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Current density in a quantum Hall bar
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When current is forced through a quantum Hall bar it is understood that it Bows primarily through
edge states. These represent extra charges that in turn produce a more widely distributed current
density that falls ofI' rather slowly with distance and then drops rapidly as a result of screening by
particles beyond the depletion region. We have solved numerically the self-consistent Schrodinger
equation in the Hartree approximation for ideal samples with small widths and sharp boundaries,
and combined these results with the Wiener-Hopf technique to obtain an accurate picture of the
situation for macroscopically wide samples. Our results indicate that the redistribution of states in

the bulk of a quantum Hall bar is a very important effect and that the bulk states contribute to a
signi6cant fraction of the total current.

I. INTRODUCTION II. EDGE FIELDS

There has been a renewed interest in calculating the
distribution of currents and charge in a quantum Hall
bar. Chklovskii, Shklovskii, and Glazman in their pa-
per regarding partially occupied states solve the Poisson
equation in the classical limit for a one-gate-induced con-
finement potential. Chklovskii, Matveev, and Shklovskii
analyze the same problem in a narrow channel. Dempsey,
Gelfand, and Halperin study spin-split states near the
edges using a Hartree-Fock variational scheme. 3 Brey,
Palacios, and Tejedor analyze the edge states varying
the width of the boundaries. 4 Pfannkuche and Hajdu5
thoroughly study, in mean-Beld approximation, the cur-
rent and charge distribution for a small ideal Hall bar for
various filling factors.

In many works the charge variation is solely due to
changes in the population of Landau levels when they
go through the Fermi energy. This seems to be a sensi-
ble approach (though not complete) for the big changes
in the environment that occur at the edges due to the
confining potential. It is assumed, though, that no mod-
ulation is possible in regions in which the Fermi energy
lies in a mobility gap, and these are commonly referred
to as incompressible. There is, however, the possibility of
compression by varying the density of (Landau) states.

In this paper we analyze the situation of a Hall bar
in equilibrium (no net current) and the changes resulting
when there is a difFerence in the electrochemical potential
between the two edges. In the following section we dis-
cuss the origin and effect of the edge currents and write
down the Schrodinger equations in the Hartree approx-
imation. In Sec. III we solve numerically the equations
for a narrow Hall bar and show that the two edges are
efFectively decoupled, which permits us to extrapolate
the results near one edge to a semi-infinite sample. In
Sec. IV we use the results of Sec. III for the region near
the edges of the bar, along with the Wiener-Hopf tech-
nique, to solve analytically the problem of a wide sample
in the regions away from the edges.

There are two basic mechanisms for conduction under
integer quantum Hall effect conditions:

(1) For each Landau level there is a continuum of edge
states that carry the current responsible for the Landau
diamagnetism. In equilibrium the currents in the two
edges have the same magnitude but opposite directions
so no net current flows. Now, if we apply a potential drop
between the two edges then the electrochemical poten-
tials will be difFerent, resulting in a different population
at the two edges and, therefore, a net current.

(2) If there is an electric field inside the sample then
the Hall current density is proportional to the local elec-
tric field (averaged over some localization distance) and
will have an exponentially small dependence on the con-
ditions far away. A nice "experimental demonstration"
is the high precision of the measured Hall resistances BH
despite the disturbances present near the ends of the bar.

(a) Eject of the edge currents. As we force current the
population of current capable edge states is altered. This
extra charge density associated with the extra edge cur-
rent produces an extra electric field throughout the inte-
rior of the sample. These in turn induce an extru current
density according to the second mechanism above. This
fact is true whether the edge dividing filled and empty
Landau levels is sharp or consists of regions of partially
occupied states. Edge currents will also produce an extra
magnetic field but its effect is less important.

(b) Obtaining the equations. For a nearly uniform bar,
long in the y direction and with a strong magnetic field
in the —z direction, the single-electron eigenstates can
be written in the form Q„i,(x) exp(iky), where @ satisfies
the equation

jj2 Q2 ]
(eBx —hk) —eP(x) g„i,(x)

= E i0 i, (x), (&)

where m* is the effective mass of the electrons and we
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have used the Landau gauge. This equation is correct
under mean-field theory. Here the electrostatic potential
is given by

&(x) = — (p(x ) —p»(x )j"(*—x )"* (2)
4&660

where p» is a neutralizing background density and u(x)
will have a form similar to —2ln

~

x —x'
~

but there will
be some corrections due to screening by carriers beyond
the depletion region; and the density of electrons is

p(x) =) .I&(x)l

where the sum is performed over occupied states.

