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Theory of potential modulation in lateral surface superlattices
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We have calculated analytically the potential generated in a two-dimensional electron gas by a
lateral superlattice on a GaAs/Al Gai As heterostructure, formed by an array of parallel metal
striped gates on the surface. The shape of the electrostatic potential produced by a bias on the
gates depends on the boundary condition on the exposed surface of GaAs in the gaps between
the gates. The usual assumption of a pinned GaAs surface gives a potential containing only odd
harmonics. This is not in agreement with a recent experimental measurement of the po.'ential from
commensurability oscillations in the magnetoresistance. An alternative model where the surface
charge is frozen in the gaps gives an asymmetry between the gates and the gaps which is closer
to experiment. A quite difFerent origin of the potential is a result of elastic strain resulting from
differential contraction between the metal gates and the GaAs as the sample is cooled, coupling
through the deformation potential. This gives a good 6t to experiment and shows that the strain
from mismatched gates cannot be neglected in electronic transport phenomena that are sensitive to
weak potentials.

I. INTRODUCTION

The rapid growth of interest in ultrasmall semicon-
ducting devices, particularly those based on a two-
dimensional electron gas (2DEG), places ever-increasing
demands on modeling. Electrons are guided by electro-
static potentials through structures analogous to electro-
magnetic waveguides, usually generated by applying a
bias to patterned metal gates on the surface. One of the
simplest structures is a pair of long parallel gates with
a gap between, which produces a quantum wire or elec-
tron waveguide; a short wire or quantum point contact
shows the discrete nature of the transverse wave function
directly through the quantized conductance. Typical
dimensions are around 0.1 pm, so even small voltages on
the gates produce very high electric fields in the struc-
ture.

Although simulations of simple devices such as quan-
tum point contacts give moderate agreement with
experiment, many basic features needed to model these
structures are poorly understood. For example, the op-
eration of devices with patterned gates depends crucially
on the behavior of the exposed surface between the gates.
It is generally assumed that the high density of surface
states on GaAs causes the Fermi energy to be pinned,
but it is not clear that this holds at low temperature.
Also, the usual assumption that all donors are ionized is
certainly inaccurate in GaAs/Al Gai As heterostruc-
tures, where donors can behave as deep levels (DX cen-
ters). Both the surface and the donors have strong ef-
fects on the potential seen by electrons in the 2DEG. An
improved understanding of their behavior, and ways of
testing models against experiments, are vital to improv-
ing the validity of simulations.

Unfortunately most measurements provide very indi-
rect information on the potential seen by the electrons. A
quantity that is relatively simple both to calculate and to

measure is the threshold voltage, at which all active elec-
trons are just driven out of the 2DEG.s'7 Although the-
oretical and experimental values for threshold voltages
sometimes agree, the differences are often large. This
may mean that the surface has been treated incorrectly,
but the high electric 6eld generated by the gate may also
be affecting the surface or the donors. A more direct
measure of the potential seen by electrons in the 2DEG,
for small voltages on the gates, would provide a clearer
probe.

The commensurability oscillations seen in the low-

Geld magnetoresistance of a 2DEG under a lateral super-
lattice give a direct measurement of the periodic poten-
tial. The superlattice provides a one-dimensional peri-
odic potential experienced by the electrons as they travel
kom source to drain along x. A schematic diagram is
shown in Fig. 1. The periodic potential is provided by a
pattern of parallel striped metal gates on the surface, per-
pendicular to the direction in which the electrons travel.
Each gate has a length 2a, the gaps between have width
2b, and the depth of the electrons is d. A voltage 4z on
the gates produces a periodic potential which is trans-
mitted to the electrons in the 2DEG. A problem with
any gated structure such as this is the separation d be-
tween the electrons and the gates on the surface, which
smooths and weakens the periodic potential.

Commensurability oscillations depend on the ratio be-
tween the radius R, (B) of the cyclotron motion in a mag-
netic field and the period of the superlattice, 2(a + b)
The origin of these oscillations is understood within both
quantum-mechanical and semiclassical descriptions.
The semiclassical theory shows that the magnetoresis-
tance R(B) is given by

bR ( v„b nl2 2 2rrnR,

R - qE&y 2(a+ b)R. 2(a+ b) 4
cos
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ential contraction sets up a strain Geld as the sample is
cooled, which couples to the 2DEG through the deforma-
tion potential. This has been used intentionally to con-
Gne electrons for optical purposes with better-controlled
stressors like In Gaq AsP or In Gaq As. This
effect is unintentional in the superlattice, but we find that
it gives the best explanation of the experimental data.

We briefIy describe the experimental results in the next
section, followed by the electrostatic calculations in Sec.
III and strain in Sec. IV.

FIG. 1. Construction of superlattice used in the experi-
ment. The donors lie in a plane c below the surface, sur-
rounded by a parasitic layer of electrons. The 2DEG is a fur-
ther distance s below the donors (which includes an allowance
for the thickness of the 2DEG); d = c+ s. The lengths of the
gates and gaps are 2a and 2b. The origin is chosen in the
center of a gate, with x parallel to the surface in the direction
of the current and y pointing downward.

where R, = mv~/eB is the cyclotron radius, v„is the
amplitude of the nth harmonic of the periodic potential
energy at the 2DEG, Ey and v~ are the Fermi energy
and velocity, and l is the mean free path. Each har-
monic contributes independently, and the phases of the
harmonics of the potential are not re8ected in the mag-
netoresistance. Most experimental data are adequately
described by this model with a sinusoidal modulation
potential. ' This is because the 2DEG is formed deep
below the surface (typically d 100nm) in conventional
high-mobility layers, so higher-order Fourier components
of the surface potential are strongly attenuated. More re-
cent experiments employed a superlattice device with
a period of 270 nm on a shallow 2DEG at an interface
only 28nm below the surface. The improved coupling
between the surface and the 2DEG made the shape of
the periodic potential far &om sinusoidal, and a strong
second harmonic was seen.

