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Linear and nonlinear electron transport in GaAs/A1As cylindrical quantum wires is investigated
with the help of the balance-equation transport theory. Con6ned phonons, surface phonons, and
their Frohlich couplings with electrons in these quasi-one-dimensional electron-phonon systems are
described using the dielectric continuum, hydrodynamic continuum, and Huang-Zhu optic-phonon
models, respectively. Both intrasubband and intersubband transitions of up to 21 electron subbands
are taken into account in the numerical calculation. The comparison of the results from these
three models with those obtained by using bulk phonon approximation shows that the bulk phonon
approximation is accurate enough to describe the Frohlich interaction when calculating the linear
and nonlinear electron transport even in ultrafine GaAs/A1As quantum wires.

I. INTRODUCTION

Since the observation of confined optic phonons in
GaAs/A1As superlattices, i phonon modes in semicon-
ductor microstructures have been the central focus of
many experimental and theoretical investiga-
tions. Microscopic ' and macroscopic models have
been developed to describe the longitudinal optic (LO)
phonons and estimate the electron-phonon interactions in
various confined systems. To avoid the labored numerical
computation required in the calculation of electron trans-
port in low-dimensional electron-phonon systems using
microscopic phonon models, people have been attempt-
ing to find a proper analytical description of optic-phonon
confinement for the past several years. Three kinds of an-
alytical models for polar-optic phonons have been widely
used in the literature.

The first is known as the dielectric continuum (DC)
model, or slab model, in which the optic-phonon modes
are determined by the electrostatic boundary condition.
The DC model anticipates that there exist two kinds
of distinct optic-phonon modes, bulk-like modes (con-
fined phonons), and interface modes (surface phonons) in
GaAs/A1As heterostructures. The bulklike modes have
vanishing electrostatic potential and maximum normal
optic displacement at the GaAs/A1As interface. s i

The second model, the so called hydrodynamic contin-
uum (HC) model, or guided model, is developed by use
of the mechanical boundary condition. In the HC model
the bulklike modes are guided modes, which have a node
at the boundary for the normal optic displacement and
an antinode for the electrostatic potential. Whether or
not there exist interface modes is still in dispute. '

The third model was developed by Huang and Zhu
from a simple microscopic model and will be called the

HZ model in this paper. This model suggests that both
the normal optic displacement and the electrostatic po-
tential vanish at the GaAs/A1As interface.

Quantum wires of various geometries have recently
been fabricated for studies of phonon and electron
properties with the help of advanced growth and mi-

crofabrication technologies such as molecular-beam epi-
taxy and selective ion implantation. Surface phonons
were observed in cylindrical GaAs quantum wires in
Raman-scattering experiments. Electron transport in

quantum wires was also studied experimentally and
the current oscillation due to electron confinement was
discovered. The research of the electronic energy relax-
ation and transport property in quantum wires has be-
come another focus in the field of low-dimensional semi-
conductor physics. '

Because of the importance of optic phonons in semi-
conductor microstructures and the long-standing theoret-
ical controversyxo —x8,25 —28 regarding the validity of dif-

ferent analytical models, the comparison among electron-
phonon scattering rates resulting from different optic-
phonon models has become an interesting subject in the
literature. Riicker and co-workers calculated the scat-
tering rates in GaAs/A1As quantum wells using a mi-

croscopic description of phonon spectra and DC, HC,
and HZ models. They found that results from differ-
ent models might be completely inconsistent. Rudin
and Reinecke compared intrasubband and intersub-
band scattering rates of electrons in the lowest two sub-
bands of quantum wells, obtained from different phonon
models, and suggested that the macroscopic (DC and
HC) models are not appropriate for a quantitative eval-

