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The electronic and transport properties of a perfect amorphous graphitic carbon model constructed by
Townsend et al. [Phys. Rev. Lett. 69, 921 (1992)] are studied by first-principles calculations within the
local-density approximation. It is shown that such a random system with two-dimensional interaction in
a three-dimensional structure is a high-resistivity metal. A zero-temperature resistivity of about 1160
pQ cm and a positive thermopower at low temperature are obtained. Localized states near the Fermi
level are induced by subtle difference in the 7 bonding of different ring structures. Relaxation time due
to elastic electron-electron scattering and the Fermi velocity are estimated to be 2.4X107!* s and

2.61X 10* m/s, respectively.

I. INTRODUCTION

The physics of noncrystalline solids continues to at-
tract a great deal of experimental and theoretical atten-
tion.! It is now quite well established that the dimen-
sionality of the system plays an important role in the
properties of the disordered solids.”? In this regard,
dimensionality usually refers to specific interactions relat-
ed to the structure of the solid. While real three-
dimensional (3D) noncrystalline solids are quite common,
such as in amorphous semiconductors or in metallic
glasses, two-dimensional (2D) systems are generally ap-
proximated by atoms absorbed on surfaces or layered
compounds in which the interlayer interactions can be
neglected. Examples of the latter include He on graphite
surfaces,” graphite intercalation compounds,® antifer-
romagnets on 2D triangular or Kagome lattices realized
in SrCrg_,Ga,,,0;9,>° etc. For theoretical studies,
idealized models can be constructed for both 3D and 2D
disordered systems.

Recently, Townsend et al.” constructed a random
schwarzite model of amorphous graphitic carbon. The
model is a part of the result in studying periodic carbon
structures with minimal surface and a negative Gaussian
curvature (NGC).®~!! Ordinary graphite surface, with
all six-membered rings (MR), has a zero Gaussian curva-
ture. Fullerene systems and related fullerene tubules
have positive Gaussian curvature by having five MR.
NGC models are obtained by introducing seven and/or
eight MR. The amorphous graphitic model of Townsend
et al. contains random fractions of five, six, seven, and
eight MR in forming a network of 2D sheets with no bro-
ken bonds and therefore has both positive and negative
Gaussian curvatures. The model is in the form of a fcc
lattice with @ =42.92 A and contains a total of 1248 C
atoms (mass density =1.268 g/cm?). The distributions of
the bond length and bond angle of the model show very
small distortions from the corresponding values in graph-
ite as indicated in Fig. 1. The average bond length (bond
angle) is 1.420 A (119.81°) with a standard deviation of
only 0.014 A (9.32°). Our analysis of the model shows it
has 380 five MR, 2998 six MR, 365 seven MR, and only 1
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eight MR. Beeman et al. had actually hand built a
threefold-bonded 1120-atom cluster of a-C and analyzed
its radial-distribution function (RDF).!? The Beeman
model has a significantly larger bond angle and bond-
length distortions.

The Townsend model is highly interesting because it
represents an ideal model to study weak localization in a
random system with 2D bonding in a 3D structure. It is
different from the low-density graphite fibers, which con-
sist of hexagonal honeycomb arrays of graphene planes
containing many defects.”> The disorder in the Town-
send model, which contains large voids of open compart-
ments, arises strictly from minor topological variations
rather than from impurities. The model is sufficiently
large that the effect of having a periodic boundary is
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FIG. 1. Distribution of (a) bond lengths and (b) bond angles
in the Townsend model.
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negligible. Although the real a-C materials may contain
a substantial portion of sp* tetrahedral bonding,'* or even
some twofold C-C bonding,'® the calculated RDF of the
Townsend model seems to agree well with a-C film grown
by sublimation,’ indicating that such a structure may be
realizable in real materials. It has been pointed out that a
random graphitic structure with large pores is easier to
form than crystalline schwarzite structures with a NGC,
although the stabilities of the two are similar.” In fact,
many naturally occurring substances such as zeolites,
biomembranes, and certain proteins'® have 2D bonding
structures. It has also been suggested that the tip region
in the growth of C nanotubes may contain amorphous
graphiticlike layers.!” Nevertheless, in the context of the
present study, we regard the Townsend model as an ideal
model structure for a disordered system, and use it to
study the microscopic properties of such a system.

In this paper, we present the results of a detailed ab in-
itio calculation of the electronic, optical, and transport
properties of the Townsend model, and show some very
surprising results. We find the system to be metallic with
a finite density of states (DOS) at the Fermi level. Local-
ized states exist not necessarily only at the band edges,
but can be induced by subtle differences in the 7 bonding
of different ring structures. We have obtained a zero-
temperature resistivity of 1160 uf cm; a positive temper-
ature coefficient at low temperature. At low frequency,
the optical conductivity follows a Drude-type behavior
characteristic of a metal.