In this paper we have tried to model the potential
seen in these recent experiments. This is an advanta-
geous structure, since the 2DEG is only weakly perturbed
by the periodic potential, unlike devices such as quan-
tum point contacts, where a large voltage on the gates
depletes part of the 2DEG. It is usually assumed that
the gates generate an electrostatic Beld that perturbs
the electrons. A difBculty, discussed above, is that the
boundary condition on the exposed GaAs between the
metal gates is not well understood. It is usually assumed
that surface states pin the Fermi energy on the surface.
Our calculations show that this "pinned" boundary con-
dition leads to a potential in the 2DEG containing al-
most no second harmonic, in disagreement with experi-
ment. An alternative model is to assume that the sur-
face charge cannot respond on the time scale of the ex-
periment. This "&ozen" boundary condition leads to a
greater second harmonic, but which is still much smaller
than in experiment. Thus electrostatics cannot predict
the experimental result.

We have also calculated the effect of elastic strain. The
gates are metallic (Au/Ti) and have a different coeffi-
cient of expansion from the GaAs underneath. Differ-

II. EXPERIMENTAL RESULTS

200

PHD

100

50

0
0.0 0.2 0.4

I I

06 B (T)
08 1.0

FIG. 2. Experimental result for magnetoresistance as a
function of magnetic 6eld B. The commensurability oscilla-
tions occur for B ( 0.5 T, and show a strong second harmonic
content. This is confirmed by the power spectral density (PSD
inset) obtained f'rom a Fourier transform of the magnetoresis-
tance considered as a function of 1/B. The peaks at low
frequency arise from commensurability oscillations, showing
a strong fundamental and second harmonic but little third
harmonic; the peak at 7—8 T is from the Shubnikov —de Haas
effect.

The schematic construction of the superlattice used in
the recent experiment 5 is shown in Fig. 1. The x axis is
parallel to the How of current along the surface and y is
downward, normal to the surface. The layers comprise a
GaAs substrate, two 10nm thick A1As barriers separated
by 2nm of Al Gai As b doped with Si to 4 x 10is m
and a 5.4nm GaAs cap layer. The 2DEG is conBned at
an interface 28 nm deep. The extent of the wave function
normal to this interface2 is about 7—8 nm. This is much
smaller than the period of the superlattice and will there-
fore be treated simply by adding it to the depth of the
2DEG, giving d - 35nm. The gates were formed from
15 nm Ti/15nm Au; their length was 2a = 130 nm and
the gaps were 2b = 140 nm. The density of electrons in
the gated region was 3.2 x 10 m with a mobility of
about 40 m2 V s i, corresponding to a mean free path
l = 3.7@m.

The mobility of electrons in these layers is surprisingly
high for so thin a spacer. This is believed to be due to a
parasitic channel of electrons around the h-doped layer.
Although these electrons have a low mobility and make
a negligible direct contribution to transport, they screen
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the random potential due to the ionized donors and en-
hance the mobility of the 2DEG from an expected value
of only about 6 m V s if the full random poten-
tial were operative. Although this means that the device
performs far better than would otherwise be expected,
it greatly complicates the analysis because it means that
the potential from the gate is screened twice, by the elec-
trons around the donors as well as by those in the 2DEG.

The magnetoresistance obtained for zero gate voltage
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FIG. 3. Potential energy in the 2DEG under the superlat-
tice, all in meV but with different scales. The gray rect-
angles show the position of the gates. (a) Deduced from
experiment. ' The phases of the Fourier components are
unknown. The other curves are calculations using difer-
ent models, assuming 4 ~ = —0.1 V for electrostatics and
compression of e = —0.001 on the surface for the strain.
(b) Pinned surface with modified Thomas-Fermi screening
(full line), and a purely electrostatic approximation (broken
line). (c) Pinned surface, including the efFect of the para-
sitic electrons around the sheet of donors. (d) Frozen surface,
purely electrostatic calculation; note the asymmetry between
the peaks snd valleys. (e) Elastic strain before screening
by the 2DEG. (f) Elastic strain reduced by Thomas-Fermi
screening. This gives a strong double minimum whose shape
is close to that of the experimental results, although the over-
all magnitude is slightly too small.

is shown in Fig. 2. The commensurability oscillations
occur for 8 ( 0.5 T, with Shubnikov —de Haas oscilla-
tions at higher fields, and it is clear that a strong second
harmonic is present. This is confirmed by the power spec-
tral density shown in the inset, obtained by considering
the magnetoresistance as a function of 1/B and making
a Fourier transform. Equation (1.1) was used to deduce
the periodic potential from the commensurability oscilla-
tions. The estimated strength of the Fourier components
of the modulation V'"i'(z) were found to be ui"~ = 0.5
meV for the fundamental (first harmonic) and uz"~ = 0.3
meV for the second harmonic. The third harmonic is
barely seen. A sample reconstruction of V'"i'(z) is plot-
ted in Fig. 3(a). This assumes particular values for the
phases, which cannot be recovered &om the experiment;
in particular it is impossible to tell whether the peaks
in potential energy occur under the gates or gaps, and
whether the double features are minima or maxima.

