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Knowledge of the surface stress anisotropy is a prerequisite for the description of the mesoscopic
structure of stepped Si(001) surfaces. However, it is known that results from first-principles calcu-
lations for the (1x2) reconstructed surface surpass the experimental value by about a factor of 2.
We demonstrate that this discrepancy is primarily not an extrinsic effect due to surface defects but
a consequence of the elastic interaction between the dimers on the defect free surface.

The basic concepts useful for the description of step-
step interactions on solid surfaces have been described by
Marchenko! in 1981. However, it was the papers by Aler-
hand et al.?3 that, by identifying a transition from sin-
gle to double atomic height steps on vicinal Si(001)(1x2)
surfaces, have attracted a lot of attention and stimulated
a variety of experimental as well as theoretical investi-
gations concerning the morphology of stepped Si(001)
surfaces.*™® As pointed out by Alerhand, these phenom-
ena are due to strain field mediated step-step interaction
and can be explained by means of standard elasticity
theory. The surface stress tensor is an important quan-
tity entering the elastic theory of step-step interaction.
However, it turned out that the experimental value for
the surface stress anisotropy measured by Webb and co-
workers”-® is about a factor of 2 smaller than the theoret-
ical value.?10 This indicated a serious deficiency in the
understanding of the Si(001) surface.

In this paper we demonstrate that this apparent dis-
crepancy between theory and experiment is a shortcom-
ing of previous calculations. In particular, we show that
the small surface stress anisotropy measured in experi-
ment is an intrinsic property of the perfect surface. We
show that theory is indeed reconciled with experiment
when calculations are carried out for the correct charac-
ter of the surface reconstruction. Therefore the influence
of surface defects, which was called upon by Tersoff*! to
explain the measured stress anisotropy, is of less impor-
tance than it has been anticipated.

The atomic structure of the Si(001) surface has been
discussed controversially for quite some time, especially
with respect to whether the dimer bond is parallel to
the surface or not (see Fig. 1). Recently, convincing
evidence has been gathered for the existence of buck-
led dimers.'?71% In scanning tunneling microscopy pic-
tures Wolkow!? directly observed the freeze-in of buck-
led dimers: At low temperatures, the buckled dimers
form local p(2x2) and c(4x2) patterns. Moreover, buck-
led dimers are also favored by well converged ab initio
DFT-LDA (density-functional theory within the local-
density approximation) total energy calculations.!?1€ At
room temperature the dimers flip between both equilib-
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FIG. 1. Perspective side view of different models for the
geometric structure of the Si(001) surface. Top: (1x2) struc-
ture with symmetric dimers (i.e., the dimer bond is parallel
to the surface). Middle: (1x2) structure with buckled dimers
(buckling angle 6 ~ 15° ). Bottom: p(2x2) structure. The
buckling angle alternates between plus and minus 15° along
the dimer rows.
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rium positions, i.e., the angle between the dimer bond
and the surface plane flips between +15° and —15°.12
However, the motion of neighboring dimers is correlated
along the dimer rows, therefore a local “antiferromag-
netic” ordering (i.e., a preference for alternating buck-
ling) of the asymmetric dimers is still preserved at least
at room temperature.!” The stress anisotropy measured
by Webb et al. reflects surface properties at the freeze-in
temperature,”® which was estimated to be ~ 500 °C. Be-
low this temperature, the position of steps on the vicinal
surface is frozen-in, because the surface diffusion slows
down rapidly with temperature, and the surface cannot
react to an externally applied strain field by changing
the ratio of its (1x2) to (2x1) terrace size any more
(this ratio is used to measure the stress anisotropy). The
measured terrace size ratio depends therefore on the den-
sity of temperature-induced antiphase boundaries (with
a local “ferromagnetic” orientation of dimers along the
dimer string) between domains with alternating buck-
ling direction. If this density were known, a first rough
estimate of the importance of the antiphase boundaries
with respect to the surface stress anisotropy could be
extracted from a comparison of our zero-temperature re-
sults for the p(2x2) (“antiferromagnetic”) structure with
those for the buckled (1x2) (“ferromagnetic”) structure.
The measured surface stress anisotropy can be estimated
from a weighted average of the surface anisotropies cal-
culated by us for the “antiferromagnetic” and the “fer-
romagnetic” structure.

