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Qoughness efFect on the frequency of a quartz-crystal resonator in contact with a liquid
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The problem of coupling of the shear oscillations of a quartz crystal bounded by a rough surface with

damped waves in a liquid has been investigated. The shift of the resonance frequency of a quartz crystal
due to either random roughness or periodical corrugation has been considered. A relation between the
shift and a correlation function of roughness has been found. It has been shown that the roughness effect

is most pronounced in the low viscosity limit. It has been demonstrated that the results of quartz-crystal
microbalance measurements can provide valuable information on the average height and the correlation
length of surface roughness.

I. INTRODUCTION

A large number of experimental and theoretical studies
have been devoted to the understanding of the dynamic
properties of the solid-liquid interface. The topics of in-
terfacial friction' and viscoelasticity of thin surface lay-
ers are of importance in a wide range of problems related
to surface wetting, film growth, phase transitions in ad-
sorbed films, characterization of surface processes in elec-
trochemical systems, polymer solutions, microemulsion,
and so on. It was successfully demonstrated that the
quartz-crystal microbalance (QCM) can serve as a sensi-
tive tool to probe interfacial friction and viscoelastici-
ty. ' The shift of the quartz-crystal resonance frequency
in various liquids has been studied in number of experi-
mental works. ' These experiments have generated
theoretical attempts to describe the coupling of the crys-
tal shear modes to a liquid motion. Different ap-
proaches ' ' have been proposed to explain the depen-
dence of a resonance frequency shift on bulk liquid densi-

ty and viscosity. A common feature of all these ap-
proaches is the neglection of microscopic properties of in-

terfaces and surface roughness.
Real surfaces are always characterized by specific

roughness that depends on the material, method of sur-
face treatment, and presence of adsorbed particles on the
surface. It was shown experimentally ' " that surface
roughness can drastically affect the resonance frequency.
The authors of Refs. 8 and 9 attributed the effect of
roughness to the additional mass of the solvent trapped in
surface cavities. They concluded that changes in surface
roughness during electrochemical oxidation are the dom-
inant contributors to the observed frequency shift. The
authors of Refs. 10 and 11 assumed that roughness can
also increase energy dissipation in the liquid. The net-
work analysis of the effect of roughness and interfacial
liquid structure was presented in Ref. 5. Nevertheless,
this subject is highly undeveloped.

In this paper we focus on the question of the inhuence
of roughness on the resonance frequency of a quartz crys-
tal. The problem of coupling of the shear oscillations of
the crystal bounded by a rough surface with damped

waves in the liquid is solved by the method of Rayleigh'
and Fano. ' A similar approach was used previously for
the description of light scattering on a rough surface. ' '
We consider here the effect of a randomly rough surface
and a periodical corrugation. A relation between the res-
onance frequency shift and the correlation function of the
roughness is derived. The roughness introduces a new
length (a correlation length of roughness) within the con-
tinuum description of the liquid, and leads to viscosity
and density dependencies that do not appear in the case
of a smooth interface. It is demonstrated that the results
of QCM measurements can provide valuable information
about the average height and correlation length of sur-
face roughness.

II. THE MODEL

We now consider a model for the coupling of shear
waves in a piezoelectric crystal bounded by a rough sur-
face with damped waves in a liquid. We plot a z axis
pointing toward the liquid and the plane z =0 being coin-
cident with the unconstrained face of the quartz resona-
tor. We assume that the rough interface between the
quartz crystal and liquid is described by the equation
z =g(x,y). The plane z =d is chosen such that the aver-
age value of the function g(x,y) over the surface is equal
to zero. Here d is the average thickness of the quartz-
crystal film.

For time-harmonic oscillations the elastic displace-
ments u(r, t) =u(r, co)exp(i cot ) in the crystal are described
by the following wave equation:

—co u(r, co)= V' u(r, to) .
PS

Here p and p, are the shear modulus and the density of
the quartz crystal, and co is the frequency of oscillations.
The fluid velocities v(r, co) are the solution of the linear-
ized Navier-Stokes equation:

where P(r, to), g, and pi are the pressure, viscosity, and
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density of the fluid. The velocities must also satisfy the
incompressibility condition.

