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Band nonparabolicity and three-dimensional aspects in quantum dots on Insb
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Quantum dots with high lateral quantization energies are created on InSb by means of a per-
forated Schottky gate. With a gate voltage the lateral quantization energies can be tuned and
approach values up to huo 25 mev, which is comparable to the subband separations connected
with the vertical motion in the corresponding quasi-two-dimensional electron system. By far-infrared
spectroscopy, we observe the two fundamental modes ~+ in a magnetic field and verify the predicted
polarization selection rules. The measured transition energies are described by employing a realistic
three-dimensional model potential and taking into account the conduction band nonparabolicity of
EnSb and the resulting coupling of the vertical subbands.

INTRODUCTION I. EXPERIMENTAL DETAILS

Quantum dots in semiconductors originate from the
confinement of quasi-two-dimensional electron gases in
both lateral dimensions on the length scale of the de
Broglie wavelength. This way, one creates totally quan-
tized, atomiclike electron systems. Unlike in donors
or real atoms with their Coulomb potentials, the exter-
nal potential for the electrons in a quantum dot is not
well defined. It depends on the position and number of
fixed charges on surface states, donors, or acceptors, and
on the metal gates, which are, in general, only poorly
known. For these reasons, a parabolic lateral confine-
ment potential 2m'~og with a phenomenological &e-
quency &uo and the efFective-mass-approximation (EMA)
with an efFective electron mass m* has often been used
as a first approximation to describe the two observed
far-infrared (FIR) modes uy The succe.ss of this simple
model is based on a generalization of Kohn's theorem,
which states that the intrinsic many-particle character
of such dots cannot be seen in the dipole spectra, as
the dipole operator couples only to the center-of-mass
motion.

In our quantum dot samples, lateral quantization en-
ergies up to ~0 25 meV are achieved. In particular,
these high quantization energies allow the verification of
the theoretically predicted polarization selection rules of
the fundamental modes u~ in magnetic fields at conve-
nient wavelengths A = 100 pm in the FIR regime.

Suggested by the geometry of our samples, we intro-
duce a three-dimensional confinement potential which is
derived from the simple electrostatic model of a conduct-
ing plane with a circular hole in it;. Taking into account
the nonparabolicity of the InSb conduction band as well
as the resulting coupling of the lateral and vertical mo-
tion of the dot electrons, we obtain a qualitative descrip-
tion of the experimentally observed transition energies.

The idea of the InSb quantum dots is sketched in Fig.
1(a). Essentially, we have a metal-oxide-semiconductor
structure with the alloy NiCr on the InSb as a perforated
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FIG. 1. (a) Sketch of the quantum dot structure and of
the resulting lateral potential at the interface (z = 0). (b)
Electrostatic potential U(r) given by Eq. (2) for the model
of a conducting plane with a circular hole of radius B, plot-
ted in units of its depth Us ——eF&&R/z as a function of the
dimensionless cylindrical coordinates g/R and z/R.
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Schottky barrier. This pins the Fermi energy at the
NiCr-InSb interface above the valence band edge. Un-
derneath the narrow regions between the NiCr mesh, mo-
bile inversion electrons are induced by the gate voltage
V~. The resulting lateral potential at the InSb surface
(z = 0) is also sketched in Fig. 1(a). For intensity rea-
sons we must fabricate about 10 dots on a single sam-
ple. There is virtually no tunneling between adjacent
dots since the barrier height between dots is of the order
of the band-gap energy E~ = 236 meV and the distance
is comparable to the grating constant a = 400 nm of the
quadratic dot array. Also, the FIR resonance &equen-
cies are virtually unaffected by electromagnetic coupling
between individual dots.

The samples are fabricated by holographic lithography,
NiCr shadowing, and liftoff of the photoresist in acetone.
The later preparation step creates the holes in the NiCr
Schottky barrier with typical radii R 150 nm. Finally,
a Si02 gate insulator is deposited by plasma-enhanced
chemical vapor deposition and the homogeneous NiCr
top gate is evaporated. i2'is Via field effect, the dots can
be charged without having a contact layer, since the Insb
substrate has a finite resistivity in the megaohm regime
even at liquid helium temperatures. We determine the
threshold voltage Vq from the onset of absorption and
establish a certain number no of electrons in an individual
dot by the voltage difference AVz ——V~ —V&.