II. METHOD OF CALCULATION

We use the first-principles orthogonalized linear com-
bination of atomic orbitals method (OLCAO) in the
local-density approximation to calculate the electronic
structure and use the resulting wave functions for study-
ing the transport and the optical properties. The method
has been applied to fcc Cgp,'® 2 alkali metal-doped
Ce2' 7 and a large number of NGC graphitic mod-
els.?>26 The computational details have been sufficiently
described before and we will give only a brief outline.
Specifically, the basis function consists of atomic orbitals
centered at each C atom in the model. The valence Bloch
sums of the C 2s and C 2p are properly orthogonalized to
the C 1s core. The atom-centered potential function is
obtained from the self-consistent calculation of the fcc
Cq, as described before.!® Both the atomic basis func-
tions and the potential functions are expressed as linear
combinations of Gaussian-type orbitals, which facilitates
the analytic evaluation of interaction matrix elements, in-
cluding the momentum matrix elements to be used in the
optical and transport properties calculations. Interac-
tions between all of the atoms are included although con-
tributions from the sixth and seventh nearest neighbors
become negligibly small.

The scale of ab initio calculation with a model of 1248
atoms is computationally very demanding. We take full
advantage of the economic use of the basis orbitals in the
OLCAO method in accomplishing such a calculation.
The full diagonalization of the matrix equation including
overlap of size 4992 X4992 yields all the energy eigenval-
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ues and wave functions necessary for the transport prop-
erties calculation. Also, because the Townsend model is
sufficiently large, it suffices to calculate only at the center
of the mini-quasi-Brillouin zone.

III. RESULTS ON ELECTRONIC STRUCTURE

Figure 2(a) shows the calculated DOS of the model.
The zero of the energy scale is set at the Fermi level E,
which has a DOS value N(Eg) of 0.098 states/eV atom.
The occupied bandwidth is 21.5 eV, close to fullerence
and related systems.'®?° The main feature of the DOS is
a major o-binding peak centered at —9.0 eV and two
minima, at —14 and —0.5 eV. Comparing with the DOS
of crystalline graphite shown in Fig. 2(b) calculated using
the same method, we see substantial differences, although
the minimum at the Fermi level in the DOS of the Town-
send model is close to the zero gap of graphite (lower by
less than 0.3 eV). The main peak of the valence band
(VB) in the graphite is at —8.0 eV, about 1 eV closer to
the VB edge than the Townsend model. The VB width in
graphite is about 20 eV with a rather sharp edge at —20
eV. Interestingly, the minimum at — 14 eV occurs at the
same place as in the Townsend model. There is no resem-
blance of the DOS in the conduction-band (CB) region
between graphite and the Townsend model in the CB re-
gion up to 10 eV.

In Fig. 2(c), we separate the DOS of the Townsend
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FIG. 2. Calculated DOS of (a) the Townsend model; (b) crys-
talline graphite; (c) orbital-projected partial DOS of (a), C 2s,
solid line; C 2p, dashed line.
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model into the C 2s and C 2p orbital components. As is
well known, the upper portion of the VB is dominated by
the 7 band of the 2p orbital states, while the lower por-
tion is mainly from the C 2s orbital states. The crossover
is at —14 eV. Thus, it becomes clear that the minimum
at —14 eV in the DOS of both the graphite and the
Townsend model is the signature of the crossover of the
2p and the 2s bands.

Figure 3 shows the partial DOS per atom of the five,
six, and seven MR in the Townsend model. The partial
DOS (PDOS) of different ring structures are obtained by
first resolving the DOS into 1248 atomic components us-
ing the Mulliken scheme,?’ and then recombining them
according to their participation in different ring struc-
tures. There are significant differences in the location of
minima and maxima in these PDOS. Most conspicuous
is the appearance of additional peaks at —20, —6.0, and
—2.0 eV in the PDOS of five MR. This reflects the sub-
tle difference in the sp? bonding of C atoms in different
ring structures. The calculated average effective charges
per C atom are found to be 4.086, 3.992, and 3.978 elec-
trons per C atom in the five, six, and seven MR, respec-
tively. Since C atoms in the five MR have greater distor-
tion, our calculated effective charges seem to suggest that
electrons prefer a more disordered environment.