We shall now calculate this potential, first assuming
that it is of electrostatic origin before considering elastic
strain in Sec. IV.

III. ELECTROSTATICS

The electrostatic field generated by patterned gates has
been widely used to guide electrons since its first applica-
tion to produce quantum wires. ' An advantage of this
form of superlattice is that the voltage on the gates @g
can readily be varied to tune the periodic potential seen
by the 2DEG. In fact, the experiments on the superlattice
were performed with 4~ = 0 but nonetheless reveal a pe-
riodic potential in the 2DEG. We must invoke a built-in
voltage associated with the gates if the observed poten-
tial is of electrostatic origin. It turns out that no more
than 0.1 V is needed, which is an acceptable number for
the change in height of the Schottky barrier on the sur-
face of GaAs when a metal is deposited, and this acts
as an effective gate voltage.

Another problem is the boundary condition to be ap-
plied to the &ee surface of GaAs between the gates. It
is usually assumed that the Fermi energy E~ is pinned
on free surfaces of GaAs. This is unambiguous in equi-
librium, where E~ is constant throughout the structure.
However, it presents problems as soon as a bias is applied
to the gates, even if no current Bows, as it is no longer
clear whether the surface is pinned to Ep in the 2DEG
or to that in the gate. Clearly there would be no pattern
in the 2DEG if the surface were pinned to the gate, as no
difference between the gap and gate would be seen from
inside the material. It must therefore be assumed that
the surface remains pinned to E~ in the 2DEG, which
we take as the zero of energy and potential. This means
that the exposed surface behaves as an equipotential at
zero, a convenient boundary condition that gives simple
electrostatics. This is the pinned model.

The diKculty with the pinned model is that charge
must move from the 2DEG to the surface to keep its po-
tential constant in response to a change in 4z. While
this may pose no problem at room temperature, it seems
unlikely at the low temperatures (around 1K) at which
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experiments on superlattices and quantum wires are usu-

ally performed. The charge on the surface may well be
frozen under these conditions. Although the equipoten-
tial model can be used to calculate the density of elec-
trons in the 2DEG at equilibrium at room temperature,
the surface should instead be treated as a simple dielec-
tric boundary, with a fixed charge density, in response to
a change in 4z applied at low temperature. This is the
&ozen model. The high dielectric constant of semicon-
ductors means that the boundary condition is approx-
imately 8$/Bn = 0 in this case, the vanishing of the
normal derivative, rather than P = 0.

A third problem arises &om the parasitic channel of
free electrons that is believed to exist around the plane of
donors. These provide an additional source of screening
beyond the effect of the 2DEG. We have treated this only
for the case of a pinned surface.

The rest of this section contains four calculations of
the potential in the 2DEG. First we consider the pinned
model, and use Thomas-Fermi screening to treat the
2DEG. This is then extended to include further screening
&om the parasitic layer of electrons. The next calculation
is again for a pinned surface but uses a purely electro-
static approximation. This exploits the good screening
provided by the 2DEG to treat it as an equipotential sur-
face, and has the advantage that it can be extended to
more complicated geometries and boundary conditions.
It is used in the final section to treat the frozen model,
which is complicated by a mixed boundary condition on
the surface. We write the electronic charge as —e.

A. Pinned surface mith Thomas-Fermi screening

Start by calculating the potential @s(z,y) from the
gate alone. The potential on the surface is a square wave
with 4s (z, 0) = @s for uzi ( a and C's(z, 0) = 0 otherwise
within the fundamental period ized ( (a+ b). This can be
expanded as a Fourier cosine series,

@s(z,0) = 2/so(0) + ) Ps (0) cos(q z),
en=1

with wave vectors q = arm/(a + b) and coefBcients
Ps (0) = [24s/q (a + b)] sin(q a). Upper case letters-
are used for quantities in real space with corresponding
lower-case letters for the Fourier series in x. Each Fourier
coefficient decays exponentially with depth, so the coeffi-
cients at depth y are given by Ps (y) = Ps (0) exp( —q y).
This emphasizes the importance of having a shallow
structure with d « (a + b) if higher harmonics are to
be seen in the 2DEG.

This potential is screened by the 2DEG. The dielectric
function of a 2DEG in the Thomas-Fermi approximation,
which is adequate for the long wavelengths that concern
us, is eTp(q) = 1+quip/q = 1+2/(aoq) where the screen-
ing wave vector qTp = 2/as and the effective Bohr radius
1S

B. Effect of parasitic channel

As mentioned in Sec. II, it is believed that there are
free electrons around the plane of donors in the exper-
imental structure. These will also screen the potential
from the gates on the surface and reduce it below the
estimate of the previous section. We shall assume that
the electrons in this parasitic channel form another two-
dimensional electron gas, trapped in the potential well
produced by the ionized donors. Although its mobility
is far below that of the "intended" 2DEG, so it does not
contribute significantly to transport, it can screen the
static potential from the gates. More than one electric
subband may be occupied, in which case the screening
will be more efFective than calculated here.