uation of phonon contribution to the electron relaxation
rates. Weber, de Paula, and Ryan calculated the elec-
tron scattering rates using the HZ model and found
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good agreement with experimental results. Tsuchiya and
Ando made a detailed investigation of transport prop-
erties in superlattices using the bulk-phonon approxima-
tion, an envelope-function approximation, and the DC
model to describe optic phonons and found that even the
bulk-phonon approximation explains the layer thickness
dependence of the electron scattering rate reasonably
well. Recently, Nash pointed out that electron-phonon
scattering rates in quantum wells are independent of the
basis set used to describe the phonon modes as long as
this set is orthogonal and complete. He developed a
dispersive continuum theory of lattice dynamics for semi-
conductor heterostructures in which the phonon modes
of the three phonon models mentioned above are the
normal modes in the limit of infinitesimal dispersion at
different circumstances. Ridley and co-workers and
Constantinou described the optical-phonon modes in
quantum wells with a theory involving the hybridization
of LO, TO, and interface polariton (IP) modes lately. In
addition, there are many other papers that are devoted to
a theoretical discussion of the validity of various phonon
models in quantum well or to the calculation of
the electron transport properties by employing different
phonon models.

Recently, optic-phonon models in quantum wires have
been studied in the literature. Stroscio and co-workers
proposed the confined and surface optic-phonon modes in
a rectangular quantum wire within the framework of the
DC model and calculated their scattering rates with elec-
trons. They concluded that the surface phonons play a
prominent role in contributing the scattering rate when
both phonons and electrons are confined in extremely
narrow quantum wires. Knipp and Reinecke criticized
that the results deduced in Ref. 16 did not properly in-
clude the DC boundary condition. They derived ana-
lytically the interface modes for wires of elliptical cross
sections by incorporating the DC boundary condition,
and pointed out that the interface modes for wires of
more general cross section cannot be obtained analyti-
cally in the DC model. Enderlein and Selbmann stud-
ied the optic-phonon modes of circular quantum wires
by means of the generalized Born-Huang equation with
the Hermiticity condition for the dynamical operator and
deduced the corresponding Frohlich interaction in GaAs
quantum wires which is similar to that obtained from the
DC model. Constantinou and Ridley have detailed the
optic-phonon modes in cylindrical GaAs/Al Gaq As
quantum wires using the HC model. The HZ model has
recently also been extended to rectangular quantum wires
by Zhu. The continuum phonon model of optical hy-
brids was applied to a cylindrical wire by Constantinou.
Other authors also contributed to the exploration of
optic-phonon modes or electron-phonon scattering rates
in quantum wires. Nevertheless, phonon modes of the
HZ model have not yet been studied in cylindrical quan-
tum wires. Furthermore, there has so far been no paper
devoted to the comparison of electron transport in quan-
tum wires using different phonon models, and the phonon
confinement effects on nonlinear electron transport have
not been shown in the literature.

The purpose of the present work is to investigate the

linear and nonlinear electron transport in GaAs/A1As
cylindrical quantum wires with different lateral confine-
ments by employing the three difFerent (DC, HC, and
HZ) LO phonon models. The calculations are based
on the balance-equation transport theory of Lei and
Ting. ' Contributions ofboth confined and surface op-
tic phonons, if any, are considered through the Frohlich
interaction. Other kinds of electron-phonon interaction
mechanisms (deformation potential scattering with lon-

gitudinal optic and acoustic phonons and piezoelectric
interaction with acoustic phonon) are also included, but
treated using the bulk phonon approximation (BK). To
study the high electric field properties, intrasubband and
intersubband electron transitions of up to 21 subbands
are taken into account. The paper is organized as follows.
In Sec. II we discussed the electron-phonon interaction in
quantum wires. The Frohlich couplings are written using
the DC model in Sec. IIA, the HC model in Sec. IIB,
and the HZ model in Sec. II C. The electron transport is
calculated and analyzed in Sec. III. Section IV concludes
the paper.

