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Critical currents and supercurrent oscillations in Josephson field-efFect transistors
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The dc Josephsou effect of a superconductor/two-dimensional electron gas/superconductor
(S/2DEG/S) junction in the clean limit is investigated with emphasis on the field-efFect dependence
of the critical current. Calculation of the Josephson current is based on solving the Bogoliubov —de
Gennes equations for a steplike variation of the pair potential. In the normal conducting region,
the motion of electrons is quantized in one direction by means of a triangular-well potential. The
2DEG is contained in a semiconductor treated within the effective-mass approximation. We assume
an abrupt band-edge jump at the interfaces, and additional scattering is taken into account by b-
function potential barriers. Normal scattering leads to the formation of resonant states, which are
visible in critical current oscillations. The ratio of Fermi velocities in the 2DEG and the S regions
determines the rates of Andreev and normal scattering and has a large in6uence on the field-effect
dependence of the critical current. We take an effective mass suitable for the inversion layer on p-
type InAs and consider Nb for the superconducting contacts. Typical magnitudes of the calculated
critical current are some pA-per-pm junction width for experimentally accessible values of junction
length, temperature, and surface carrier density of the 2DEG.

I. INTRODUCTION

Superconducting three-terminal devices have attracted
great interest for several years. They can be realized
as weak links coupled by a two-dimensional electron gas
(2DEG), in which the Josephson current is controlled via
a gate voltage (Josephson field-effect transistor). Low
carrier effective mass, high mobility, and the absence of
Schottky barriers at the superconductor/semiconductor
(S/Sm) interfaces are favorable properties of InAs as a
material for the semiconductor. Supercurrents in 2D
electron systems based on InAs have been reported by
several authors. Theoretical investigations of super-
currents in a Josephson Geld-effect transistor have been
published by Kresin for the limit of long junctions and,
for T T„by Tanaka and Tsukada, ' who considered
a one-dimensional model.

This paper is mainly concerned with the question of
how the Josephson current is in8uenced by the abrupt
change of electron effective mass, the band-edge jump,
and the change from a 3D electron system to a 2DEG
at the S/Sm interfaces. We restrict ourselves to bal-
listic transport (t » L) in the clean limit (I )& (~),
where l, L, and (N denote the mean &ee path, the junc-
tion length, and the coherence length in the Sm region,
respectively. In the clean limit, the latter is given by
(~ = hv~/(2mk~T), where v~ is the Fermi velocity of
the Sm region. The geometry of our model is based on
the device geometry used by Takayanagi and Kawakami.
The 2DEG in their device, which has been operating in
the dirty limit (I « (N), is an inversion layer on the
surface of p-type InAs. Two-dimensional electron sys-
tems in the clean limit may be realized in semiconductor
heterostructures. To calculate the 3osephson current,
we employ a method proposed by Furusaki et al. Our

result is valid for any junction length and all tempera-
tures, except for the immediate vicinity of T, .

II. BASIC ASSUMPTIONS

h2 1'R = ——V V+ U(r) —p.
2 m*(z) (2)

We take the effective-mass approximation (EMA) for
the semiconductor, i.e. , m*(z) is equal to some constant
value m' in the Sm region (0 & z & L) and equal to the
free electron mass m, in the superconductors Sl (z & 0)
and S2 (z ) L). At the conduction band edge of InAs,

0

2DEG S 2

FIG. 1. Device geometry of an S/2DEG/S system.