The situation is shown in Fig. 1. The parasitic layer
lies a distance c below the surface, separated &om the
2DEG by s, with d = c+ s. Consider a single Fourier
component q of charge and potential in the plane. The
total change in potential energy in the 2DEG is vP ',
which includes —ebs (d) from the gate (the external po-
tential) and contributions from polarization in the two
planes of electrons. This induces a Fourier component
of areal charge density 0 . A superscript "(p)" is added
to denote the parasitic layer. According to the Thomas-
Fermi approximation, the charge density induced in the
2DEG, a, is given in terms of the total potential energy
v PRI' by

cr =e v
m ™ (S.4)

This charge density in the plane y = d produces a poten-
tial whose Fourier components are

about 10 nm in GaAs. This form for c TF(q) was derived
for a 2DEG surrounded by infinite regions; here we must
correct for the pinned surface at y = 0. This reduces the
effectiveness of screening at long wavelengths compared
with the depth d of the electrons, giving

2
eTF(q, d) = 1+ [1 —exp( —2qd)].

apq

An important limit is eTp(q = O, d) = 1+ 4d/ao 16
here; it does not diverge as for the 2DEG without bound-
aries. The Fourier coefficients of the screened poten-
tial energy V"'(z) in the 2DEG are given by v"'

ebs—(d)/eTF(q, d) For.4's = —0.1 V this gives vP' =
3.6 meV and vz" ——0.14 meV. The fundamental v1"
is much too large, and the second harmonic v2" is too
small. There would be no second harmonic at all if the
gates and gaps were of equal length (a = b), and the
experimental device differs only slightly from this condi-
tion. The potential energy V"'(z) is plotted in Fig. 3,
and the near symmetry between the peaks and valleys
reflects the weak second harmonic.

Although this estimate is based on a very rough esti-
mate for 4~, it can be improved if we account for the
electrons that surround the plane of donors.

4Ã66p 5
ap =

7me2 (3.2) lw ~l e
— Iw+~l).

266p g~
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(3.6)

where the Grst term is the external potential, the second
arises &om polarization of the parasitic layer and the
third is from polarization of the 2DEG. Using Eq. (3.4)
and the analog for o " gives

v ' = —eP (d)—
apq

—q s (1
—2q c) (p)

2
(1 —e "-")v' '

apq

= —egg (d) —[e~p(q, c) —1]e 'v ~

—[epp(q, d) —l]v (3.7)

the erst exponential is the direct potential and the second
is an image added to satisfy the equipotential boundary
condition on the surface. The total self-consistent poten-
tial energy in the 2DEG is given by

C. Pinned surface with pure electrostatics

bC me2d 4d~ =1+,=1+—.
8O'F x66p A Gp

(3.10)

Although the results of the previous two sections show
that the pinned surface cannot explain this particular
experiment, we give here another way of calculating the
potential induced in the 2DEG because it of general use-
fulness and relates closely to the method that we use in
the following section to treat the frozen surface. It is
a purely electrostatic calculation in which the dielectric
function of the 2DEG is not introduced explicitly.

Consider Grst a uniform gate rather than a superlat-
tice and make a small uniform change in the density of
electrons in the 2DEG, bn2~. This changes the Fermi
energy, expressed as a voltage, by h4p = bEp/e
(1/e)(vrh /m)bn2ii. It also changes the electrostatic po-
tential between the gate and 2DEG by eb'n2iid/(ceo). The
measured voltage between the gate and 2DEG changes
by the sum of these, bO~. The ratio of this to the change
in Fermi voltage is

which has been simpli6ed by introducing the Bohr radius
[Eq. (3.2)] and the definition of the modified Thomas-
Fermi dielectric function [Eq. (3.3)]. Similarly, the total
potential energy in the parasitic layer is

"=-~K()—
[ (q- ) —1] '"'

—[e~p (q, c) —1]e q 'v (3.8)

&eF(q) = e'rp(q, c)eyp(q, d) —e '[e~p(q, c) —1] . (3.9)

Eliminating v " between these gives vP '
= —egg (d)/e, s(q ) where the effective dielectric func-
tion is

This is just the limit as q ~ 0 of the modi6ed Thomas-
Fermi dielectric function, Eq. (3.3), and is around 16 for
the experimental structure. This large number means
that the dominant energies in the system are electro-
static rather than kinetic. It should therefore be a good
approximation to neglect the kinetic energy and assume
that the 2DEG screens the potential perfectly, b@p = 0.
This means that we solve the electrostatic problem in the
region between the surface and the 2DEG, treating the
2DEG as an equipotential at zero. We can then calculate
the normal Geld on the 2DEG, use Gauss's theorem to
deduce the charge density, and thus calculate the change
in Fermi energy of the 2DEG. If the normal electric Geld
is E„(z),the same arguments as those for Eq. (3.10) lead
to a change in potential energy in the 2DEG of

This effective dielectric function has two simple limits.
The 6rst is where the parasitic channel is just under the
surface (c = 0, d = s). The parasitic channel can do
nothing in this limit because the potential on the surface
is imposed as a boundary condition. Now e~p (q, c = 0) =
1 so Eq. (3.9) reduces to e a(q) = eyp(q, d) which is the
correct result as if no parasitic layer were present. The
second limit is when the 2DEG and the parasitic channel
of electrons coincide (s = 0, d = c), so there are still two
sheets of electrons that screen the potential but they lie
in the same plane. Thus we should get a result similar to
that for a single 2DEG [Eq. (3.3)], but the polarizability
(e —1) should be doubled to allow for the two planes
of electrons. Indeed, Eq. (3.9) reduces in this limit to
~.~(q) = 2[~~p(q, d) —1]+1.