The spectra are taken at liquid helium temperature
T 2 K for various lines of a FIR waveguide laser. In
some experiments the radiation is circularly polarized
with the aid of a wire-grid polarizer and quarter-wave
plates made from y-cut quartz crystals of appropriate
thicknesses. We record the relative change in transmit-
tance b,T/T = [T(Vq) —T(V9)]/T(Vt) « 1 versus the
strength B of a magnetic field which is applied perpen-
dicular to the dots. This signal is related to the high-
frequency conductivity o'(u, B) of the dot electrons by
the Fresnel formula

eI" R2
U(r) = — dk ji(kR) e "'Jp(k(p) .

0

(2)

Numerically determined values for U(r) are shown in Fig.
l(b) as a function of g and z. Close to the center of the
hole, this potential can be approximated by its expansion
for g&&R,

eEO R eEO
U(r) = — + z arctan

i

—
i

7r 7r

The first term Up —— eFpR/—vr is a constant energy shift
describing the depth of the dot potential. The derivative
of the second term is an electric field in the z direction in-
dependent of g. The presence of charged interface states
and the discontinuous change of the dielectric constant
&om the oxide to the semiconductor will change this elec-
tric field inside the semiconductor. For the sake of sim-
plicity, we describe the resulting vertical, z-dependent
part of the potential within the common triangular-well
approximation

z(0
z&0, (4)

and choose the total field I" as an adjustable parameter.
The third term in (3) is a parabolic lateral confinement
with a curvature that decreases with increasing distance
away &om the interface. Motivated by these considera-
tions, we use the model potential

V(r) = v, (z) + v „(g)

drical coordinates ((p, y, z), the electrostatic potential of
this configuration for z & 0 is given by

AT 2 0'((d, B)/Yp
T a 1+ i/s+ op/Yp

with the vacuum admittance Yp ——1/(@pc), the grating
constant a, the dielectric constant e of the semiconductor,
and the total sheet resistivity sr~ of the metallizations.

II. THEORY

where v, (z) is the triangular potential given by (4), and
v „(g) = im'~p2g2 is the common parabolic lateral con-
finement. The last term in (5) cannot be separated
and leads to a coupling of the electron motion in the
z direction to the motion in the xy plane in this three-
dimensional potential.

A. Model potential B. Kinetic energy

To describe the confinement of the electrons in our
quantum dot structure, we start from the simple electro-
static model of a conducting sheet in the xy plane with
a circular hole of radius R, and an applied electric field
in the half space z & 0 which is constant Fp ——(0, 0, Fp)
far away &om the hole. For an idealized structure with-
out charged interface states and with no discontinuity in
the dielectric constants of oxide and semiconductor, the
field strength Fp ——V9/d „would be determined by the
gate voltage V~ and the oxide thickness d „. In cylin-

To consider the nonparabolicity in the conduction
band of a semiconductor with fundamental gap E~ and
effective mass m', we start &om the kinetic energy term

p2

E9+ E —V(r) 2m'
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where E is the eigenenergy of the Hamiltonian with the
confinement potential V(r). In (6) we used the approx-
imative replacement p /2m' E —V(r) to obtain the
sum of the kinetic energy in EMA and a correction. This
replacement and the Taylor expansion for E V—(r) (( Eg
leads to a simpler correction proportional to p, which is
equal to a sum of terms for the z direction, for the xy
plane, and a coupling term:

( p' 5 1 t' p,' l

2 p'*+p p'
E~ 2m* 2m*

t'P.'+ J „'&
'

Eg I
2m*

(7)

We include a magnetic Geld in the z direction by adding
the vector potential to the components p and p„. As
a consequence, the second term on the right-hand side
of (7) contains a part proportional to B that would
strongly overestimate the nonparabolicity for higher
magnetic fields. Therefore, we make the approximative
replacement and the definition

&p.'+ p„''I
'

Eg ( 2m*
( Eg

(Eg + E~y —v~„(g) )
x [E*v v*w(&)] =:K(g) (8)

where we compared (7) with (6), and assumed a nearly
separable potential, which allows us to introduce the
eigenenergy E „ for the xy plane. The motion in the z
direction is not affected by the magnetic Geld, so that the
term proportional to p4 will always be small and can be
neglected in our simple description of the subband prob-
lem by the triangular-well potential (4) with the field I"
as an adjustable parameter. With these approximations,
we get a kinetic energy term that consists of a separable
part and a coupling term:

Eg p Ji. p +s'„K(2 2 2 2

Es + E —V(r) 2m' 2m* 2m'+ +Kg
2-2P

2m'

—K(g)