The device geometry assumed for our calculation is
shown in Fig. 1. The system is described by the
Bogoliubov —de Gennes equations,

R ~(r) l t' u(r) l t' u(r) l
q

b, '(r) —'8
y ~ v(r) p g v(r) y

Solutions to this equation are electronlike and holelike
quasiparticle (QP) wave functions. ~s The operator 'R is
defined as
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0, 0(z(W
oo, z&0, z&W. (3)

A typical value for the Nb film thickness is W 100
nm. 4 For 0 & x & L, the confining potential is described
by a triangular well,

This approximates the potential of an inversion layer,
the surface electrical field being given by E,. In the x
direction, we model the variation of the potential as

Ug(z) = Up [O(z) —O(z —L)]

Z [h(z) + b(z —L)] .
me

Here we account for the different distances between the
chemical potential and conduction band edge in the S
and Sm regions, respectively, in the simplest possible
way by introducing a potential step of height Up. Ad-
ditional scattering at the interfaces due to deviations
&om this idealization is taken into account by poten-
tial barriers of dimensionless strength Z. The quantity

pg = /2m, y/fez denotes the Fermi wave number of the
sup erconductors.

In principle, the superconducting pair potential has to
I

the effective mass is mp: 0 023m, . The chemical poten-
tial is given by p = 5.32 eV for Nb, b, (r) is the supercon-
ducting pair potential. The potential U(r) is written as

U(r) = Uq(z) + Uz(y) + Us(z). Translational invariance
with periodic boundary conditions in the y direction is
assumed, hence U2(y) = 0 throughout the system.

The Nb contacts are modeled as half-infinite slabs of
thickness W, occupying the regions S1 and S2, respec-
tively. Therefore, for x ( 0 and x & L,

be obtained self-consistently. For simplicity, we assume
a steplike change of the pair potential at the S/SM in-
terfaces,

Ap, x(0,
b(r)=b(z)=~ 0, 0&z&L,

Ape'~, x )L,

where b,p
——Ap(T) is the modulus of the pair potential

[b,p(0) = 1.5 meV and T, = 9.2 K for Nb], and &p is the
phase difference of the pair potential across the junction.
This ansatz is &equently used in the literature. Accord-
ing to the theory of Tanaka @nd Tsukada, we expect
only a weak deformation of the pair potential caused by
the proximity effect. The reason is that only states of
low momenta in the y and z directions in the supercon-
ductors can contribute to a leakage of Cooper pairs into
the 2DEG. Only when T -+ T„ the density of pairs
in the superconductors becomes so small that any addi-
tional loss has to be taken into account. In this limit,
the validity of the ansatz in Eq. (6) fails. Our model of
the S/2DEG/S system is similar in many respects to the
model of Schiissler and Kiimmel, who considered an
S/Sm/S contact with the 3D electron system of n-type
InAs in the Sm region.

III. CALCULATION OF THE CURRENT

The system introduced above is compatible with the
assumptions of Refs. 10 and 11. In these publications,
four independent wave functions are considered for each
QP energy, namely those of e-like and h-like QP's, incom-
ing &om x = koo. It turns out that the wave functions
describing the e-like QP s incoming from z = —oo are
sufficient to obtain the Josephson current. In our model,
they are given by

e'" *y~(z)
I

I
+ ) auge'"

I I
+ bqzge '~

I I &pg(z), z & 0,
;+. (up& . , — t'vp l, + (up~

p) '
q o) q o)

) I

cx e*"- +P e '"-&( + + & (1)

+I p~, ~e' -&' l+h~, ~e '"-
I I I ( (z), 0 & z & L,

). 'u~'"" * I; g2 I+4~~e *'" *
I /2 I v~(z), » L.

( voe * ) ( upe

Due to translational invariance, the motion in the y
direction is completely determined by the wave number

kz of the corresponding plane wave. The index 1 at 4q ~
is a reminder that there are other types of wave functions
as noted above, the index j labels the state of motion
in the z direction of the incoming QP. Motion in this
direction in the S and Sm regions is described by the
wave functions

2
p, (z) = —sin(q, z)

I

with q; = (x/W) j and

(z) = Ai
. (z Z

g (D eFD) (9)

respectively. The energies E are the subband edges in
the inversion layer, the length D = [h /(2m'eF, )] ~ is
the characteristic spread of the subband wave functions

(z).~4 The normalization constant N = D[Ai'(a )]
is obtained by evaluating integrals of Airy functions,
a are the zeroes of the Airy function Ai. Some further