Returning to the layers in Fig. 1 with O~ = —0.1 V, we

get v~
' = 0.95 meV and v2

' ——0.04 meV. The magni-
tude of v&

' is now close to experiment but v2
' is far too

small. This is confirmed by the plot of Vi' '(z) in Fig.
3, and indicates that electrostatics with a pinned surface
is unable to explain the shape of the potential deduced
from the experiment.

V(z) = —4eaoE„(z). (3.11)

We can now apply this to the superlattice and calculate
the potential 4(z, y) in the region between the surface
and the 2DEG. The potential on the surface, Cg(z, 0),
was written as a Fourier series in Eq. (3.1). This needs to
be extended as a function of y, respecting the boundary
condition 4 = 0 on the 2DEG at y = d. The Fourier
coefficients of the potential as a function of depth are
given by

sinh[q (d —y)]
sinh(q d)

(3.12)

(3.13)

The numerical values for C ~ = —0.1 V are v~ = 4.1 meV

taking the limit for m = 0. The derivative with respect
to y at y = d gives E„,and substituting into Eq. (3.11)
gives the self-consistent (screened) potential energy v'q

in the 2DEG,
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and vz~ ——0.18 meV. These are close to those obtained
using Thomas-Fermi screening in Sec. IIIA, but a little
higher because we have neglected the "+1" on the right-
hand side of Eq. (3.10).

D. Frozen surface

In this case we have only been able to obtain a solution
analogous to the electrostatic one of the previous section.
The reason is that the boundary condition on the surface
is now mixed, which complicates the electrostatics. Con-
sider the unit cell about the origin, ~x~ & (a + b) and
0 & y & d. The electrostatic potential 4(x, y) must sat-
isfy

c=k(a+&)
= 0.

fzf & a,

/x[ & a,

(3.14a)

(3.14b)

(3.14c)

(3.14d)

CK(ki ) = (a + b); CK'(ki) = d. (3.i5)

An elliptic integral is then used to map the half plane
back into a rectangle in the m plane, with p
(k2/ki)sn(w, k2). The parameter of this mapping is

The fourth of these follows &om the periodicity of the
superlattice (and also holds at 2: = 0).

The solution uses conformal mapping and the elliptic
integral of the first kind (Ref. 24, Sec. 7.6, whose notation
we follow). The technique is standard and will only be
outlined here. A first mapping p = sn(z/C, ki) uses the
elliptic function to expand the rectangular unit cell in
z = x+iy into the upper half plane of p. This requires
a parameter kq and a scale factor C that obey

This is confirmed by the Fourier coefEcients which were
extracted numerically, giving v~ = 3.6 meV and v2' ——

—0.4 meV. The numbers will be reduced if we allow for
screening by electrons in the parasitic layer. Although
the relative content of second harmonic in the potential,

~
v2 /vi'~, is now much greater than for the pinned surface,

it is still well below the experimental value.
We have to conclude that electrostatics is unable to

explain the experimental results, even with the different
boundary conditions, and now turn to elastic strain as a
different means of patterning the 2DEG.

IV. STRAIN

The electrostatic potential is applied to the 2DEG
through metal gates on the surface of the GaAs. These
are composed of a layer of Ti with a further layer of Au
on top. The gates are usually deposited by evaporation
which takes place at a high temperature, although it is
difficult to know the precise conditions that prevail dur-
ing deposition. The coefBcients of expansion o. of GaAs
and Ti are close to each other at room temperature
(o,c~~, —6.8 x 10 and nT; 8.3 x 10 ), but their
low-temperature behavior is diferent; the average values
are aG~A, 4 x 10 and aT; 7 x 10 as the tem-
perature decreases &om 300 K to 4.2 K. As a result, Ti
shrinks by a fraction of about 10 s with respect to GaAs
at helium temperature. The deformation potential con-
stant:- —8 eV, so the amplitude of the bare potential
acting on electrons in the 2DEG may approach 8 meV in
a shallow structure. Screening will reduce this to about 1
meV, which is of the magnitude observed in experiment,
so strain is a plausible mechanism. We shall calculate
the strain field analytically in this section and deduce
the potential energy in the 2DEG, first for a single gate
where numerical calculations are available for compari-
son, and then for the array of gates. First we give the
general elastic theory needed.

k2 ——kgsn —,kg (3.i6) A. Ceneral elastic theory

and the rectangle has ~Redo~ & K(k2) and 0 & Imio &
K'(k2). After these two mappings the equipotential re-
gions [Eqs. (3.14a) and (3.14c)] occupy the two horizontal
edges of the rectangle, while the boundaries with van-
ishing normal derivative [Eqs. (3.14b) and (3.14d)] are
brought together to fill each of the two vertical edges.
The electrostatic problem is trivial in this plane, giv-
ing 4 = 4&[1 —Imur/K'(k2)]. The normal electric field,
B4/By, on the line y = d is then used to find the screened
potential energy in the 2DEG from Eq. (3.11). The final
result is Es = (1 —v )o —v(1+ v)o„„ (4 1)

We shall assume that the system is translationally in-
variant in the dimension normal to the cross section of
Fig. 1, so that all stresses o and strains s depend only on
x and y. Under this assumption there is no normal strain
along the length of gates, e, = 0, but the stress cr„does
not vanish. The normal stresses and strains are related
by Es = o' —v(o„„+o„)and permutations, where
E is Young's modulus and v is Poisson's ratio. Setting
e, = 0 and eliminating cr„gives

ao K'(ki) 1 —kisn2(2:/C, ki)
4d K'(k2) 1 —kzzsn2(x/C ki)

and similarly for e„„.The stress can be deduced &om
a function y(x, y) that obeys the biharmonic equation,
V V' y = 0; the components are given by

This is plotted in Fig. 3 for 49 = —0.1 V. There is now
a clear asymmetry which holds even if a = 6, with broad
peaks under the gates and narrow valleys under the gaps.

x
Keg

y

x x
Oyb2.