Boundary conditions for the elastic displacements and
the fluid velocities include. (a) the absence of forces act-
ing on the unconstrained crystal surface z =0; and (b) the
equality of crystal and fluid velocities at the interface

transform the fluid velocities, pressure, and roughness
profile function g(x, y) from the tangential coordinates
R=(x,y ) to the corresponding wave vectors K=(E„,K )

according to the equation

g(K)= fdR((R)exp( —iK R) .

z =g(x,y):

i cou[x, y, z =g(x,y) ]=v[x,y, z =g(x,y) ] .

The solution of Eq. (2) has the form

(3)
P(K, z, co) =P(K)exp[ IC(z——d) ], (6)

Here we will solve the problem by means of the
Rayleigh-Fano' ' perturbation theory which is valid for
slightly rough surfaces. For such surfaces the charac-
teristic size of the roughness in the z direction (the root-
mean-square height), h, is less than the tangential one
(correlation length} l. We will also assume that the
height of the roughness is smaller than the decay length
of fluid velocities, 5=(2ri/cop) )', which is usually of the
order of 0. 1-1 pm. The wavelength of shear-mode oscil-
lations in the quartz crystal, 2n(p/p, )'~ co ', is of the or-
der of 0.1 cm, much larger than 5 and l. As a result the
presence of roughness discussed in this work does not
influence the crystal oscillations. Hence the solution of
Eq. (1) can be written in the following form:

u, (r, co) =2C cos(kz), k =co(p, /tu)', a=x,y
(4)

u, (r, co }=0 .

In order to solve Eq. (2) it is convenient to Fourier
I

v,(K,z, co) = A (K)exp[ —qx(z —d ) ]

1 K P(K)exp[ E(z ——d)], a=x,y,
p, ~

v, (K,z, co)= gK A (K)exp[ —q)c(z —d)]
qsc

KP(K)exp[ —K(z —d)] .
pr

Here E = ~K~, q)~
= (icopl /ri+E )', and v (K,z, co} and

v, (K,z, co) are the projections of the vector of velocity

v(K, z, co) on the axes a=x, y, and z, correspondingly.
The prefactors A (K) and P(K) are obtained from

boundary condition (3). Using Eqs. (4) and (6)-(8), and
taking Fourier transforms of both sides of Eqs. (3), we ob-
tain

A K exp —
qz R z z — K P K exp —K RdK l

(2n ) pI co

=icoC [exp(ikd) [exp(ik((R) }]K+exp( —ikd)(exp[ —ik((R) ] )K ], (9)

K A K exp —
q~ R „. „— KPK exp —K R „.„.=0.

(2n ) qx pI co
(10)

In Eqs. (9) and (10) we introduced the following
definition:

d (E(s) + U(s)+E(l) ) g(l)
kin (12)

[exp[ pPR)]]K' —K

=fdR exp[ —pg(R)]exp[ —i(K' —K)R] . (11)

Coupled Eqs. (9) and (10) allow us to express coefficients
A (K) and P(K) through the amplitudes of shear waves
in the crystal, C . We remark that the matrix elements
of the kernel of these equations, of the type
(exp[ —q)cg(R)])K K are not symmetric functions of K
and K', since qz does not appear in the exponent.

After the determination of coefficients A (K) and
P(K) and, correspondingly, the fluid velocities v(r, co) the
resonance frequency measured in quartz-crystal micro-
balance experiments can be found from the energy bal-
ance in the system under consideration. The rate of the
change of the kinetic (E„';„')and elastic (potential) ( U"),
energy of the crystal, and the kinetic energy, (E„"„),of
the liquid should be equal to the rate of the energy dissi-
pation in the liquid, Q(",

'2

(13)

2

4 o, . c}r c}r;
(14)

E„",'„=—fdR f dz+U, ',kin [d+ g(R) ]

2

g'"= &fdR—f" dzy '+Bv; BV.

2 [d+ g(R)]; Br Bl';
(16)

In Eqs. (12)—(16) we introduce the following notations:

Here we neglect energy losses in the quartz crystal. The
expressions for the energetic terms appeared in, Eq. (12)
have the form
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U; =Re[U;(R,z, co)exp(icot )],
u; =Re[u;(R, z, co)exp(icot)], and i,j =x,y, z .

It should be noted that the energy balance equation
(12) could be satisfied only for a complex resonance fre-
quency co, =0+ir.

