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We study the effects of relativity on the electronic structure of Hg as it evolves from an atom to
a cluster, and then to the bulk. A comparison of nonrelativistic and scalar-relativistic results for
bulk Hg, obtained self-consistently, clearly shows the importance of including the relativistic terms
as well as treating the Gd-electrons as valencelike. Our cluster calculations show that the relativistic
effects are equally important for clusters, and that the differences in many electronic properties such
as the size dependence of the gap energy and the l character of Hg clusters with respect to other
divalent-metal clusters, for example, Be and Mg, arise due to the relativistic terms, thus providing
further insight into the electronic origins of these properties.

I. INTRODUCTION

The changes in the electronic properties of atomic
clusters of divalent-metal atoms as they evolve from
atoms to clusters, and then to bulklike systems, contin-
ues to be intensely investigated both experimentally and
theoretically. In general, it is found that very small
clusters of the divalent-metal atoms such as Be, Mg, Hg,
etc. , are insulating, while larger clusters exhibit continu-
ous evolution toward metallic bulklike behavior.

Although atomic Hg has a closed s-shell configuration
(5dio6s2) similar to Be and Mg, a theoretical understand-
ing of the electronic properties of Hg clusters, Hg„, or
bulk is much more difIicult than that of Be„and Mg„
because of the high atomic number of Hg and the pres-
ence of 5d electrons close to the 6s level. The high atomic
number of Hg underscores the importance of relativis-
tic effects in determining its electronic structure while
the closeness of 5d electrons to the 6s level indicates
the possibility of non-negligible s-d hybridization. The
relativistic effects on the electronic structure of atomic
Hg are well documented, whereas previous theoretical
studies of these effects on the band-structure of bulk Hg
are based on (i) non-self-consistent charge densities, and
(ii) the treatment of 5d electrons as core electrons. For
Hg„, ab initio studies on neutral and charged dimers
have been carried out using the pseudopotential and the
configuration-interaction methods. But, it appears that
there has been no systematic study of relativistic effects
on Hg„, although such a study can provide a better un-
derstanding of the electronic properties of these clusters.
In addition, it is quite possible that some of the differ-
ences in the electronic properties of Hg vis-a-vis Be and
Mg may have a relativistic origin. Also, the electronic
structure calculations based on approximations (i) and
(ii) are in general not very reliable, and as such empirical
tight-binding cluster calculations that use these results
for parametrization cannot be expected to describe accu-
rately the electronic structure of Hg„. The present study
was motivated by the concerns outlined above, and is in-

tended to be the first step towards improving our under-
standing of the electronic properties of Hg as it evolves
from an atom to a cluster, and then to the bulk.

In this paper we examine the effects of including the
relativistic terms, the so-called mass-velocity and Dar-
win terms, on the electronic structure of both bulk and
clusters of Hg by carrying out charge self-consistent bulk
calculations using the linear muffin-tin orbital (LMTO)
methods io in the atomic-sphere approximation (ASA)
with the nonrelativistic Schrodinger equation as well as
with the scalar-relativistic Dirac equation. Our calcu-
lations consider 5d electrons to be valencelike and thus
allow 5d bands to hybridize with the 6s —6p bands.
For examining the relativistic effects on Hg„, we use an
approach, outlined below, that is based on the tight-
binding formulation of the I MTO method, and it of-
fers the possibility of being developed into a reliable and
very efficient ab initio electronic structure method in real-
space for n & 20, in contrast to the conventional a,b

initio methods ' which become computer-intensive for
n) 20.

Based on our calculations, we find that the mass-
velocity and Darwin terms (i) significantly increase the
s-p "level" separation in the bulk, thereby reducing the
s-p hybridization, and (ii) move the lower s-band edge
below the bottom of the d band, resulting in increased
s-d mixing. In contrast to assumptions implicit in ear-
lier calculations, we find strong evidence for treating 5d
electrons as valencelike. Our cluster calculations show
that the relativistic effects are very important for an ac-
curate electronic structure description of Hg, and that
the differences in many electronic properties of Hg„with
respect to other divalent-metal clusters such as Be and
Mg arise mainly from the mass-velocity and Darwin
shifts, which provide further insight into the electronic
origins of these properties. For example, we find that the
size dependence of the gap energy and the t character of
the nonrelativistic Hg are very similar to that of Mg .
Before discussing the results we outline the procedure fol-
lowed for calculating the electronic structure of bulk and
clusters of Hg.
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II. RESULTS AND DISCUSSION

The nonrelativistic (NR) and the scalar-relativistic
(SR) self-consistent electronic structure of bulk Hg is
calculated with the LMTO method, assuming a face-
centered-cubic (fcc) lattice structure. The exchange-
correlation potential is parametrized as suggested by von
Barth and Hedin. The nonspherical charge density of
bulk Hg is calculated as described in Ref. 13. The SR
results for fcc Mg, used in the following for comparison
with Hg, are obtained similarly. Note that for suppress-
ing the uncertainty involved in comparing the results of
different lattice structures, we use fcc lattice structures
for both Hg and Mg although their equilibrium crystal
structures correspond to rhombohedrals and hexagonal
close-packed, respectively.