C. Subband coupling

Let us Grst consider the problem without the non-
parabolicity correction K(g) and without the coupling
between motions in the z direction and xy plane. In
this case the problem separates into the Schrodinger
equation for the z direction with the triangular poten-
tial (4) and the two-dimensional harmonic oscillator in a
magnetic field. The solutions of the former, the sub-
band functions (z~j) = (~(z) and eigenenergies E,(j)
for j = 1, 2, ..., are given analytically in terms of the
Airy function and its zeros. ' Due to the axial sym-
metry, the eigenfunctions of the oscillator can be written
as {x,y~n, m) = R„~~~(g) e* ~, for the angular momen-
tum m = 0, +1,k2, ... and the radial quantum number

n = 0, 1, 2, ... . In terms of the cyclotron frequency ~
eB/m' and the hybrid frequency ~ = /~2/4+ ido2, the
eigenenergies are given by

E.„(n,m) = (2n+ ~m~ + 1)M+ 'm .
2

(10)

With the selection rule Am = +1, this system exhibits
two allowed dipole transitions with the energies

2
- —2

—m'uo g 1+
W

—K(g)
Eg

which arise from the nonseparability of the model po-
tential (5) and the kinetic energy (9), respectively. We
consider this coupling by a numerical diagonalization of
the corresponding matrix for a Gnite number of sub-
bands. For the results shown below, we included the
five lowest vertical subbands j = 1, 2, ..., 5. As in the
case for K(g), this coupling is diagonal in m, and cou-

pling of states with different n can be neglected. The
matrix elements {g~[1+ (z/R) ] ~g'}, (g~p, ~g') and the
integrals (n, m~ g—K(g) ~n, m) have to be determined nu-

merically, but we can use an analytical expression for
(n, m. ~g ~n, m}. We denote the new eigenenergies and
corresponding eigenstates that result from the diagonal-
ization by E(j;n, m) and

~j;n, m}. The new quantum
number j arises from subband mixing, while m remains
a good quantum numbers because of the axial symmetry
and the mixing in n is neglected in our approximations.

III. EXPERIMENTAL RESULTS

The spectra in Fig. 2 are obtained for a sample with
grating constant a = 400 nm of the quadratic dot array

AEy = h((u 6 (u, /2) = fuu~ .

For zero magnetic Geld, this gives Roy ——~o. This tran-
sition energy is split in a magnetic Geld, and with increas-
ing field the su+ mode approaches the cyclotron resonance
w„while the ~ mode goes to zero.

The correction to the kinetic energy K(g) given by (8)
is an axially symmetric function of g, depending on the
energy E „(n,m) given by (10). It is diagonal in m and
couples only states with different n, which are separated
by an energy of at least 2~. Therefore, the mixing of
states induced by this term is negligible and it sufFices
to consider K(g) in first order perturbation theory. The
corresponding integrals K„= (n, m~K~n, m) with the
radial functions R„~ ~(g) have to be determined numeri-
cally. This correction lowers all eigenenergies by amounts
that are bigger for higher levels and increase with mag-
netic field strength. Therefore the u+ mode is shifted to
lower frequencies compared to the EMA results given by
{11)is

Without subband coupling, the eigenenergies of the
system are given by E(j;n, m) = E,(j) + E „(n,m) +
K„and the eigenfunctions are products

~j} ~n, m).
These states are coupled by the two terms
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FIG. 2. FIR laser spectra of a quantum dot sample. The
relative change in transmittance b,T/T v—s magnetic field

strength is shown for different gate voltages AV~ above thresh-
old.

IV. DISCUSSION

The form of our model potential (5) and the kinetic
energy (9) do not allow a strict application of Kohn's
theorem: the center-of-mass motion of the many-particle
system is coupled to the relative motion by nonparabol-
icities in the energy-momentum relation and the poten-
tial. However, this coupling is so weak that the resulting
deviations from a simple two-mode spectrum or other
many-particle eEects cannot be resolved in our exper-
iments. Therefore, we can still describe the observed
resonance positions by the dipole transitions between
difFerent center-of-mass states which can be given by
our calculations in Sec. II. We consider the transi-
tions from the ground state, whose energy difFerences are
AE~ = E(1;0,+1) —E(1;0,0). The solid lines in Fig.
4 show plots of AEy versus the magnetic field strength.
Due to subband coupling, the transition energies at zero
field Kro ——bEy(B = 0) are always smaller than the

and a geometrical radius R 180 nm of an individual dot
was estimated &om micrographs of samples processed in
the same run. With increasing gate voltages the reso-
nance position shifts to higher magnetic field strengths
which is characteristic for the u mode according to (11)
when the quantization energy Ruo increases. The inte-
grated signal strength is found to increase in proportion
to the gate voltage above threshold and there is no sat-
uration in the number of electrons. Instead, the electron
number no is only limited by the breakdown voltage of
the gate oxide. In this particular sample, we observe a
threshold voltage Vq ——20 V and a linear increase of the
electron number no/AV~ = (6.7 6 0.1) V