II. ELECTRON-PHONON INTERACTION
IN QUANTUM WIRES

In a cylindrical GaAs (denoted as material 1) quantum
wire of radius R and length L (L )) R) embedded in AlAs
(denoted as material 2), electrons are con6ned in GaAs
where the potential well develops. Under the infinitely
deep well approximation, electron wave functions can be
written as

~ikz

g(, 1, (r) = C,'J( z,' —~

e*'~;

t I ~ o ) 1) 0) 1) ~ ~ ~

) =1)2)3)

with the corresponding energies

(*')'
e'(k =

2m* 2m* R2

Here, r = (r, P, z) are cylindrical coordinates for the
system and k denotes the axial wave-vector component.
C = 1/(~my R) is the normalization factor, z' is the

jth zero of the tth order Bessel function, i.e., J~(z'. ) = 0

and y'. = J~+q(z'. ); m* is the efFective mass of electron.
In Secs. IIA—IIC, we derive the Frohlich interac-

tion Hamiltonian in GaAs/A1As quantum wires within
DC, HC, and HZ models. Hamiltonians correspond-
ing to other electron-phonon couplings, such as de-
formation potential scattering with longitudinal optic
and acoustic phonons and piezoelectric interaction with
acoustic phonons, are treated with the bulk phonon
approximation.

A. Dielectric continuum (DC) model

In discussing optic-phonon modes under the dielectric
continuum model, a GaAs/A1As quantum wire can be
considered as a single wire of dielectric function rq(u)
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embedded in material 2 of dielectric function K2(pj) and
each dielectric function has the form of bulk materials

(pj —pjLO, )

~TQ'J

the constant

( h. ')'"(
(2&p j ), Ki~ Kis)

(io)

where pj is the lattice vibration (optic phonon) frequency,
is the high frequency dielectric constant, and uQQ, .

and pjTo, are the longitudinal (LO) and transverse (TO)
bulk optic-phonon frequency in material i (i = 1, 2).
The electric potentials associated with lattice optic vi-
brations, &p(r), satisfy the equation

Hc= —e ) r ql;(r)W (r)il, ~ (r)

) ) MF, (l, l, j,j,q, n)C, , „

The Frohlich coupling between electrons and confined LO
phonons in the DG model is:

K, (ld)V'(P = 0 (4)
l, l', j,j' n, A:,q

with the boundary condition that the potential y and the
normal component of electric displacement K;(pj)d)(j/dr
are continuous at the GaAs/A1As interface.

A confined GaAs LO mode with frequency ~ = ~z,Qi
[corresponding to Ki(u) = 0 and )j2(r) ~»R = 0 in Eq. (4)]
is characterized by an axial wave-vector component q, an
angular momentum quantum number m, and an integer
quantum number n to distinguish phonon modes of the
same q and m, with the potential

p(r)= 0.CJ (q „r)e' &e'l'; r & R

VP = )dLo, ep (K, —K, ) w,
—1/2 —1 —1 1/2 (6)

where v, , is the static dielectric constant of material i
(i = 1, 2).

According to the lattice dynamic theory, the normal-
ized w is treated as the displacement basis in a harmonic
oscillation. The total potential of all phonon modes in-
side the wire can be expressed as

DC( ) ) (
LOi ~Dc( ) isn't

xe' '[A „(q) + A „(—q)]

with

v „)r)=c „j )q „r) (
'''' ' ' ''''

)8)

and the normalization constant

CDG

~~Ry„(q' + q' „)
In Eq. (7), A „(q) [A „(q)] stands for the annihilation
(creation) operator of the confined phonon (q, n, m) and

(
ms ~ ~ ~ q) 1

y Oq) 1 ) ~ ~ ~

n=l23
Here, q „=z„ /R is the transverse component of the
wave vector and the normalization coeScient t is deter-
mined by employing the relation between the potential y
and the reduced ionic displacement w of a con6ned LO
phonon mode,

XCl,, a-, [Al-l, (q) + Al l (—q)].