For the cluster calculations we use the Lowdin or-
thonormalized LMTO Hamiltonian, H~ ), expressed in
terms of the tight-binding first-order Hamiltonian, h),

H(') = E„+h~(1+ o~h~)-'
= E„+h~ —h~o~h~ +

where bold-faced symbols are matrices in site and angu-
lar momentum indices, P's are the screening parameters,
and the diagonal matrices E„and o~ are the potential pa-
rameters determined self-consistently &om the electronic
structure calculations of bulk Hg. In our calculations
we effectively sum the right hand side of Eq. (1) until
convergence is achieved for each cluster. Further details
about our approach, including the effects of keeping dif-
ferent terms in the expansion for H~ i, will be published
elsewhere.

The electronic structure of NR and SR Hg„with n
ranging from 2 to 79 is calculated by the exact diagonal-
ization of the cluster Hamiltonian, Eq. (1), although for
larger clusters use of the recursion method is computa-
tionally much more efficient. 6 The atomic arrangement
of clusters for n ) 13 corresponds to fcc shell closures
at 13, 19, 43, 55, and 79 atoms, respectively, and for
n = 5 we used a planar fcc-like geometry. For n & 19 the
present approach can be considered as a parametriza-
tion, with hopping parameters reproducing accurately
the electronic structure of bulk Hg. For n ) 19, as stated
earlier, our approach can form the basis for ab initio cal-
culations in real-space. The Fermi energy of each cluster
is determined by adding a Lorentzian of full-width 0.05
eV to the states close to the Fermi energy.

Here we would like to point out that within the ap-
proach followed in this paper there are a number of ways
by which the electronic structure description of Hg, bulk
or clusters, can be improved. Some of them are (i) use
of a no-shape approximation for the potential instead
of the spherically symmetric potential used in the ASA,
(ii) the inclusion of spin-orbit terms, especially for clus-
ter calculations where spin-orbit splitting of the d level
has important consequences, (iii) charge self-consistency
and structural optimization for clusters, (iv) inclusion of
improved parametrization of the correlation effects for
smaller clusters, and (v) use of site-dependent screened
structure constants for cluster calculations. These im-

provements are expected to be significant, especially for
smaller clusters. However, the main purpose of this pa-
per is to examine the effects of relativity, which are found
to be very robust for both bulk and clusters of Hg, and
hence we do not expect qualitative changes in our results
due to these improvements.

A. Atomic and bulk Hg

TABLE I. Calculated equilibrium lattice constants a, co-
hesive energy E, h, and the bulk modulus B, and the corre-
sponding experimental values for bulk Hg.

a (a.u. )
E,oh (eV/atom)
B (Mbar)

NR

8.659
1.607
0.698

SR

8.563
0.787
0.442

Expt.

0.67
0.382

In Table I we compare the calculated equilibrium lat-
tice constant, the cohesive energy, and the bulk modulus
of Hg with the experimental values. The results of the
SR calculations are much closer to the experimental val-

ues than are the results of NR calculations. The decrease
in the SR lattice constant of about 1% with respect to
the NR lattice constant is due to the contraction of the
s-wave function.

Since the effect of relativistic terms on a Hg atom is a
precursor of its effect on bulk Hg, in Fig. 1(a) we show
the changes in the potential parameter Ci, defined to
be the center of the l band, due to relativistic terms
obtained &om bulk-Hg calculations with the lattice con-
stant a = 20 a.u. , which essentially corresponds to free-
atom results (the total energies are within 0.03 mRy of
the free-atom total energies). As expected, the s level be-
comes deeper and the d level moves towards the s level.
Consequently, the s-d level separation E~~&, is decreased
&om 0.49 Ry to 0.22 Ry, while E, „ is increased &om
0.45 Ry to 0.69 Ry. Some of the differences between
our results and that of Ref. 7 are due to the different
exchange-correlation potential used in our calculations.
Based on the effects that the relativistic terms have on
the atomic Hg, one can imagine that in the case of bulk

Hg these effects will lead to increased s-d mixing and re-
duced s-p hybridization. Indeed this is the case for bulk

Hg, as can be seen from Fig. 1(b), where we show the C~

values for both NR and SR bulk Hg calculated at their
respective equilibrium lattice constants. It shows signifi-
cant change in E, "q" and a substantial increase in E, "„'"

due to relativistic terms.
The movement of the band center C~ due to relativity

leads to profound changes in the densities of states, as
shown in Fig. 2, where we plot the l-decomposed densi-
ties of states for both NR and SR bulk Hg calculated at
their respective equilibrium lattice constants. The sub-
stantial bandwidth of 5d electrons, clearly evident in Fig.
2, justifies the need for treating them as valence elec-
trons. A comparison of Figs. 2(a) and 2(b) reveals that
the center of the d band has moved closer to the Fermi
energy and the d-band width has increased due to rela-
tivity, although there is an overall narrowing of s and p



4956 PRABHAKAR P. SINGH

0.8-
Atom Bulk

0.5—

K
0.2

0 ) PI
V P

-0.4 -
g

lU

-0.7-

NR

'~

SR

p

NR SR

5-

-'1.0
(a)

FIG. 1. The NR and SR band center Ci for (a) a Hg
atom and (b) bulk Hg. The energy in (a) is measured with re-
spect to the electrostatic potential at the signer-Seitz sphere-
boundary, while in (b) it is measured with respect to the Fermi
energy.
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FIG. 2. The l-decomposed densities of states for
fcc Hg calculated (a) nonrelativistically and (b) scalar-
relativistically. The Fermi energy is denoted by the dot-
dashed line.

bands In .the SR case, Fig. 2(b), the bottom of the s
band has moved below the d band, leading to signi6cant
s-d hybridization, and thereby increasing the number of
s electrons from 0.934 in the NR bulk Hg to 1.327.