A. CHRESTIN, T. MATSUYAMA, AND U. MERKT 49

definitions are introduced as follows: a)

(10a)

0 = E2 —402, (iob)

(10c)
b) AR

AR

kF,m = 2m*
(p —Up —E ), (10d)

if 0') if Ol
uo = —

I
1+ —i, vo =

2 ( E) ' 2 ( E) (10e)
2DEG

NR

The coefficients aq~k and bq~k are the amplitudes of re-
flection of the incoming e-like QP as an h-like QP and as
an q-like QP, respectively. Equally, transmission into S2
is determined by cqzk and dqzk. The indices indicate that
motion in the z direction is being changed from state j
to k in these processes. Transmission between the super-
conductors can proceed via all possible electron and hole
states in any subband m in the 2DEG, with amplitudes

o'1jm to ~1jm ~

The method explained in Refs. 10 and 11 leads to the
following expression for the Josephson current per unit
junction width:

FIG. 2. (a) Multiple Andreev reHection (AR) process. An
electron (e) is retroreHected as a hole (h) and vice versa at the
S/Sm interfaces. (b) One process contributing to the oscilla-

tory terms in Eq. (13). The lowest-order term contributing to
the oscillations involves two Andreev (AR) and two normal

(NR) re8ections.

l. (r2p~ 0„( p~ 2 k+k

16k+k &o ( p (r p

r~t„k+ —k . pF A„k+ + k

(&o (rp p &o ~p )

.P, +P,
x — dk„) '

+
' a„z(y) —a„,(-p)t

All energy dependencies have to be replaced by Matsub-
ara frequencies u„= (2n + l)rrk~T by means of ana-

lytic continuation, E + ib ~ iu„, and 0„=gu2 + 6o2.

The coefficients a~~~ are obtained by solving the linear

system of equations that arises from the boundary con-

ditions to the wave function at z = 0 and x = L (see
the Appendix). An analytical solution of this system of
equations can be found when scattering of QP's between
different subbands at the S/Sm interfaces is neglected.
It is shown in the Appendix that this only leads to minor
errors. Because only QP's near the Fermi energy con-

tribute to the current, i.e. , ~B~ && y„we disregard the
dependence of p+. on 0 in our calculation. The resulting2.
current contribution of the subband m is

ekBT . 1 ™ sin (p
t Tn ——

h 27r 2 cos&p+ f (k„, (d )

(12)

f (k )
— i(A:+ —k )L + + i (k+ —k )—L

— i(k++k- )L + —'(k++k- )I.—'g2 e —'g2 e

16 k+k Ap ( p ) o2p2

We use the abbreviations o = m*/m, and p =
In general, the integrand is non-negligible in the whole

range ~k„~ & k~, but very small otherwise. Equation
(12) for the Josephson current is equivalent to the one

derived by Furusaki et al. for a superconducting quantum
point contact with 6nite barrier strength, when we put
k+ = k = p and cr = 1 in gz &.

The first two terms in Eq. (13) are due to a multiple
Andreev reHection of QP's running back and forth in-

side the 2DEG, as shown in Fig. 2(a). The remaining

two terms arise when normal reflection is taken into ac-

count, which must not be neglected in S/Sm systems,
even for Z = 0. One process contributing to these terms
is sketched in Fig. 2(b). They are caused by the inter-

ference of QP's that undergo Andreev as well as normal
reflection. This interference leads to critical current os-

cillations, as will be seen in the following section. Similar
oscillations have been analyzed by Gudkov et a/. , who

observed them in the 3D electron system of o.-Si. They
were also discussed in connection with a superconducting
quantum point contact in Ref. 11.

IV. DISCUSSION

The functional behavior of the current contributions of
various subbands is identical, only the magnitude of kF
is diferent. To keep the subsequent discussion transpar-
ent, a single occupied subband is assumed. The subband
indices will therefore be omitted in this section. In the
one-subband case, the Fermi wave number in the 2DEG is
related to the surface carrier density n, by kz = /27m,
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Thus n, fixes the value of Up + Ep, see Eq. (10d). First
we consider ideal S/Sm contacts with barrier strength
Z = 0. The in8uence of a 6nite barrier strength is dis-
cussed at the end of this section.

