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Intrinsic dissipative fluctuation rate in mesoscopic superconducting rings
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The rate at which dissipative Huctuations occur in narrow superconducting rings is considered
within the Little-Langer-Ambegaokar-McCumber-Halperin framework. The mesoscopic regime, in
which the ring circumference L does not greatly exceed the correlation length (, is specifically
addressed. In this regime, significant differences arise between models that mimic voltage and
current sources, the former (latter) exhibiting corrections to the fluctuation rate algebraic in (/L
(exponentially sma11 in L/() The the.ory employs Forman's elaboration of the Gel'fand-Yaglom
technique for computing fIuctuation determinants.

Recent experiments have begun to investigate elec-
trical resistance in narrow superconducting wires with
lengths not greatly exceeding the temperature-dependent
correlation length ((T). Motivated by these experi-
ments, we address one particular aspect of this subject,
namely the rate at which intrinsic dissipative (i.e. , resis-
tive) fluctuations of the order parameter occur in narrow
superconducting rings. We focus, in particular, on the
dependence of the rate on the circumference of t, he ring.

In the phase-slip picture of intrinsic resistive fluctu-
ations in a narrow superconducting wire of length 1.
due to Little, 2 Langer and Ambegaokar, and McCum-
ber and Halperin, which we refer to as the LAMH pic-
ture, the fluctuation rate (L/()I' (Ref. 5) is constructed
in terms of two physical quantities, a free-energy barrier
height, V and a, (so-called) attempt frequency 0, such
that (L/() I' = fl exp ( U/k&T) For w—ires of ess.entially
infinite length, i.e. , wires much longer than (, the fluctu-
ation rate has been computed ' ' and used to evaluate
the phase-slip-induced resistance.

In this paper we extend the LAMH picture to the
case of mesoscopic superconducting wires, i.e. , wires for
which the ratio (/L is not negligibly small. To this
end, we analyze the length dependence of the barrier
height and the attempt frequency, and hence the resis-
tive fluctuation rate, for the case of a narrow supercon-
ducting closed ring of circumference L. The ring topol-
ogy is adopted so as to preclude extrinsic effects asso-
ciated with contacts to external circuitry. We envisage
the sample as being threaded by a time-dependent mag-
netic flux h@(t)/2e that induces an electromotive force

V(t) = (h/2e) dc'(t)/dt around the ring.
Two distinct situations are considered: either the sys-

tem is driven by a voltage source or it is driven by a
current source. In the former case, 4(t) is prescribed to
increase linearly with time, i.e. , 4(t) = 2eVt/h, where V
is the (constant) electromotive force. In the latter case,
we envisage that the magnetic flux responds to the resis-
tive fluctuations, by producing an electromotive force, in
just such a manner so as to maintain a certain prescribed
current.

The principal results of this paper concern the transi-
tion rates (i.e. , the rates at which resistive fluctuations
occur between current-carrying metastable states), and
are twofold. First, for the case of a voltage source, we find
that both the barrier heights and the attempt frequen-
cies acquire corrections, algebraic in E/L, that increase
them beyond their infinite I values. Thus, the correc-
tions to the transition rates compete —an enhancement
a,rising from the attempt frequencies and a suppression
due to the barrier heights the dominant correction be-

ing due to the barrier heights. Second, for the case of
the current source, the transition rates are independent
of the sample length (up to terms exponentially small in

L/(). Although we focus here on the transition rates we
note that the current-voltage characteristic can be con-
structed from them; see, e.g. , Sec. 5 of Ref. 4.

Before embarking upon the analysis of the fluctu-
ation rates, we remark that while the calculation of
the barrier heights for a ring of arbitrary circumference
is straightforward, the corresponding calculation of the
attempt frequencies is, prima facie, quite challenging.
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This task, however, is greatly facilitated, in fact be-
coming algorithmic in nature, by the use of Forman's
recent generalization of the technique of Gel'fand and
Yaglom ' for computing determinants of certain linear
di8'erential operators. It is a subsidiary aim of this paper
to provide some exposure of this advance in technique,
which we anticipate will find wide application.