Figure 4 shows the localization index I, or the inverse
participation ratio of all the states across the entire ener-
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FIG. 3. Calculated DOS and PDOS per atom of the Cys
Townsend model: (a) total; (b) in five MR; (c) in six MR; and (d)
in seven MR.
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FIG. 4. Localization index for the states in the Townsend
model.

gy range calculated from the wave functions and the
overlap integrals. The localization index is calculated ac-
cording to

1E=3

1

zci:ncjmsij 2, (1)
i

where C,,, is the eigenvector coefficient for the state m
and S;; is the overlap matrix. Relatively localized states
are found in regions centered around —21, —6.0, 0, and
+7.0 eV. The presence of localized states near the band
edge at —21 eV is not surprising since this is in accor-
dance with the formal theory of Anderson.”® Their ap-
pearance at other locations warrants further investiga-
tion. In Fig. 5, we plot IX of Fig. 4 in a more refined
scale together with the difference spectra of the PDOS of
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FIG. 5. (a) Localization index for the states in C,,43 Town-
send model in a more refined scale. Difference in the PDOS per
atom between (b) five MR and six MR; (c) seven MR and six
MR.
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five MR and the seven MR from that of the six MR. De-
viations from the baseline in Figs. 5(b) and 5(c) indicate
the region of substantial change in the electronic struc-
ture due to different ring structures. It is quite apparent
that the regions of localized states coincide with the re-
gions where the PDOS of five MR and seven MR deviate
from that of six MR the most. We therefore conclude
that relatively localized states within a broadband region
can be induced by subtle differences in electronic bonding
in this disordered system; and such differences can prob-
ably only be delineated with first-principles calculation in
which interactions between all pairs of atoms are includ-
ed. This conclusion is also consistent with the fact that C
atoms in the five MR have slightly large effective charges
due to greater disorder. Alternatively, one may argue
that the large localization for states near —6 and +7 eV
is because these states are at the edges of the o bands.
This interpretation is not inconsistent with the notion
that bonding differences between various ring structures
is mostly reflected in the states at the edge of the o band.

IV. RESULTS ON OPTICAL
AND TRANSPORT PROPERTIES

With both the electronic states and wave functions for
the Townsend model calculated, it is possible to study
transport and optical properties of the system. The first
step is to calculate an energy-dependent conductivity
fur;;:tion o(E) according to the Kubo-Greenwood formu-
la,

2
— ke 3 I€ilplj)*8(E,—E)S(E;—E) . = ()

o(E) 3
3m Q ij

The double 8 functions in (1) describe the scattering of an
electron with energy E; to a state with energy E;. The
quantum-mechanical nature of the scattering is all con-
tained in the momentum matrix elements {i|plj). Be-
cause the model is finite, the energy eigenstates are
discrete. To satisfy the double & functions in (1), it is
necessary to broaden each eigenstate to obtain a continu-
ous spectrum. The size of broadening is inversely pro-
portional to the number of atoms in the model. In our
case, a Gaussian broadening of 0.04 eV was applied to
each state in the evaluation of o(E). At low temperature,
only the o(E) near Ep is important and its value at Ep
gives the zero-temperature conductivity, or resistivity,
p(0)=1/0(Eg). The calculated o(E) near Ej is shown
in Fig. 6. The conductivity curve has a negative slope at
E;, and a zero-temperature conductivity value of
0.86X10™* (uQem)™!, or equivalently, a resistivity
value of 1160 ucm at 0 K and 1235 uQcm at 91 K.
This value is comparable to that of semimetals such as
gray tin (p=2000 uQ cm at 91 K) and bismuth (p=106.5
pQcm at 273 K),*® and is about five times that of
fluorine-intercalated  graphite fibers.>!  The high-
resistivity value is obviously related to the localized states
near the Fermi level shown in Fig. 2(a).

Figure 7 shows the calculated optical dielectric func-
tion &,(w), using the same transition matrix elements as
in Eq. (1). Because of the large number of states in-
volved, only transitions for photon energy up to 2.0 eV
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FIG. 6. Calculated dc conductivity function near the Fermi
level.

are considered. In a large unit-cell calculation for amor-
phous solids, there is no distinction between interband
and intraband transitions.>? If we assume the system to
be free-electron-like, we may fit £,(w) at low frequency to
the 2Erude expression in the relaxation-time approxima-
tion

g0)=[w)7]/[0(1+e??)], 3)

where w), is the plasmon frequency and 7 is the relaxation
time. w, can be estimated from the peak of the electron-
energy-loss function, Im[1/e(w)]. We have calculated
the energy-loss function by obtaining the real part of the
dielectric function from the imaginary part by Kramers-
Kronig transformation. The calculated energy-loss func-
tion is shown in the inset of Fig. 7 with a broad peak at
fiw, =1.54 eV. Using this value for ®, and by fitting the
calculated €,(w) to Eq. (3), we obtain a relaxation time 7
for conduction electrons in such a system to be of the or-
der of 2.4X 107 1% 5. We can also estimate the Fermi ve-
locity vp=(8Eg/0k)/# for the conduction electrons.
This is done by approximating the partial differential as
the finite difference in the Fermi energy. The electronic
structure calculation for the Townsend model is repeated
at k=m/a[1,1,1], where a is the size of the model lat-
tice. We obtain vy =2.61X10* m/s. Combining with the
relaxation time 7 obtained above, we estimate the elec-
tron mean free path in the Townsend model to be
I=71vr=0.63 A. This is a quite resonable number, show-
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function obtained from the complex dielectric function.
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FIG. 8. Calculated temperature-dependent resistivity of the
Townsend model.