" "" Bx' (4.2)
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The dilation b, which afFects the electrons through the
deformation potential, is given by

Eb = F(e + e„y)= (1+v)(1 —2v)(o + o„„),(4.3)

B$
B'l/

B$ = 0, /x/ ) a,

c = A (say), /zf ( a,
2 1 —v

(4.7a)

(4.7b)

and Eq. (4.2) shows that o + cr» ——V' g.
We take the boundary conditions on o. and y to be as

follows:
B2y E

o = = e under the gates, (4.4a)
Bg 1 —p

B
rr „=— = 0 between the gates, (4.4b)

BQBX

B
o.» —— ——0 everywhere at y = 0,Bx

y=0 aty=oo.
(4.4c)

(4.4d)

The main assumption is that there is no relaxation of the
gate. This requires that the gate is thin enough that we
can neglect any stress o.» due to bending of the gates,
but thick enough that we can neglect variations in s
caused by stress in the GaAs acting back on the gate;
we shall check this briefly in Sec. IV D. Then Eq. (4.4a)
follows Rom Eq. (4.1) as well as the assumption that
the strain parallel to the surface is uniform under the
gate with a value s . Condition (4.4b) states that there
can be no shear stress at a free surface, while Eq. (4.4c)
requires a thin gate. The problem can be simplifed by
writing y = yP, where P satisfies Laplace's equation and
the following boundary conditions:

E 0 under the gates,
1 —v2

B$
Bg
B$
Bx
/=0

= 0 between the gates,

at y= oo.

(4.5a)

(4.5b)

(4.5c)

Boundary condition (4.4c) is satisfied trivially. The dila-
tion is given by

2(1+ v)(l —2v) B$
E By

(4.6)

B. Single gate

Consider a single gate between x = +a on the surface
of GaAs. We have to find a solution to Laplace's equation
with the following boundary conditions on the surface,
y= 0:

The problem of calculating P is now closely related to
the electrostatic problems that we have solved in Sec. III;
condition (4.5a) is like a constant charge density under
the gate, while (4.5b) shows that the rest of the surface
behaves as an equipotential, the reverse of their roles in
the true electrostatic problem. The value of the equipo-
tential is unknown and should be adjusted so that the
solution obeys Eq. (4.5c), but we shall ignore this, since
we need only the derivative of P. Again, conformal trans-
formation can be used to solve the problem, and we shall
first do this for a single gate to allow comparison with
previous numerical results.

and P must vanish at infinity. The solution is written as
the imaginary part of a complex function m = u+ iv,

P = Almiv; to = z — z2 —a2. (4.8)

The branch cut of the square root is chosen so that
Imv z2 —a2 ) 0 on the positive y axis. The first term,
z, satisfies the boundary conditions on y = 0; in partic-
ular, it generates the 6eld under the gate. However it
gives the wrong behavior at in6nity and this is corrected
by the second term, which obeys Eq. (4.7b) and gives
B$/By = 0 under the gate. Thus the sum satisfies all the
boundary conditions.

The dilation needs B$/By = ABv/By = ARediv/dz
Thus, using Eqs. (4.6) and (4.7a), the potential energy
seen in the 2DEG at a depth y is

0---
6
k -2---

-4
y = 60nm

-6
-200

0.5

-100 0
x (nm)

100 200

a5

C$
g, -0.5

~ ~
CI5

g Q.
„„

I
/

-1
0 50

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~r

I

100

y (nm)

I

150 200

FIG. 4. Strain under a single gate of width 2a = 130 nm.
(a) Potential energy caused by dilation as a function of 2:

at depths of y = 20, 40, and 60 nm, with vertical scales
offset as shown by the broken lines. The central region is
in compression, giving a positive potential energy, but this
changes sign near the edges of the gate, marked by a gray
rectangle. (b) Dilation (full line) and individual components
of strain as a function of depth y under the middle of the gate,
x = 0. The dilation decays monotonically but the individual
components of strain change sign as a function of depth. The
strain under the gate is r = —0.001 (GaAs in compression).
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p 1 —2V BtUV"'(z) =:-b(z, y) =:-so Re
1 —v 8z

, 1 —2v t' z

gz2 —a2 )

(4 9)

(4.10)

This is plotted in Fig. 4 for e = —0.001 and v = 0.31.
Qualitative comparison with numerical results~s ~" ~s is
excellent, although there are some quantitative differ-
ences because we have not allowed for relaxation of the
stressor. Our curves are inverted with respect to these
calculations because their stressors put the GaAs sub-
strate into tension rather than compression as in our case.
There is a region of compression (negative dilation) un-
der the gate, which changes sign near the edge of the
gate before decaying. The dilation under the middle of
the gate decays monotonically as a function of depth but
the individual components of strain both change sign.