The critical current dependence on carrier density is
shown in Fig. 3. The position of the maxima, as well as
the large variation in amplitude of the oscillations, can
be understood by looking at the dominant contribution
to the last two terms in Eq. (13). For Z = 0, this is given

by
- 2

cos (k++ k )L
0'p )

The average behavior of the current as a function
of n, is determined by the multiple Andreev refiection
terms. An exponential increase e ~/~~ [see Eq. (19),
(~(n, ) = h /2s. n, j(2+m'knT)] is found at low carrier
densities, when (~(n, ) & L. For L = 100 nm (Fig.
3) and m* = mp, this is the case only up to densities
n, 2.7 x 10 cm at T = 8 K, and even smaller den-
sities for lower temperatures. In this region, increasing
overlap of the Cooper pair density in the Sm region is
responsible for the exponential growth of the current. At
larger carrier densities, instead of the coherence length,
Andreev reBection probability plays a major role, which
is contained in the amplitudes gz of the multiple An-
dreev reBection terms. Their n, dependence is mainly
contained in the term

fto /d(ke) e(k„))
~( k, kek)

2 2hp (v(k„) t)(k„)) E

(16)

ap Qk+k —~ f'v( k„) v(k„) )

(gk+k- op ) (,u(k„) v(k„) )
' (1S)

2
s)AX (17)

Here we introduced the velocities v(k„)
:= ft/m' k/kBB

—ke eod 9(k„) = 9/m, k/frrB
—ke for the

Sm region and for the S regions, respectively. Equal
velocities mean that no normal reQection occurs for the
corresponding QP states. The oscillations are strongly
suppressed when the Fermi velocities t)~ = v(0) and 6(0)
are nearly equal, because then normal refiection is sup-
pressed for QP's with large velocities in the direction of
the current flow, which contribute most to the current.
For m' = mp, this is the case at n, 1.2 x 1012 cm 2.

Local maxima of the critical current as a function of car-
rier density are well approximated by the relation

This term goes through a minimum at v(k„) = v(k&),
where Andreev reBection is most probable and normal
refiection disappears. As noted above, for m' = mp the
Fermi velocities coincide at n, = 192 x 10' cm . The
current saturates when n, becomes much larger, because
in this case v(k„) » tf(k„) for most contributing states,
which is unfavorable for Andreev refiection. A residual
increase is attributed to the growing number of current
carrying states. In our model, we find that the current
in this region increases more slowly than (x ~n„ the
behavior obtained in Ref. 6.

In Fig. 4, a semilogarithmic plot of the length depen-
dence of the critical current is shown. For L » (iv, the
following approximation can be derived, taking into ac-
count only the lowest Matsubara frequency:~s

The integer N equals half the n22mber of QP states with
"resonant" values of k„, defined by maxima of the cosine
in Eq. (16).

(1) — k» e Bio y (19)
22 ede 1

2B B ee
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FIG. 3. Surface carrier density dependence of the critical
current for Z = 0. The current is evaluated for the band-edge
effective mass of InAs, mo ——0.023m„and for 2mo at vari-
ous temperatures. Taro difFerent values of efFective mass are
considered in order to mimic band nonparabolicity.