(3)

III. NUMERICAL ANALYSIS OF A NARROW
BAR

1d2 1+ -(*—k)'+ &(x) &-I (x) = E-S&-S(x)
2 dx2 2

(4)

&(*) = —2-. J I~(*') —s»(*'))»
I

*—*'
I

«' (5)

where the sum is over occupied states and a*
(em'/m, )ao is the effective Bohr radius. For typical con-
ditions in GaAs a" 100 A. and t a' so we take l = a*
in what follows. We also choose to work with the lowest
Landau level approximation and neglect spin splitting so
we perform the summation above for n = 1, therefore the
sum turns into a factor n = 2. We consider samples of 20
and 40 magnetic lengths width limited. by an infinite po-
tential and ppp is designed to cancel the electron density
in the bulk and provide overall charge neutrality. In equi-
librium we populate states with energies up to a certain
Fermi energy and then take the system out of equilibrium
by moving electrons from the states between k~ —bk and
k~ to those states between —k~ —bk and —k~ similarly
as in Ref. 6. In this case we have a steady state and
there is an electrochemical potential difference between
the two ends, i.e., Ap = E g gg —E~„g~ that can be
identified with the Hall voltage. We know of a similar
calculation by Heinonen and Taylor where they use the
interesting approach of minimizing a free energy with a
current imposed as a constraint. We would like to point
out that both methods should be equivalent though we
do not arrive at the same results regarding the distribu-
tions of current and charge even when considering the
efFect of the difFerent boundary conditions used. Follow-

We solve (1) and (2) numerically. It is convenient to
work in units of magnetic length l = gh/eB and mag-
netic energy hu, = heB/m'. In these units, the equa-
tions to solve are

ing a similar approach, Pfannkuche and Hajdu minimize
a free energy for fixed total momentum p„ for various fill-
ing factors v but only one sample size. Their results for
integer filling factors are very similar to ours.

The current density can be calculated from

jy(x) = — '
(A: —x) ~QI, (x)~ dk, (7)

summing over occupied states, and the total current is
just I„=jj„(x)dx.

In Figs. 1—3 we show the results for the eigenener-
gies, charge density, and current density for the system in
equilibrium and in nonequilibrium situations. The sam-
ple width is 20l and we used E~ ——~, or equivalently
lk~ ——9.5 and lbk = 0.005. Note that the total current is
zero for the equilibrium case as there are the same num-
ber of current carrying states for the two directions. Also
note that the current density is nonzero in the bulk due
to the electric field. We verified that this bk is within
the linear regime by comparing these results with similar
ones calculated with smaller and bigger bk.

Figures 4 and 5 show the difFerence between the
nonequilibrium and equilibrium distributions for sam-
ple widths of 20 and 40 magnetic lengths. Note that
there is a very important redistribution of charge and
current and that a significant &action of the latter is car-
ried through bulk states. Note that the regions within
a few magnetic lengths &om the edges show almost no
dependence on the sample width, showing that the inter-
action between the two edges is not important except for
the change in electrochemical potential. For 20l width
we have I,q

= 10 new, /2x, I„,q = 0 256—ne.ur, /2',
and b,p = (0.254 6 0.007)flu„giving a Hall resistance
RH = (0.992 + 0.027)h/ne2. In the case of 40l we
have I,q = 10 7ne~, /27r, I„,q = -0.302ne~, /27r, and
A)a = (0.305 + 0.005)hcu„giving a Hall resistance R~ =
(1.010 + 0.016)6/ne .
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FIG. 1. Energies of states as a function of A:. In equilib-
rium, states were populated up to Ez. The nonequilibrium
state was achieved by transferring electrons from states near
the right edge to states near the left one, therefore establish-
ing an electrochemical potential difference between the two
edges b,p = E ), ~ qq —E),~ q), = (0.254 + 0.007)II«), .
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neB nm*egV'(z)
(11)

where the secon erh d term on the right-hand side represents
ssion of the states by the electric field.