We will solve Eqs. (9) and (10) within the perturbation
theory with respect to parameters

~ Vg(R)
~

&& 1 and
h /5 &(1. At these conditions we can expand the matrix
elements of the type [exp[ —

qx g(R }]] ~ z as

(exp[ —q~PR}1]K -K

/I ' '(0) = —i co cos(kd) f ~g(K} ~

dK
(2~)

Xqo C (qo —2qx )

E—2 QKpCp
p

(22)

=5(K—K') —
qx g(K' —K)

+—,'q~ K' —K—K" K" +
{2m )

(18)

and solve Eqs. (9} and (10) by iterations. To determine
the Grst non-negligible correction to the resonance fre-
quency caused by roughness, we must find coefficients
A~(K) and P(K) up to the second order with respect to
the root-mean-square (rms) height of the roughness h.
We remark that it is enough to obtain the second-order
terms only for the zero value of the two-dimensional
wave vector K. To the lowest order we arrive at results
for the smooth interface between the quartz crystal and
the liquid:

Solving Eqs. (9) and (10) we neglect terms proportional to
the factor (kg(K)) compared to ones proportional to
(qog{K)) because of the inequality k/qo « l. After the
substitution of the expressions (19)-(22) into Eq. (12), we
find the resonance frequency co„up to the second order in
the rms height of roughness:

tg(kd)+
Ps ~o

'
kf, lg(K)l'[qx qo+—E cos'P],

Sp, (2n)'

(23)

A' '(0)=2iC cocos(kd), A' '(K)=0,
P"'(K.) =0 .

To the first and the second orders, we have

A '"(K)=2icoqocos(kd)g(K)

x C + QEpCp, P=x,yE qx E—
P'"(K)= —QEp A p '(K),

q g P f3

(19)

(20)

(21)

where S is the area of a crystal surface, and P is the angle
between the direction of shear oscillations and the two-
dimensional (2D}vector K.

At g=—0, Eq. (23} gives the resonance frequency at a
smooth crystal liquid interface. The shift and broaden-
ing of the resonance due to the presence of the roughness
is determined by the rms height h, and by the pair-
correlation function g(K). The last quantity is related to
lp(K)~ as ~g(K)~ =Sh g(K). Equation (23) can be used
to describe the effect of both random roughness and
periodical corrugation. In the last case we have just to
substitute the integral K 2m. for the sum S
in Eq. (28). Now the shift and width of the resonance fre-

quency may be rewritten in the form

(fI )3/2( )1/2
. 1+e25-'S- f, ~pK) ~21~ [a(SC5)—3/2/J:5+3/2cos'p]

~(2p, p) '/2 (2m }
(24)

(g )3/2(P ~)1/2

~(2p, p) '/2
. 1+v'25 'S 'f, ~g(K)~2K[3/2/K5 —b(E5)]

(2~)
(25)

In writing Eqs. (24) and (25) we introduce the following
notations: Qo=(m. /d)(p, /p, )'/, which is the resonance
frequency of a free quartz-crystal film, and

5=(2g/&Op/ )' ', a (t)=[(1+4t }' +1]'
b(t) = [(1+4t )' —1]'

The first terms in braces in Eqs. (24) and (25) define the
shift AQ, and the broadening I, of .the shear resonance
at the smooth crystal-liquid interface, respectively. The

I

presence of surface roughness leads to the additional de-
crease EQ,h and broadening of the resonance frequency.

III. DISCUSSION

Equations (24) and (25) constitute the central result in

the study of the influence of roughness on the resonance
frequency co, . In this section we discuss the dependencies
of the frequency shift on the viscosity and density of a
fluid, and on correlation properties of roughness. Let us
consider two types of surface morphologies.
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A. Periodical corrugatiou, g'(R) =h sin(2oy /1)

(27)

with

In this case K= (0,2o.n /1) and g( K )
=h (5„,—5„&) /2i, where n =0,+1,+2, . . . , and 5„»
is the Kronecker symbol. Then Eq. (24) transforms to

(& )' '( )'
EQ =—,I+ F(l /5)

m(2p, p, )
'i 1

B. Random roughness

It is often assumed that random roughness obeys the
Gaussian distribution, which is characterized by two pa-
rameters: the rms height h and the correlation length

along the surface, l. III this case ~g(K) ~

=eh 1 S exp( 1E—z/4), and as before Eq. (24) for the

frequency shift EQ may be rewritten in the form of Eq.
(27), but with the diff'erent scaling function F(l/5):

F(t)=~2nt[a(2rr/t) t/(n—&2)+&2costg) . (28} F(t)= f dz z'exp( —z2/4)
vz

The scaling function F(1/5) has the following asymptotic
behavior:

X [a(z/t) —~2t/z+ I/W2] .