By definition, the surface-stress tensor o;; describes
the linear relationship between the surface energy E and
the strain field €;;. The change in the surface energy is,
up to linear order in ¢;;, equal to

2
AE = Z /AlfijéijdA ) (1)

ij=1

where A is the area of the unstrained surface. For strains
around the bulk equilibrium conditions, the change in
the bulk elastic energy is of second (and higher) order
in €;;. Due to the symmetry, the stress tensor becomes
diagonal in the coordinate system with axes along [110]
and [110]; the diagonal components represent the stress
parallel (o)) and perpendicular (o) to the dimer bond.

To determine the surface stress, we use a direct ap-
proach: We start with a relaxed Si(001) slab, where the
lattice constants parallel to the surface are given by the
bulk value. Then the slab is strained along one of the
principal directions ([110] or [110]) and the change in the
total energy is evaluated. The calculated total-energy
changes contain bulk and surface contributions which are
numerically difficult to separate. However, because the
[110] and [110] directions are equivalent in the bulk, the
bulk contributions cancel when the stress anisotropy is
calculated. The same holds for the stress difference be-
tween two structures, calculated for any direction. The
calculations are further simplified by the fact that it is not
necessary to relax the atomic positions after straining the
slab, because the corresponding relaxation energy will be
of second order in the applied strain (both the strain in-
duced forces and the displacements due to relaxation are

of at least first order in ¢;;).

To compute total energies of strained Si(001) slabs
we performed self-consistent ab initio density-functional
calculations. The exchange-correlation functional was
treated within the local-density approximation with
Perdew and Zunger’s parametrization'® of Ceperley and
Alder’s data!® for the correlation energy. We used a fully
separable, norm-conserving pseudopotential.2%2! To sim-
ulate surfaces we used supercells containing 10 layers
of atoms and 15 bohr of vacuum; the lattice constant
¢ = 10.16 bohr was obtained from bulk calculations. The
positions of all atoms within the four topmost layers on
both sides of the unstrained slab were relaxed until the
residual forces were smaller than 5x10~* hartree/bohr;
further relaxation had no numerically significant effects.
Carrying out tests for various numbers of relaxed lay-
ers in 10, 12, and 14 layer slabs for both the symmetric
and the buckled (1x2) surface, we verified that the stress
anisotropies are neither affected by the slab thickness nor
by the relaxation of the fifth and sixth layer in any im-
portant way. The Kohn-Sham equations were solved us-
ing the computer code fhi93cp (Ref. 22) which employs
a Car-Parrinello-23like technique. The plane wave basis
set was defined by the cutoff energy of 8 Ry and conver-
gence tests were performed for cutoff energies up to 12
Ry. The electron density was calculated from a set of
8 special k|| points in the irreducible part of the surface
Brillouin zone for the 1x2 elementary cell which assures
a sufficient convergence in k space.!?

Our results are summarized in Table I. From cal-
culations for different strains, together with the con-
vergence tests mentioned above, we estimate the re-
sults to be accurate within about +10 meV/A2. The
stress anisotropy of the symmetric (metallic) (1x2) sur-
face compares well with the values from the two previ-
ous DFT-LDA calculations,®!? while all these theoret-
ical numbers are in plain contradiction to experiment.
However, there is an empirical tight-binding calculation
by Alerhand et al.2 which suggests that for the buck-
led surface the stress anisotropy might be much smaller
than for the symmetric surface. This motivated us to
investigate whether and how the surface stress tensor is
affected by the buckling of dimers. Calculating the dif-
ference between the symmetric (1x2) and the buckled
(1x2) surface, we find that the buckled surface is more
tensile (by ~ 30 meV/A?) along the dimer bond and
less compressive (by ~ 75 meV/A?) perpendicular to the
bond. The increase of the tensile stress parallel to the
dimer bond can be understood intuitively: An increase
of the lattice constant leads to a decrease of the buckling
angle and thus to a smaller energy gain due to the buck-
ling. Thereby the slope of the surface energy versus the
lattice constant is larger for the buckled surface, which
means that the surface stress is more tensile. The stress
anisotropy gets smaller by 45 meV/A? for the buckled
surface, however it is still larger than the experimental
value. Therefore the difference between theory and ex-
periment cannot be explained as being solely due to the
dimer buckling in the simple (1x2) structure.

The comparison with experiment is further improved
when a realistic surface reconstruction is considered. In
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TABLE I. Comparison of surface stress for the symmetric and the buckled Si(001) (1x2) and
p(2x2) surface. Components of the stress tensor parallel and perpendicular to the dimer bond
are denoted by o) and o.. Results for the symmetric and the buckled surfaces are distinguished
by superscript s and b, respectively. All values are in meV/A%. ETBM denotes values that were
calculated by Alerhand et al. using an empirical tight-binding method; results quoted from SW are
based on the empirical Stillinger Weber potential, which is a classical potential including two- and

three-body interactions.