I. VOLTAGE SOURCE

f2+ f2 1 f4+ f2/2 0

J=B f P =0.
(3a)

(3b)

The conserved quantity J is the dimensionless supercur-
rent, and is related to the physical supercurrent I by
I = 4Je(gkgT/h).

For the computation of the fluctuation rates there are
two classes of important stationary states. First, there
are the locally stable (i.e. , metastable) states, given by

(x;k, P ()) = f expiP (x),
f' =u(k ),
(x) =P p+k x,

(4a)

(4b)

(4c)

where u(q) = (I —q2), and P p is an arbitrary phase
(which can be taken to be zero). These states are char-
acterized by the discrete set of allowed wave vectors A;

satisfying k 8 = 2am +C, where n is integral, in terms
of which the current J is given by J = k u(k ). Sec-
ond, there are the transition (i.e. , saddle-point) states,
given by

(x; k, m, xp, P p) = f, (x) exp i(t(, (x), (5a)

f, (x)' = 2k,'+ —,'m, A(k, )

+m A(k, ) sn(gA(k, )/2 (x —xp) m) (5b)

Following LAMH we consider a quasi-one-dimensional
superconducting ring of cross-sectional area o, circumfer-
ence L—:E( and (dimensionless) superconducting order
parameter g. The Ginzburg-Landau free-energy func-
tional F is given by F[@]= gkjsTE[@], where

E/2

&XI —= «{I«(*)/«I*—I&(*)l'+ -'I&(*)l') (')
—E/2

x is the longitudinal coordinate (measured in units of ()
and g = OH, (T) ((T)/4xk~T (i.e. , the condensation en-

ergy in a correlation length, measured in units of k~T),
in which H, (T) is the bulk critical field. In the pres-
ence of a magnetic fiux hO/2e the boundary conditions
are of the twisted periodic type, i.e. ,

vP(E/2) = e' @(—l/2), g(E/2) = e' g( E/2), — (2)

where overdots denote spatial derivatives. Although 4
is not constant, we shall, following Ref. 3, assume that
it varies on a time scale that is slow compared with the
time scale of the resistive fluctuations.

Introducing the polar decomposition g(x)
f(x) e'~i*), the condition that X be stationary be-

comes

P. (x) = 4~. ,p+ J,(k„m) dx'f, (x')
Xp

(5c)

b,P = AX ' + E 'APl'l + O(E ')
APlol = -', /26(k )

—4y(k )k u(k ),

(7a)

(7b)

(7c)

Although we exhibit only the O(E ~) correction to the
infinite sample-length value, higher-order corrections can
readily be computed. Evidently, the barrier heights are
increased relative to their infinite-length value. That the
correction is algebraic in 8, rather than exponential,
results &om the presence of the phase degree of freedom.

We now turn to the calculation of the attempt fre-
quency 0, ' ' given by

det' Lm

where a(T)—:gg/4ms/w(T) is a characteristic fre-
quency, in which r(T) is the temperature-dependent re-
laxation rate. The P factors arise from integrations over
the so-called zero modes (resulting from translational
and gauge invariance), A, p is the (negative) eigenvalue
(associated with the reaction coordinate), and the sub-
scripts m and 8, respectively, denote the rnetastable and
saddle-point states. The quotient det' L /det' L, is the
quotient of determinants (with zero eigenvalues omitted)
of the operators L, (with e being m or s) that are as-
sociated with the second variation of the free energy,
hE, = J &&

dx S@t L, b@. The two components of h4

where P, p is a second arbitrary phase and xp is an ar-
bitrary position (which can both be taken to be zero),
A(q)—:(l —3q ) and mq = (1 —m), and the current J,
is given by

2J, (k„m)' = [u(k, ) + —,'m, b, (k, )] [u(k, ) ——m~3, (k, )j
x 2k, + smgA(k, ) . (6)

The function sn in Eq. (5b) is a Jacobi elliptic
function, ~ ' so that the boundary conditions, Eqs. (2),
require E(k„m) = /8/A(k, ) K(m), in which K is the
complete elliptic integral of the first kind. These states
are characterized by the allowed wave vectors k„which,
up to terms of order m) (i.e. , terms exponentially small
in gA/2E), satisfy k,E+ 2y(k, ) = 2am, + 4, where n,
is integral and y(q)—:arctan gA (q) /2q2.