This function has the following asymptotic behavior:

(30)

n 5/I+2m cost/ at 1/5)&1
2n. 1/5+—2n cos P at 1/5&& 1.

(29)

Equations (27)-(29} show that at an anisotropic surface
the frequency shift depends on the direction of shear os-
cillations with respect to the symmetry axes of the sur-
face.
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FIG. 1. Scaling functions for randomly rough (a) and period-
ical (b) surfaces. (a) The solid line is the result of exact calcula-
tions on the base of Eq. (30); dashed and dotted lines, respective-

ly, are long- and short-range asymptotes (31) of the scaling func-
tion. (b) The solid line and squares are the results of exact cal-
culations for the oscillations in the directions perpendicular and
parallel to the grooves [cosP= I and cos$=0, see Eq. (28)], re-
spectively; dashed and dotted lines are long- and short-range
asymptotes (29) for perpendicular oscillations.

FIG. 2. Dependence of the resonance frequency shift on the
viscosity of a liquid for randomly rough (a) and periodical (b)
surfaces. (a) The solid and dashed lines are the roughness-
induced shifts —EQ,h for correlation lengths equal to 1=1000
A and 2500 A, respectively; the liquid-induced shift
—AQ, X10 ' for a smooth interface is shown by the dotted
line. (b) The solid line and squares show the frequency shifts
—EQ,h for two values of corrugation periods 1=100 and 250
nm in the case of oscillations in the direction perpendicular to
the grooves; dashed and dotted lines give similar dependencies
for the oscillations in the direction parallel to the grooves. The
calculations were carried out for the following values of param-
eters: @=2.947X10"dyncm, p, =2.648 gcm, Qo/2m=5
MHz, p&

= 1 g cm, and h =30 nm.
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V~+25/I at I/5» I

3&7r 2—1/5 at I/5«l .

The results obtained show that the presence of roughness
introduces a new length scale I that defines the rate of
pressure decay as a function of the distance from the sur-
face. The roughness-induced shift is proportional to the
square of the "slope" of the roughness h/1, and to the
one-parameter scaling function F ( I /5 ). The scaling pa-
rameter I /5 is the ratio of the correlation length (period)
of the roughness to the decay length of fluid velocities.
The behavior of the scaling function F(I/5) over the
whole range of the parameter I/5 for periodical and ran-
dom surfaces is shown in Fig. 1.

Figure 2 presents the dependencies of the frequency
shift on fluid viscosity. We see that the roughness leads
to new viscosity dependencies which do not appear in the
case of a smooth surface. The effect of roughness is most
pronounced in the low viscosity limit, when the liquid-
induced shift EQ, at a smooth surface is small. The
roughness-induced shift tends to a constant in the high
viscosity limit when ri&1 Qttot/2. These conclusions
agree with experimental data obtained for a rough solid
surface in contact with methanol-water mixtures and al-
cohols.

Our calculations also demonstrate that the roughness-
induced shift EQ,& is mainly determined by the influence
of fluid pressure on the oscillations of a quartz resonator.

This etfect is absent for a smooth interface. Figure 2(b)
shows that in the case of shear oscillations along grooves
of a periodical corrugation, where the pressure effect does
not play any role, the shift b 0„„is much smaller than for
oscillations in the perpendicular direction. It should be
stressed that the influence of weak surface roughness on
the frequency shift cannot be explained in terms of the
mass of liquid trapped by surface cavities, as was pro-
posed in previous papers. '

Our results show that the QCM measurements in
liquid can provide valuable information about the geome-
trical structure of the interface. To extract this informa-
tion one must perform experiments for different values of
viscosities, and obtain the relative shift b,Q„„/EQ, as a
function of rl. (The shift for a smooth interface, EQ„can
be calculated for given values of viscosity and density. )

For the frequencies used in QCM, Qo/2m. =2—10 MHz,
the possible values of the decay length 5 lie in the interval
10 —10 nm. This means that if the correlation length of
the roughness is of the order of 10 —10 nm, then its
value can be estimated by the QCM method comparing
the viscosity dependence of the relative frequency shift
with the calculated function (h/I) F(1/5). For smaller
or larger values of I only parameter h /l can be found
from QCM data. The accuracy of determining the root-
mean-square height of the roughness is limited by the ac-
curacy of the QCM measurements (about I Hz). Equa-
tion (27) shows that for I = 10 nm the accuracy of deter-
mining h equals 5 nm.
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