ing the conduction electron in such a disordered system is
scattered quite strongly. While the above estimation may
be subject to some uncertainty for reasons to be stated
below, we emphasize that the present calculation does
not invoke any parameters such as carrier density and
effective mass, which are difficult to determine. Estima-
tion of kg from v leads to a value of 1.44 for [k which
indicates the material to be in the range of weak localiza-
tion.!

From the computed o(E) curve, we may estimate the
low-temperature behavior of resistivity p(T) and thermo-
power s (T) according to the standard expressions

f _9f(E)
oE

-1

p(R)=1/0(0,T)= (o(E))dE

)

and

_ K E—Erp 3f(E)
S(N=[1/0(0,11 [(o(E))—r=ST2dE . (5)
The results of these calculations are shown in Figs. 8 and
9, respectively. It shows that at low temperature, the ma-
terial should have a positive temperature coefficient and
the thermopower will rise steadily from zero to a max-
imum of about 28 (uV/K) at about 126 K. The slope for
the initial linear S(T) is 0.42 uV/K2 The low-
temperature S (T') value is similar to fluorine-intercalated
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FIG. 9. Calculated thermopower of the Townsend model at
low temperature.

graphite,’! which is also considered to be a weak localiza-
tion system.

V. DISCUSSION

We must caution that the above results for the trans-
port properties of the Townsend model are qualitative at
best for the following reasons. First, Egs. (2), (4), and (5)
consider only elastic electron-electron scattering. Al-
though the effect of disorder is fully accounted for, the
effect of electron-phonon interaction and other types of
inelastic scattering has been neglected. Second, the
present calculation is based on local-density theory and it
is not clear whether this theory is adequate for e-e in-
teraction. Third, whether the Drude model is applicable
to the conduction electron system in the Townsend model
is also not clear. And last, configurational average
( -++) in the calculation of o(E) should be taken over
several independent models. Since the Townsend model
itself is sufficiently large in size, and the broadening of the
eigenstate spectrum is reasonably small, we believe our
results based on a single model are still qualitatively val-
id.

In spite of the above concerns, we believe the present
work provides a computationally tractable way of study-
ing transport properties of disordered solids. Previously,
this approach has been applied to the study of transport
properties of metallic glasses with considerable suc-
cess,’>34 even though the model structures are much
smaller. Allen and Broughton used a similar approach to
study electric conductivity of liquid Si.>* An empirical
LCAO method was used. Because of the difficulty in es-
timating the optical matrix within the tight-binding
scheme, the results on the optical and transport proper-
ties were inconclusive. The present first-principles ap-
proach should be able to provide more accurate and con-
clusive results.

It is also interesting to compare the electronic proper-
ties of the Townsend model with that of the Vanderbilt-
Tersoff (VT) model of negative-curvature fullerene.’ VT
had constructed a 168-atom fullerene model with a NGC
in the form of a fcc lattice. The electronic structure and
the optical properties of the VT C,c model have been
calculated by us using the same method. The VT model
turns out to be a semiconductor with an indirect gap of
0.47 eV. Other than the position of the main peak, which
should be similar for all sp 2 bonded C structures, the
DOS of the VT C,s model, which is characterized with
many minigaps in the VB region, is quite different from
the Townsend model. The optical properties of the two
models are drastically different as it should be for insulat-
ing and metallic systems. This indicates that the topolog-
ical disorder introduced in the Townsend model has a
profound effect on the overall electronic and optical
properties of the system, notwithstanding that the local
short-range order of sp? bonding is the same.

In conclusion, we have studied the electronic and
transport properties of a “perfect” amorphous graphitic
carbon described by the Townsend model. The model
represents a random physical system with a 2D interac-
tion in a 3D structure. Our first-principles microscopic
calculation shows the system to be metallic, and localized
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states can be induced by slight variation in the planar
bonding structure. The low-temperature conductivity for
such a system is comparable to common semimetals and
a positive temperature coefficient of resistivity is ob-
tained. It is conceivable that such a low-density, high-
strength graphitic material can accommodate other types
of atoms and molecules in its open compartments. With
a possible charge-transfer mechanism to increase the car-
rier density, entirely different material properties with
potential applications may result. We hope this work
will lead to further studies on similar noncrystalline sys-
tems. Many of them may occur in nature, such that a

much deeper understanding about their microscopic
properties can be achieved.
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