C. Array of gates

The stress field under the periodic array of gates can
be found in a similar way to the electrostatic solution
with a frozen surface As i.n Eq. (4.7), the boundary
conditions on P are that B$/By = A under the gates
and B$/Bz = 0 or P = constant in the gaps between.
By symmetry, we also know that the normal derivative
B$/Bz = 0 under the midpoints of the gates and the
gaps. As for the single gate, we seek a complex potential
P = Almur. Again a linear term m = z satisfies the
boundary conditions on y = 0 but not that at infinity
and a correction must be found. The method (Ref. 28,
pp. 90—91) is almost identical to Sec. III D, but is rather
simpler because the region extends to infinity rather than
being a finite rectangle terminated by the 2DEG, and
trigonometric functions are adequate.

A first mapping, p = cos[z~mz/(a+b)], expands the unit
cell (a semi-infinite strip in z) into the upper half plane
of p. The second, p = cos[zma/(a+b)] cos(m/B), restores
the unit cell to a strip in m. The boundaries with van-
ishing normal derivative (the gates and the lines of sym-
metry) now lie next to each other on the infinite vertical
edges, and the short horizontal edge is purely an equipo-
tential corresponding to the gap between the gates, so
the potential is trivially given by Imm as required. The
constant B is adjusted to cancel the divergence of m = z
at infinity, and the total complex potential becomes

arccos
cos[2xz/(a+ b)]

cos[-', n.a/(a + b)]
(4.11)

This result reduces simply to that for a single gate [Eq.
(4.8)] in the limit b -+ oo. For the dilation we need

de sin[-'mz/(a + b)]

sin 2m z a + b —sin 2 era a + b

(4.12)

D. Strain under the gate

Finally, we need to check the assumption that the Ti
gates are uniformly strained. At equilibrium, the stresses
at the interface between the Ti gate and GaAs obey the
general relation2~

The potential energy in the 2DEG is then given by Eq.
(4.9). This is plotted in Fig. 3. The features clearly fol-
low from those of the single gate: a barrier under each
gate, changing sign near the edges to give a double min-
imum under each gap. Thomas-Fermi screening by the
electrons in the 2DEG, according to Eq. (3.3), reduces
the potential and gives Fourier coefficients of vz~' ——0.24
meV and v2~' ——0.10 mV. The potential energy is plotted
as a function of x in Fig. 3 and clearly agrees well with
experiment. The ratio ~v~" /v~" [

0.4 which is close to
the experimental value of 0.6; the magnitudes themselves
are rather too sm.all but we view the agreement as good
given the lack of information needed to determine so .
Screening due to the parasitic layer of electrons can also
be included, as in Sec. IIIB. It has little effect on the
shape but reduces the magnitude of the potential by a
further factor of 4.

A remaining puzzle is the third harmonic of the po-
tential. The third harmonic has about 0.4 the weight
of the second harmonic in our calculation (Table I), but
it is almost absent &om the experimental measurement.
This apart, we have shown that strain due to differential
contraction between the Ti gates and the GaAs provides
an acceptable explanation of the potential measured by
the commensurability oscillations, superior to any of our
results based on electrostatics.

TABLE I. First, second, and third harmonics of the potential in the 2DEG observed in
experiment and calculated using difFerent models.

Model

Experiment
Pinned surface, no screening
Pinned surface, Thomas-Fermi
Pinned with parasitic channel
Frozen surface
Strain
Strain, screened
Strain with parasitic channel

Vy

(meV)
+0.5
28.1
3.6
0.95
3.6
1.9
0.24
0.064

V2

(meV)
+0.3

0.73
0.14
0.04

—0.44
0.49
0.10
0.028

V3

(meV)
(0.1
—1.8
—0.47
—0.15
—0.37
—0.16
—0.04
—0.013

S2 Vl

0.6
0.03
0.04
0.04
0.11
0.26
0.40
0.44
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Tl
h

~+zz GaAs
~y (4.13)

which applies to a thin film of thickness h &( a. Using
Eq. (4.1) to eliminate o.T', and assuming that the film is
so thin that o„„=0, gives

B~z~ (1 —+T~)GGaAs GaAs

0 hE; (4.14)

where GG A, is the shear modulus of GaAs. We assumed
earlier that the gate was uniformly strained, so the right-
hand side of this equation must be small. For an esti-
mate, put Bs /Bx = so/a and s „=so where so is a
rough measure of the strain. Then a dimensionless mea-
sure of the variation in strain is given by

Bs» a(l —vT;) GGsA,
Bz hET;

(4.15)

For h = 30nm and a = 70nm we get A - 1.6, which
is not as small as we would like. Fortunately, numerical
calculations29 show that the qualitative behavior of the
strain distribution remains the same at A ( 5. The limit-
ing case of extremely large A can be solved with a Wiener-
Hopf approach but we defer this calculation to a further
publication, where we also consider the anisotropy of
GaAs. The analytic calculation therefore appears ade-
quate, given that the uncertainty in s means that we
cannot expect precise agreement with experiment.

and frozen surface in the electrostatic calculation, but it
proved that neither of these models could explain the ex-
perimental data. The strain field produced by diH'eren-

tial contraction between the metal gates and semiconduc-
tor, however, fits the data within a factor of 2 which we
feel to be excellent agreement given that the deposition
conditions are not known precisely. Strain also explains
immediately why a periodic potential is present even
when the gates are tied to ground and no electrostatic
field is expected; this has been seen in other experiments
that used a gate to apply the periodic potential. The
total potential with a bias applied to the gate should be
given by a superposition of our results; such an analysis
is under way.