L (nm)

FIG. 4. Length dependence of the critical current for
Z = 0. The dashed curves represent the long junction ap-
proximation according to Eq. (19).
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a=2+ 1+/
/

+( Ap i f' v(0) v(0) l
qvrk~T ) gv(0) v(0) )

(20a)

20

15-
l 4 i' a, 't v(O)

!
&= —+ — 1+ 1+

4 a (7rk~T) v(0)
(20b)

05—50 ( ITI (aI L=l00nm
('bI L =600nrr

This relation contains the usual asymptotically exponen-
tial decay of the current. The coherence length (iv is no
longer a useful length scale for the current when L ( (iv,
since higher Matsubara frequencies become important.
For T ~ 0, the approximation of Eq. (19) is valid only
in the limit L ~ oo because the coherence length (N
diverges. This explains why in this approximation (i )
disappears for T ~ 0. The approximation of Eq. (19) is
represented by the dashed curves in Fig. 4. The ampli-
tude of the oscillations decays asymptotically as e
because at least four crossings of the Sm region are nec-
essary [Fig. 2(b)], whereas the lowest-order multiple An-
dreev reflection process requires only two crossings [Fig.
2(a)]. Equation (17) yields the position of local maxima,
L „=(Ay/2) N, with AF = 2vr/kF.

The temperature dependence depicted in Fig. 5 shows
that the current remains low unless the temperature is
well below T, when L» (&(T,). For the carrier density
n, = 10 cm 2 of Fig. 5, (iv (T,) = 167 and 83 nm for

mo and 2mo, respectively. It may therefore be necessary
to go to rather low temperatures to have a measurable
critical current. As long as one can neglect suppression
of the pair potential, the current behaves as (1 —T/T, )
near T, . A crossover from (1 —T/T, ) behavior to (1—
T/T, ) behavior was predicted by Tanaka and Tsukada
for systems with a weak proximity effect.

Finally, we look at the inHuence of a Gnite barrier
strength on the current. Figure 6 shows the n, depen-
dence for different values of Z. Additional scattering by
the barrier reduces Andreev reHection and increases nor-
mal reHection. As a result, the mean current is lowered,
whereas the oscillations become more pronounced with
increasing Z. Even when both Fermi velocities coincide,
normal reHection due to a Gnite Z parameter leads to vis-

ible oscillations. Since the barrier strength inHuences the
matching conditions at the interfaces, the resonant QP

E

& so-
w

0

(1012cm 2)

FIG. 6. Infiuence of a finite barrier potential on the criti-
cal current. Normal reBection increases, Andreev re8ection
decreases with growing barrier strength Z. Therefore the
mean current is reduced and the oscillations become more
pronounced with increasing Z.

states and therefore the positions of the maxima shift
depending on Z.

V. CONCLUSION

Josephson currents in clean S/2DEG/S systems have
been investigated. For junction lengths accessible to
modern preparation techniques, it has been demon-
strated that Andreev and normal reflection probabilities
are important parameters for the Geld-effect dependence
of the current. In accordance with the results of Kresin,
the strongest Geld-effect dependence is found for low car-
rier densities. We have investigated amplitude and pe-
riod of oscillations of the critical current caused by the
presence of normal reflection. In 2D systems, experimen-
tal veriGcation of these resonance effects will be most
easily performed by varying the carrier density via the
Geld effect. This parameter can be more exactly con-
trolled than the junction length. Short junctions and
low temperatures favor large amplitudes because of the
exponential decay on a length scale (iv/2. The spacing
Ap/2 of the maxima poses rather stringent conditions
on the smoothness of the S/Sm contacts in order to ob-
serve the oscillations. The same effects investigated here
for an inversion layer should also be present in other 2D
electron systems, e.g. , in semiconductor heterostructures.
Success in the preparation of these S/2DEG/S systems
has been reported. ' Because of the high electron mo-
bility in these devices, we expect that the results of our
calculation can be tested in the near future.
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FIG. 5. Temperature dependence of the critical current for
Z = 0. The absolute current values at T = 0 are 15.8 p, A/pm
(L = 100 nm, m' = mp), 6.9 yA/pm (100 nm, 2ms), 7.9
yA/pm (600 nm, mo), and 2.2 pA/pm (600 nm, 2mo).