we
'

e chan es that occur when a
eed onl to considerHall current is imposed, we need y

nm*ehgY'(z)
(12)h,a

wheret e s eh b' d note the values minus qs the e uilibrium

nl at distances &om the edgeThis equation is vali on y a i
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which are larger than a few times the magnetic length
l. For a semi-infinite system with an edge on its left,
we then consider the edge to be at x = —A l and we
suppose that the charge density there can be calculated
by other means. We denote this edge charge as S(x).
The equations to solve are

bp(x) = — eb(/"(x), x ) 0,heB

bP(x) = — bp(z')u(z —x')dx'
47c660 p

0

S(x')u(x —x')dx' .
4&6'Cp

(14)

; i x, bp ', (n/l2) bp,
: (n/l ) bS, V: (e n/2eeol) V,

where l = nl /a& . (15)

Note that for usual conditions both l and l have the same
order of magnitude. Then

bP(x) =, x) 0,d2V(x)

V(x) = — bp(x')u(x —x')dx'
2K 0

0

+— bS(x')u(x —x')dx' .
2K

(16)

We drop the tilde from now on.

A. Fourier transformation

If we Fourier transform the equations above by defining

f{k) = bp(x)e *"*dx,
0

k, (k) = f V(z)e '"*dx,

Q(k) = f u(z)e '" dT,

0

S(k) = S{x)e '"*dx,

0

()()((k) = V(x)e '" dx,

then (16) transforms to

f(k) = —k P„(k) —ikV(0) —V'(0), (19)

Analysis of the equations above by Thouless shows
that a perturbative expansion is not completely satisfac-
tory and that it is necessary to go beyond it. A sim-
ilar problem was considered by MacDonald et OL and
Thouless but the boundary conditions in those papers
are not, however, the ones we want to consider here, since
it was assumed that a uniform electrostatic field was im-
posed. We now obtain an analytical solution to this prob-
lem using the Wiener-Hopf method~~ for S(x) known.

Let us change notation from the electrostatic potential
4)(x) to the potential energy for electrons V(x) = —eP(x)
and in this section consider this convenient set of dimen-
sionless quantities:

4.(k)+4 (k) =, [f(k)+ S(k)] (20)

We can eliminate P„ to get

[k P( —ikV(0) —V'(0)] + S(k)
( k' kb=

i
1+

i [f(k)+S(k)] . (21)
27r j

If we consider k as a complex variable we can observe
that f and P, are regular and bounded (RB) functions
in the lower half (complex) plane (LHP) while S and
P~ have the same properties but in the upper half plane
(UHP) (for consistency we must require the domain of
analyticity to include a strip around the real axis for all
functions). Note that Q will not, in general, be analytic;
usually Q will have singularities at the imaginary axis.
Now, the goal is to write the equation in such a way that
one side is RB on the LHP and the other side is RB on
the UHP. In order to do so we write

N(k) k2Q(k)

D(k) 2m

asking that N (D) be RB on the LHP (UHP). We now
multiply (21) by D(k) and then decompose again,

L(k) + U(k) = N(k)S(k) .

Now L (U) is RB on the LHP (UHP). Finally we arrange
(21) as

[k Pr —ikV(0) —V'(0)]D(k) + S(k)D(k)
= N(k) f (k) + L(k) . (24)

Note that the left-hand side of the equation is composed
by functions which are regular on the UHP while the
right-hand side is regular on the lower half plane. Then
each function must be the analytic continuation of the
other, therefore both must be equal to an entire function.
Asymptotic analysis for

]
k ~:oo shows that this entire

function must actually vanish everywhere so we obtain
the following expression for the Fourier transform of the
density of electrons:

L(k)'{")= -N(k)

from where we can obtain the charge density, potential,
and current density. The Appendix shows the explicit
formulas for I and ¹

B. Combination with the results of Sec. III

As we have seen, the conditions near the edges are in-
dependent of one another and we can, therefore, extrap-
olate the behavior near one of the edges to a semi-infinite
system. We have found that (12) holds more than four
magnetic lengths away from the edge, so that we can ap-
ply the method above to this problem if we include all
the charge density within 4/ of the edge in S(x). We use
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and using this in Eq. (A2) we get in Eq. (A3) is

where

N(k) = [1+ [
k []

~ exp(P(k) j, (A5) AN(iP)—:[N(iP + e) —N(iP —e)]
2iP=

[p, ,],/, exp(&(p)) (A8)

kink —k
dt,

7l p 1

which has the following property:

y(k) = ~/4 —y(1/k) .

(A6)

(A7)

where

1 ~ taI1 t
Q(p) = —ln p tan ' p —— dt

7r 7C p

that satisfies

The discontinuity of N along the imaginary axis to use &(P) = &(1/P) . (A10)
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