orbital) [LUMO (HOMO)] energy is
solved from the matrix constructed from lup) (lvp)) with
negative parity.

We also use another approach, which closely follows
the method presented in Ref. 12. This alternative and
quite different method is based on group theory analysis.
For instance, for Cz4p, six 24 x 24 matrices (four of them
with complex elements) are diagonalized to obtain the
energy spectrum. This method reduces the dimension-
ality of the problem by a factor of 10. For comparison
purposes, we also use a third different method for the
smaller cages: direct exact diagonalization. This method
runs into limitations for very large cages. Therefore, it is
a desirable and useful goal to be able to first reduce the
dimensionality of the problem by more than one order of
magnitude, in order to study very large fullerene cages.

The energy levels from the first two methods for var-
ious fullerenes are shown in Fig. 1. In Table I, we sum-
marize the following physically important quantities for
the giant fullerenes: energies of the HOMO, LUMO, and
their differences (i.e., the band gaps). As the size of the
fullerene grows, it can be seen that the band gap becomes
smaller. These results demonstrate the tendency towards
metallic regime for very large fullerenes. The best loga-
rithmic fit formulas of the HOMO and LUMO energies
(in units of t) for Csp ~ molecules with n up to 7 are
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TABLE I. NL, = 3n + n (N~ = 5n —n) is the dimensionality of the matrix constructed from ~us) (~vs)), which provide
the LUMO (HOMO) energies. These are significantly smaller than the dimensionality N = 60n of the original Hamiltonian.
Energies of the HOMO, LUMO, and band gaps for C60 ~ fullerenes, vrith n = 1, 2, . . . , 7. In the HOMO and LUMO columns,
the first values are in units of t and those in parentheses are the results obtained by taking t equal to the typical value of 2.5
ev.
Molecule

C6o
C240

C54o

C96o
C1500
C2160

C2940

Nq
4
14
30
52
80
114
154

NH

18
42
76

120
174
238

HOMO
—0.618033 (—1.545082)
—0.436772 (—1.091930)
—0.324099 (—0.810247)
-0.255010 (-0.637525)
-0.209564 (—0.523910)
—0.177673 (—0.444182)
—0.154140 (—0.385350)

LUMO
0.138564 (0.346410)
0.059657 (0.149142)
0.033671 (0.0841?7)
0.022169 (0.055422)
0.015971 (0.039927)
0.012192 (0.030480)
0.009690 (0.024225)

Gap (ev)
1.891492
1.241072
0.894424
0.692947
0.563837
0.474662
0.409575

pressions become EHQMQ ——1.685 05n eV and.

EgUMQ ——0.366 75n eV. Even though these fits are
not very accurate for small n, we believe that Eqs. (4)
and (5) provide good approximations for larger values of
n (n & 8) where calculations are very difficult. From
them, the band gap can also be readily inferred.

MULTIPLE-SHELL CARBON FULLERENES
In this section, we study the eflects of the interac-

tion between consecutive shells on the electronic states

of the fullerene shells. In the stackings on the multiple-
shell structures, the pentagons are aligned along the
icosahedral directions of the twelve vertices, and the
hexagons are stacked in a manner similar to the AB (or
Bernal) structure of graphite. Nevertheless, and as ver-
ified in Ref. 8, the interlayer interaction is mainly be-
tween adjacent shells. Each single-shell fullerene is now
assumed to be in its ground (lowest energy) state and
here we focus on its HOMO. We assume an intermolecu-
lar hopping amplitude V„between the pairs of fullerenes

O 0 ~640

30 30
I

~96O

~1500

0
FIG. 1. The energy eigenvalues (horizontal axis) and their corresponding degrees of degeneracy (vertical axis) for various

fullerenes. The energies are in units of carbon-carbon hopping integral t. The respective fivefold degenerate HOMO and
threefold degenerate LUMO levels are indicated. For Cso 2 there are approximately 60n /4 = 15n distinct energy levels.
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TABLE II. The energy eigenvalues of Hl for various N, .

N,
2

3
4
5 0,

Eigenvalues
+Vj

0 and
-A+8
+gS —7

++V,'+ V,'
and Ak 8

and +QS+ 7

Here A = g(Vq + V3) + V2 /2, 8 = g(Vq —V3) + V2 /2,
S = (V, + V + V + V )/2, and

7 = g(V'+ V' —V,' —V,')'+ 4V'V'/2.

C60 i and C6p~„+q) ~ . A tight-binding approximation,

HI = —2 ='x V ( I& )(& +el + IW +z)(4 I), is then
used to model the intershell interaction, where ~P„)de-
notes the HOMO of the Cso„~ molecule and N, is the
total number of shells. The V„'scan be obtained, for
example, through an intermolecular resonance integrals
calculation. At this moment, such calculations cannot
yet be accurately done because of the lack of knowledge
about the exact atomic positions. However, the V„'sare
estimated to be of the order of a few hundred meV. No-
tice that while the multiplicity of the HOMO for each
fullerene is five, the nonzero matrix element only ex-
its between those belonging to the same representation.
In other words, molecular states ~P„)and ~P„+q) in HI
must be in the same representation. Thus, for a N, -shell
carbon molecule, a small N, x N, matrix (constructed
from Hr), with the mth row and nth column element
—V„qb „q—V„b „+q,is sufficient to fully investigate
the interaction between the 5N, HOMO's. The eigenval-
ues for Hl can then be analytically solved. The results
for various N, are presented in Table II. This model with
diff'erent hopping amplitudes can be readily applied to
the threefold degenerate LUMO's.

In summary, we use two diferent approaches to study
the vr-state energy spectra of fullerene cages up to C2940.
We also find formulas for the HOMO and LUMO energies
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FIG. 2. The HOMO, LUMO, and gap energies (in units of
eV) versus 1/n for various fullerenes Cso„~.
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of fullerenes C60 2 as a function of n. These approxi-
mations might be useful since experimentally obtained
multiple-shell carbon molecules can have 70 shells

(with 294000 atoms for the 70th shell, these systems are
well beyond current computational capabilities). We ob-

tain the gap energy as a function of n and show the ten-

dency towards metallic regime for very large fullerenes.

For multiple-shell carbon molecule, we analytically ob-
tain the eigenvalues of the intershell interaction. The
HOMO, LUMO, and gap energies (see Fig. 2), as well as
the whole energy spectra, of these molecules are relevant
to the several important experimental techniques which

probe the spectroscopy of single molecules. For instance,
a scanning tunneling microscope (e.g. , Ref. 16) can be
used to probe the local spectroscopy of fullerenes.
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