To underscore the importance of Gd electrons in deter-
mining the electronic structure of Hg, we show in Fig.
3(a) the SR nonspherical valence charge density of bulk
Hg. The corresponding NR nonspherical valence charge
density is very similar to that of Fig. 3(a) except well
inside the Wigner-Seitz radius. The expected changes

FIG. 3. The valence charge densities of (a) Hg and (b)
Mg in the (001) plane of the fcc lattice calculated scalar-
relativistically. The filled circles denote Hg (Mg) atoms in

(a) [(b)]. The contours are plotted at an interval of 10 in
units of 10 electrons/(a. u. )

in the outer region due to the contraction of the s-wave
function are swamped by the changes in the d-electron
charge density. For comparison with other divalent-
metals, in Fig. 3(b) we show the SR nonspherical valence
charge density of bulk Mg calculated similarly. In Mg
the s-p hybridization leads to covalentlike charge distri-
bution, as evidenced by the accumulation of charge along
the nearest-neighbor directions in Fig. 3(b). This is not
the case for either NR or SR nonspherical valence charge
density of bulk Hg, which ensures that the detailed elec-
tronic response of Hg would be quite difI'erent from that
of Mg.

B. Clusters of Hg

So far we have discussed the eff'ects of the relativistic
terms on the electronic properties of bulk Hg. To see
if the relativistic terms can perceptibly change the elec-
tronic properties of Hg„, we examine the size dependence
of the total densities of states (DOS), the gap energy, 6„,
and the t character of NR and SR Hg„.

In Fig. 4 we compare the total DOS for Hg79 with
that of bulk Hg for both NR and SR cases. It clearly
shows the importance of including the relativistic terms
as well as of treating Sd electrons as valencelike. For
other cluster sizes the relativistic eÃects on the densities
of states are similar. The downward movement of the
NR total DOS in Fig. 4(a) is not entirely due to size
effects, but is partly because of (i) the uncertainty in
determining accurately the Fermi energy when extended
s and p states are involved, and (ii) the imposition of
self-consistency on the cluster Hamiltonian of Eq. (1).

To examine the size dependence of 6 as well as to
illustrate the eKects of relativistic terms, we show in Fig.
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FIG. 6. The l character for NR and SR Hg„as a function
of cluster size. The number of 8 and p electrons for bulk Hg
is also shown.

FIG. 4. The total densities of states for Hgqg calculated
(a) nonrelativistically and (b) scalar relativistically. For com-
parison the total density of states for bulk Hg is also shown.
The Fermi energy is denoted by the dot-dashed line.

5 the variation of A„with n for NR and SR Hg„. In
the same plot we also show the n dependence of the gap
energy for Mg„. For SR Hg„our calculations of the size
dependence of A„agree quite mell with the results of
other calculations. ' Because the NR E "" js smaller
than the corresponding SR separation, and is compara-
ble to the level separation in Mg, we expect NR Hg„
to behave more like Mg„ than SR Hg„. Not surprisingly,
the size dependence of 6„for NR Hg„ is almost identical
to that of Mg, as can be seen &om Fig. 5. The NR 6

for Hg„essentially vanishes around n 13, whereas the
SR 4„ is still quite large for n 13, and it goes to zero
around n & 80, indicating clearly that the differences in
the size dependence of the gap energy between Hg„and
other divalent-metal-atom clusters such as Be„and Mg„
arise due to relativity.

Another example, where relativity changes the elec-
tronic properties of Hg„, is provided by the variation of
the I character with n. In Fig. 6 we show the s and

p characters of NR and SR Hg„. The variation in the
d character, not shown in the figure, is small. Starting
with tmo s electrons for Hg atom, the evolution towards
bulklike l characters depends significantly on the rela-
tivistic terms. The increased s-p level separation in the
SR case effectively suppresses the s-p hybridization, and
thus reducing the number ofp-like electrons for increasing
cluster sizes. Once again, the variation of NR l character
is very similar to that of Mg„.
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We have shown that for an accurate electronic struc-
ture description of bulk Hg one must include the relativis-
tic terms, and treat the 5d electrons as valence electrons.
From our cluster calculations we have demonstrated that
the relativistic effects are equally important for clusters
of Hg, and that the differences in many electronic proper-
ties such as the size dependence of the gap energy and the
l character of Hg„with respect to other divalent-metal
clusters, especially Mg, arise due to relativity.
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