APPENDIX

The adequate boundary conditions for our wave func-
tion and its derivative are
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h2 0—@(r)l.=o+-
2m* Ox

~( )I.=.— = ~(r)l.=o,
~( )I*=.—= ~( )I-="

A2 8—~( )I.=.—
2m, Bx
h2

Z 4'(r)
I

me

(Ala)
(A1b)

(Alc)

52 8—@(r)I =~+-
2me Bx

h2 8
, . 8.~()l*=.—

Z@(r)l.=i .
me

(Ald)

Inserting the ansatz (7) and eliminating the coefficients

aq~g to dz~g leads to a coupled system of linear equations,

~ +
+ ~ ~k„) A„vo+ A vo+ —2Zpe' l6 }oooo

~ +
+ A„@0+A„uo — " + 2Zpy „~ e'

cr

—(A„+A„+ )uovoe '"
pi~ —(A„+A )uovo hij ——2ip+up,

~ +(Z ;I+ I,) A„vo+A„~uo —
I

+2Zpz b„~ e - cziz
E o

(A2a)

A„vo + A„+ u', + " —2Zpy

(A + A )upvpe'~ '7izpp6 —(A„+A+ ) upvpe
'" +'

hizpp2 = 0, (A2b)

(ik„) A o+A„„+vvo —
~

" —2Zpe ~6„}e '"-
2o,.

u +A g + "+2Zpy

'a+ I.—(A + A+ )upvp aiz —(A + A+ )uovpe pi& = —2ip+vo, (A2c)

ik„) A„vo+A„vo+ " +2Zpp t6

+ A v +A+ u — "—2Zpy e'
—(A„+A+ )upvoe*" '~cadiz —(A„+A„+ )uovoe *~Piz = 0. (A2d)

The coupling between subbands n and m is described
by the factors

A+ = (uoz—voz) ') (nlq, ) iP,
+

(q, lm) . .(A3)

6iij6, = (uo "o) ') (qi, lm) (alum+ Plurne )vo
fn

—(p,, e '"- + h,, )u, (A4)

&om which we can calculate the current according to Eq.
(ll). It is impossible to solve the infinite system of equa-
tions (A2) exactly. However, a closer look at the factors
A+ reveals that the off-diagonal ones (n g m) are orders
of magnitude smaller than the diagonal ones (n = m).
Therefore we neglect the ofF-diagonal factors and are left

The Kronecker symbol b„should not be confused with
the coefficient biz . Solutions aiz to hi&~ of Eqs. (A2)
yield the coefml. cients

I

with four equations yielding the four coeKcients a~~ to
b~~, i.e., the equations for difFerent subbands decouple.
Equation (12) describes the resulting Josephson current.

To see the difFerence in order of magnitude between
A+ for n = m and n g m, we notice that at typical
carrier densities (n, 10i2 cm 2), only the lowest two
or three subbands contribute propagating states. The
corresponding subband wave functions vary on the length
scale D = 5 nm, so the matrix elements (nlqz) vanish
rapidly for qz

& 1/D. The orthogonality of In) and Im),
n g m, implies that A„+ is small unless p+. varies appre-
ciably with q~ over the range where the matrix elements
are non-negligible (when the p+. were independent of qz,
the off-diagonal A+ would vanish exactly). For all prop-
agating states in the 2DEG, we have k„& k~p && py'.
Only QP states of low energy, E Ap, are occupied, so
(2m, /h2)O « p&2. Looking at Eq. (10a), we infer that
p+. is nearly equal to p~ in the whole range of qz where

(nlqz) is non-negligible. A quantitative estimate can be
obtained by expanding p+ in a Taylor series for small q~
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and utilizing
2

) . l~') ~,' (~'I = —„,, (A5)
1

This relation can be used in Eq. (A3) since the subband
wave functions ( (z) are negligibly small at z = W. The
evaluation of A„* is then reduced to integrals over Airy

functions, which can be performed exactly. Thus we
find that the ratio of ofI'-diagonal to diagonal A„+ is of
order (p~D) 10 s. In summary, the point is that all
relevant subband wave functions have an effective wave-
length which is large compared to the Fermi wavelength
of the superconductor. The shape of the confining po-
tential in the 2DEG is less important.
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