Imposing the requirement that the current-decreasing
(-increasing) transition from a metastable state k oc-
cur via the transition state k, (k+) with the same (2m

larger) total winding angle AP = f &&
dx P as the ini-E/2

tial metastable state, one identifies that the appropriate
transition state k+ satisfies k E = k+E+2y(k,+)—(sr+sr),
up to terms of order mi.

Having identified the transition state k, associated
with current-reducing fluctuations out of the metastable
state A:, it is straightforward to establish that the bar-
rier height U for current-reducing fluctuations out of
k is given by U = gk~T(P[g, ]

—P[@~]):—gk~TAE,
where'
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det L, det M + EY, (E/2)
det L det M + XY (//2)

(10)

Here, the (4 x 4) matrix Y, (z) is the so-called funda-
mental matrix, whose construction is described below,
and the (4 x 4) matrices N and M encode the boundary
conditions. Thus, the quotient of the determinants of
two infinite-dimensional matrices is reduced to the quo-
tient of the determinants of two finit-dimensional ma-
trices. For the case of twisted periodic boundary condi-
tions, Eqs. (2), considered here, N is the (4 x 4) iden-
tity matrix, and —M is the (4 x 4) diagonal matrix,
diag(e'@, e '@, e', e '@j. Not unusually, the quotient
det L, /det L is ill-defined due to the presence of un-

wanted zero modes, which we eliminate using the fol-

lowing strategy. First, we regularize the operators, i.e. ,

perturb them so as to eliminate any zero eigenvalues,
by adjusting the continuous parameters k, . Second, we

compute the quotient of regularized determinants, us-

ing Eq. (10). Third, we compute perturbatively the for-
merly zero eigenvalues. Fourth, we factor out the for-
merly zero eigenvalues from the regularized quotient of
determinants. Fifth, we remove the regularization. Thus
we obtain det' L, /det' L

At the heart of the strategy outlined in the previous
paragraph is the computation of the fundamental matrix
Y, (z), which is defined to have the property that, for any
(complex two-component) solution (, (z) of the so-called
Jacobi accessory equation L, (, = 0, one has

&.(*) Y &.(-&/2)

We have found it convenient to express Y, (z) in terms
of an auxiliary (4 x 4) matrix H, (z), via Y, ,i(z)

i H, ,i, (z)H, &. (—E/2), where the ith column of

H, (z) is the (four-component) vector [q, , (z), i), , (z)], in
which (q, , )4 i are four linearly independent solutions of
the accessory equation. It is elementary to obtain the so-

]

are the order parameter fluctuation 6g and its complex
conjugate, so that

g2 I + 2f2 f2 e2igp

fz e
—2ile g2 1 + 2f2

In order to calculate det' I, /det' I we make use of a
generalization, due to Forman, of the Gel'fand- Yaglom
technique, suitable for 2 x 2-matrix differential operators:

lutions of the accessory equation (q, j at the metastable
states, but not the solutions (q, ,f at the saddle-point
states. However, the latter may be constructed algorith-
mically, using Jacobi's theorem, i.e. , by differentiating
the general solution to the Euler-Lagrange stationarity
condition, Q, of Eq. (5a), with respect to each of the four
constants of integration ik„m, zp, P p). Using this rep-
resentation of Y, (z), together with the symmetry proper-
ties of the elements of H, (z), we readily obtain Y, (t'/2).
Elimination of zero modes, as outlined above, then yields
det' L, /det' L We. wish to stress the algorithmic nature
of this approach, which requires solely the general solu-
tion of the Euler-Lagrange stationarity condition.

Upon following the strategy described above for
computing the attempt frequency for current-reducing
(-increasing) fluctuations 0 ~+l of Eq. (8) becomes

= 2r/4~(Z')gA(k+)~(k+)7 ei/& & ) ~ V &

A(k,+) u(k )

6(k ) u(k,+)

(12)

where A(q)—:—1—q + 36(q) +(1+q ) . A straight-
forward examination of this function indicates that the
attempt frequency per unit length increases as E is re-
duced, behaving algebraically in 8 . To probe exper-
imentally this sensitivity to length, it may be useful to
consider current-relaxation experiments at Axed flux. For
example, the ring may be prepared in a current-carrying
state, with the rate at which the current decays being
measured inductively.