Although strain has been used to pattern semiconduc-
tors on a submicrometer scale for optical purposes,
it is more difBcult to detect strain through electronic
transport because of the small potentials that result after
screening. The commensurability oscillations are unusual
in that small periodic potentials give rise to large eH'ects

in the magnetoresistance, making the eEects of strain
visible. Very much larger potentials would be needed
to deplete and pattern a 2DEG into a wire, requiring
enormous strains if coupling is through the deformation
potential. Another possible route would be to harness
the piezoelectric coupling, which in principle is capable
of generating much larger potentials, but the high sym-
metry of GaAs must be defeated for this.

V. CONCLUSIONS
ACKNOWLEDGMENTS

We have calculated the potential generated in a 2DEG
by a lateral surface superlattice, considering both elec-
trostatics and elastic strain, and the results of the differ-
ent models are summarized in Table I. The original aim
of this work had been to discriminate between a pinned

This work was partly supported by U. K. SERG Grant
No. GR/H44714. We are grateful to R. Cusco, S. P.
Beaumont, and A. R. Long for many useful discussions.
It is also a pleasure to thank R. Cusco for a close reading
of the manuscript.

' T. J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and
G. J. Davies, Phys. Rev. Lett. 5B, 1198 (1986).
H. Z. Zheng, H. P. Wei, D. C. Tsui, and G. Weimann, Phys.
Rev. B 34, 5635 (1986).
D. A. Wharam, et aL, J. Phys. C 21, L209 (1988).
B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G.
Williamson, L. P. Kouwenhoven, D. van der Marel, and C.
T. Foxon, Phys. Rev. Lett. BO, 848 (1988).
J. A. Nixon, J. H. Davies, and H. U. Baranger, Phys. Rev.
B 43, 12 638 (1991).
J. H. Davies, Semicond. Sci. Technol. 3, 995 (1988).
S. E. Laux, D. J. Prank, and F. Stern, Surf. Sci. 19B, 101
(1988).
D. Weiss, K. von Klitzing, K. Ploog, and G. Weimann,
Europhys. Lett. 8, 179 (1989).
R. R. Gerhardts, D. Weiss, and K. von Klitzing, Phys. Rev.
Lett. B2, 1173 (1989).
R. W. Winkler, J. P. Kotthaus, and K. Ploog, Phys. Rev.
Lett. B2, 1177 (1989).

C. Zhang and R. R. Gerhardts, Phys. Rev. B 41, 12850
(1990).
C. W. J. Beenakker, Phys. Rev. Lett. B2, 2020 (1989).
P. H. Beton, E. S. Alves, P. C. Main, L. Eaves, M. W.
Dellow, M. Henini, O. H. Hughes, S. P. Beaumont, and C.
D. W. Wilkinson, Phys. Rev. B 42, 9229 (1990).
P. H. Beton, M. W. Dellow, P. C. Main, E. S. Alves, L.
Eaves, S. P. Beaumont, and C. D. W. Wilkinson, Phys.
Rev. B 43, 9980 (1991).
R. Cusco, M. C. Holland, J. H. Davies, I. A. Larkin, E.
Skuras, A. R. Long, and S. P. Beaumont, Surf. Sci. (to be
published).
K. Kash, R. Bhat, D. D. Mahoney, P. S. D. Lin, A. Schere,
J.M. Worlock, B.P. Van der Gag, M. Koza, and P. Grabbe,
Appl. Phys. Lett. 55, 681 (1989).
I.-H. Tan, D. Lishan, R. Mirin, V. Jayaraman, T. Yasuda,
E. Hu, and J. Bowers, Appl. Phys. Lett. 59, 1875 (1991).
I.-H. Tan, T. Yasuda, R. Mirin, D. Lishan, E. L. Hu, J.
Bowers, and J. Merz, J.Vac. Sci. Technol. A 10, 664 (1992).



49 THEORY OF POTENTIAL MODULATION IN LATERAL. . . 4809

I.-H. Tan, M. Y. He, J. C. Yi, E. Hu, N. Dagli, and A.
Evans, J. Appl. Phys. 72, 546 (1992).
F. Stern and S. Das Sarma, Phys. Rev. B 30, 840 (1984).
S. M. Sze, Physics of Semiconductor Devices (Wiley, New
York, 1981).
R. B. Darling, Phys. Rev. B 43, 4071 (1991).
F. Stern, Phys. Rev. Lett. 18, 546 (1967).
J. Mathews and R. L. Walker, Mathematical Methods of
Physics (Benjamin, Menlo Park, CA, 1970).
R. I. Cottam and G. A. Saunders, J. Phys. C 6, 2105 (1973).

M. Kutz, Mechanical Engineer's Handbook (Wiley, New
York, 1986).
L. D. Landau, E. M. Lifshitz, A. M. Kosevich, and L. P.
Pitaevskii, Theory of Elasticity (Pergamon, Oxford, 1986).
W. R. Smythe, Static and Dynamic Electricity, (McGraw-
Hill, New York, 1950).
V. V. Tvardovskii and I. A. Larkin, Struin Distribution in
an Anisotropic Half Spa-ce Under an E/astic Plate on its
Surface (private communication).