We have verified the polarization selection rules with
the aid of wire-grid polarizers and quarter-wave plates
made from y-cut quartz of appropriate thickness. In
these experiments the degree of circular polarization was
limited to about 80% of its ideal value presumably due
to cavity eKects in our sample holder. For compara-
tive reasons, the two spectra in Fig. 3(a) were recorded
for a homogeneous two-dimensional electron gas on InSb
(n, = 10i2 cm, m' = 0.023 m, ) for the cyclotron
resonance active B+ and inactive B direction of the
magnetic field, respectively. Spectra for a dot sample are
given in Fig. 3(b). Predominantly, the a+ and u modes
are excited in the B+ and B configuration, respectively.
This agrees with the theoretical selection rules underly-
ing (11).

The observed resonance energies versus magnetic field
strength are shown in Fig. 4 for three particular gate
voltages. The dashed lines represent the result in EMA
according to (11)using the efFective mass m' = 0.0135m,
for InSb and treating the quantization energy italo as an
adjustable parameter. Within this model it is not possi-
ble to describe the observed resonance positions satisfac-
torily. For all quantization energies fuuo, the co+ and cu

modes given by (11) lie systematically higher and lower,
respectively, than the measured resonance energies. The
solid lines that result &om our theory provide a signifi-
cantly better description.
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FIG. &. (a) Cyclotron resonance of a homogeneous two-
dimensional electron gas on InSb for the cyclotron resonance
active B and inactive B direction of the magnetic 6eld.
(b) Corresponding spectra for a quantum dot sample, demon-
strating the polarization selection rule of the cu mode.
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parameters the coupling due to the kinetic energy has a
stronger influence, but both terms induce energy changes
with the same tendency and of the same order. Only for
quantum dots on InSb with a low lateral quantization
energy of ~0 ——7.5 meV, which is much smaller than
the separation of the vertical subbands, the subband cou-

pling is negligible and the transition energies can be de-

termined within a two-dimensional model. The influence
of band nonparabolicity, however, remains important.

SUMMARY AND CONCLUSION

We present an improved scheme for the fabrication of
quantum dots on InSb, allowing high lateral quantization
energies Ruo comparable to the spacings of quasi-two-
dimensional subbands in the corresponding homogeneous
system. This is mainly due to the small effective elec-
tron mass in this narrow-gap semiconductor and makes
two new demands on a successful theoretical description.
First, one has to take into account the band structure
of the semiconductor beyond EMA, specifically, the non-

parabolicity of the conduction band. Second, the prob-
lem can no longer be treated within a two-dimensional
model, since the coupling of horizontal and vertical mo-

tion becomes important.
The present theory provides a realistic description of

the experimental FIR resonance positions despite its ne-

glect of many-particle effects. In principle, band non-
parabolicity violates the preconditions for the generalized
Kohn theorem and the spectra should be modified.
However, in the present experiments we only observe res-
onances of the center-of-mass motion exhibiting to a large

extent positions and selection rules already predicted
by the EMA. This is due to the polarization direction
of the incident radiation, the still relatively weak cou-
pling of the lateral and vertical motion, and the broad
width of the resonances, that prevent the observation
of spectral details. Specific line splittings, caused by
the coupling of relative and center-of-mass motion and
spin-orbit coupling, have been predicted for narrow-gap
semiconductors, but are too small to be resolved in our
experiments. In GaAs quantum dots with their much
sharper lines other features have been observed. 2' Many-
particle effects due to a nonparabolic two-dimensional
confinement potential give theoretical explanations for
these experimental results.

We would like to add here that large quantization en-
ergies in quantum dots offer far-reaching physical possi-
bilities such as, for example, the study of the long known
polaron problem with few or many quasiparticles, when
the quantization energies reach the LO-phonon energies
of the semiconductor, as is already the case for InSb. A
reliable evaluation of this effect, however, requires under-
standing of the electronic dot structure including a more
precise description of the external potential and the im-
pact of the band structure. We consider the present work
as a step in this direction.
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