II. CURRENT SOURCE

To describe the case of a current source, we no longer
restrict the ensemble of superconducting states to those
satisfying Eqs. (2) with 4 fixed. Instead, we consider
the unrestricted ensemble of states satisfying Eqs. (2)
but with the ftuz 4 free to vary. As the system is not
in the thermodynamic limit, it is necessary to generalize
the strategy employed by McCumber, accounting for the
enlarged ensemble by introducing an appropriate fugacity
and integrating over the (now unconstrained) variable.
Hence, the formula for the transition rate becomes

2m

dc e2g + e g~[Os] V, Vs Ao det' I
(L/g)r= (r) '

d4 e2g + e g+I& ] V~ det' I~
(13)

where the (generalized) fugacity exp(2gJ) controls the
mean winding angle.

In the calculation of the rate, using Eq. (13), the 4
integrations may be performed using Laplace's method
because g )) 1. The maximum values of the expo-

nents, i.e. , (minus) the Gibbs free energies g[g, ]

X[/, ]
—2JC'„occur at 4, = kI. + 2y(k) (mod 2~)

and 4 = kl (mod 27r), where k(( 1/v 3) satisfies
J = k u(k). In other words, the current source re-
sponds to a fluctuation by inserting (or removing) flux
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so as to maintain a constant current. Thus, 4 and 4,
dier, in contrast with the case of the voltage source.
The computation of the appropriate fluctuation deter-
minants proceeds along precisely the same lines as for
the voltage-source case, although 4 and 4, now dif-
fer. For flux-increasing (i.e., positive electromotive force)
fluctuations ' we obtain

(L/()I' = 2 l ~(T)IA(k)6(k)"l e

where the barrier heights U are given by U
gkg T(g [g,]

—g [g~])—:gk~T ACr, where

(14)

Ag = -
V 2b, (k) —4y(k)k u(k) + O(m ). (15)

Although the attempt frequency factors in the integrands
of Eq. (13) depend algebraically on (/L [cf. Eq. (12)], this
algebraic dependence is canceled by terms arising from
Gaussian fluctuations of C . Thus, in contrast with the
voltage-source case, we see that the rate per unit length
I' is insensitive to the sample circumference, up to terms
exponentially small in L/(.

III. CONCLUSIONS

A&o) + E iO& ). Thus, we find in[I (/)/I'(oo)] —I.

gavel'&+BI')/0&') j, where I (oo) = OI & exp(—gAXlo)).
As both AT~ ~ and O~ ~ are positive, a competition be-
tween them arises. However, for the LAMH picture to
be accurate one should have g && 1. Thus, for the case
of the voltage source the length dependence of the tran-
sition rate is essentially determined by the length depen-
dence of the barrier height, resulting in a decrease in
the rate per unit length as 8 is reduced. For the sake
of illustration, we suppose that T, = 1K, H, = 100G,
((0) = 1000 A, ~cr = 750 A, and T/T, = 0.99, so
that g —9.8. In the low-current limit, AT~ ~ = vr,
so that I'(/)/I'(oo) = exp( gA—X& )/l) = exp(—99/l),
i.e. , roughly 0.14 when I = 50 pm. In contrast, for the
current-source case, we observe that the transition rate
per unit length I' is essentially independent of L (i.e. , in-
dependent of L up to terms exponentially small in L/().
We therefore encounter signi6cant di8'erences between
two distinct experimental configurations —constant volt-
age versus constant current —as a result of the mesoscopic
size of the system.

We have addressed the length dependence of the dis-
sipative transition rate (L/()I' for a mesoscopic super-
conducting ring. For the voltage-source case, we have
found that the leading length-dependent corrections to
the barrier heights and attempt frequencies are algebraic
in (/L. To elucidate the implications of these length
dependences for current-decreasing fluctuations it is use-
ful to expand, viz. , AT AT~ ~ + S AT~ ~ and 0
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