Method, structure o —ol ofL— ol aﬁ - o} b — ot
SW (Ref. 4), (1x2) 77 - - -
ETBM (Ref. 2), (1x2) 116 70 -1 45
DFT-LDA (Ref. 9), (1x2) 166 - - -
DFT-LDA (Ref. 10), (1x2) 179 - - -
Present work, (1x2) 150 105 30 75
Present work, p(2x2) 150 55 30 125
Experiment (Ref. 7) - 60-80 - -

fact, it turned out that for the p(2x2) structure our DFT-
LDA result of the surface-stress anisotropy (55 meV/A2)
is within the error bars identical to the experimental
value? (60-80 meV/A2). In particular, the component of
the surface stress parallel to the dimer bond (oy) is the
same as for the the buckled (1x2) structure, i.e., the dif-
ferences aﬁ —ay given in Table I are equal for the p(2x2)

and (1x2) structures. This was to be expected, because
the tensile stress o is due to the tendency of the dimer
bond to contract the underlying solid:® The dimer atoms
are not nearest neighbors in the bulk lattice and have
to be displaced towards each other to form the surface
dimer bond. The component o} of the stress tensor is a
property of an individual dimer, and therefore indepen-
dent of whether the buckling angle alternates along the
dimer rows or not. In contrast, the compressive stress o |
perpendicular to the dimer bond is drastically lowered for
the p(2x2) structure. This is due to the relaxation of the
second layer atoms: The dimer atom closer to the bulk
tends to push its neighboring second layer atoms apart
perpendicular to the dimer bond. If the buckling angle
alternates, the second layer atoms move outwards away
from that dimer atom, thereby relaxing the stress o .
We do not expect that our results change appreciably
when the c(4x2) reconstructed surface is considered. The
P(2x2) and c(4x2) structures differ only in the relative
alignment of the dimer rows: The ¢(4x2) structure can
be constructed from the p(2x2) structure by flipping all
dimers in every second dimer row. The interaction be-
tween adjacent dimer rows is expected to be small, and
the displacements of the second layer atoms with respect
to the bulk positions?* are very similar for both struc-
tures. As this relaxation is responsible for the decrease
in surface stress anisotropy when going from the buckled
(1x2) to the p(2x2) structure, the stress should be very

similar for both structures.

To summarize, we have shown that the surface stress
anisotropy Ao of the p(2x2) reconstructed Si(001) sur-
face is drastically smaller than that of a surface with
symmetric dimers. The value for the p(2x2) surface
(Ao = 55+ 10 meV/A?) is in excellent agreement with
experiment’ (Ac = 70 + 10 meV/A2?). This solves
the contradiction between previously published DFT-
LDA calculations and experiment, as those calculations
only referred to symmetric dimers. Moreover, we have
shown that the “ferromagnetic” orientation of dimers [the
(1x2) structure| results a smaller reduction of the stress
anisotropy (to Ac = 105 + 10 meV/A?) with respect
to the symmetric dimers. Because the measured Ao re-
flects the situation where both “antiferromagnetic” and
“ferromagnetic” orientations of dimers are present, the
increment of Ao by the local “ferromagnetic” orienta-
tion of dimers at the antiphase boundaries is presumably
cancelled by the presence of surface defects.!* This lat-
ter effect is, however, smaller than it has been previously
anticipated.

After having derived these results we learned that Gar-
cia and Northrup performed similar calculations for the
surface-stress anisotropy of the c(4x2) and the buck-
led (1x2) Si(001) surfaces.?® Similar to our results they
found a reduction of the surface stress anisotropy from
Ao =~ 160 meV/A? for the symmetric dimers to Ao =~
120 meV/A? in the buckled (1x2) structure and to Ao ~
55 meV/A? in the c(2x4) structure. This provides fur-
ther confirmation that the buckling of dimers is essential
for the step-step elastic interaction on the clean Si(001)
surface and that the reduction of the stress anisotropy
from the “ferromagnetic” to the “antiferromagnetic” ori-
entation of the buckled dimers is caused by the relaxation
of the second layer atoms.
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FIG. 1. Perspective side view of different models for the
geometric structure of the Si(001) surface. Top: (1x2) struc-
ture with symmetric dimers (i.e., the dimer bond is parallel
to the surface). Middle: (1x2) structure with buckled dimers
(buckling angle # =~ 15° ). Bottom: p(2x2) structure. The
buckling angle alternates between plus and minus 15° along
the dimer rows.