Here, Cl ~ l, (Cl &) is the electron annihilation (creation)
operator of wave vector k in subband ('.),

~LO 1 2

Mq, )), I', j, j', q, n) = —es (
XCl ll, qqF/, ll,-j,j' (Zqs )

DC C l—L'

is the coupling matrix element and

(12)

Fl., ... (&) = 2
1

(&(, , Jl (2:,'()Jl l (rl() J( (x', , g)
Qq9q

CpIqs p(qR)Ip(qr)e
C.r, (qR) SCp(q.)""; ~ & R. (14)

The total potential associated with surface optic
phonons is obtained, following the normalization method
given in Refs. 8 and 16, to be

1 I (qr)
(2epw, L) ~vrqR Ip(qR)

xC (q pj )[a (q) + ~ ( q)]

where a, (q) [a, (q)] stands for the annihilation (creation)
operator of surface phonons and C, (q, pj, ) is the normal-
ization constant,

C
—2 ( LO1 ~TO1 )

(q, s) — ls
(

2 2 )2 I ( R)

(~LO2 ~TO2) ~.(qR)"
(pj2 —pj T2O2)

2 Kp(qR)

is the form factor.
The surface phonons of cylindrical quantum wires in

the DC model [corresponding to the conditions K, (pj) g 0
and V2y = 0 (i = 1, 2) in Eq. (4)] have been studied pre-
viously in Ref. 17. For a mode with axial wave vector q,
the potentials lj2, (r) in material 1 (r & R) and 2 (r & R)
are expressed as mth order Bessel functions of imaginary
argument I and K, respectively. The surface phonons
play roles in ultrafine GaAs/A1As quantum wires, where
electrons occupy only the ground subband (i) and the
intersubband transitions can be neglected. Thus it is suf-
ficient to consider the lowest surface phonon mode and
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The surface phonon frequency (d, is determined by the
dispersion relation

((u, —~LQ2) Ki (qR) ((ua (uLoi) Ii (qR)

~TQ2) Kp (qR) (ur ~Toi) Ip (qR)

The sum of s in Eq. (15) is over the two surface branches
and ~+, which locate in ranges ~TQz & , & ~I,Q&

(GaAs surface phonons) and uTQ2 & a,+ & ~LQ2 (AlAs
surface phonons), respectively. The electron —surface-
phonon coupling is given by

vanishes for intersubband transitions at g = 0.
In Ref. 35, Enderlein derived the macroscopic optic-

phonon modes in a cylindrical wire including the disper-

sion of confined phonons by solving the general Born-
Huang equation with the Hermiticity condition for the
dynamical operator. The same phonon modes as de-

scribed above [Eqs. (5) and (14)] are obtained. Since the
dispersion of confined LO phonons is negligible in the

study of electron transport, the dispersionless DC optic-
phonon model is expected to give the same results as the
macroscopic model developed by Enderlein does.

H = ) ) MF(t t j j, q s)Ct. s
L,j,j' Ic,q, s

xCi, I, [a, (q) + a, (—q)]

with the electron-phonon interaction matrix element

—e ( h
MF, (l, t j,j', q, s) =

)rR i,2spur, L)
x C, (q, (u, ) —Fi i, (qR)

1 s

and the form factor of the surface phonons

1

Fi',i, ;(~) = I, &d& i i Ji(&,'&)Ip(~&)Ji(*,' &)

(2O)

Figure 1 plots form factors Fist, (g) for electron intra-

subband scatterings in the ground subband (Pi) and inter-
subband transitions between subbands (Pi) and (P2) due
to the first surface-phonon mode. Similar to the form
factors of bulklike phonon modes FP&, , (g)2s, FP& . , ()l)
approaches unit for intrasubband scatterings and

B. Hydrodynamic continuum (HC) model

(V2+ q2)w = 0 (21)

with the boundary condition

In the HC model, the optic-phonon modes are ob-

tained by solving the general Born-Huang equation under

the hydrodynamic boundary condition for optic displace-

ment, which requires the continuity of the normal compo-
nent of the velocity and the continuity of the pressure, as
suggested by Babiker. ' Since the spectra of GaAs and
AlAs do not overlap in frequency, surface phonons do not
exist in the hydrodynamic continuum (HC) model, s is 2s

and only the confined phonons need be considered.
Since Ridley treated the LO phonons in quantum

wells, we employ a simple dispersive HC model to
describe optic-phonon modes in GaAs/A1As quantum
wires. In this model, the phonon displacement vanishes
and the corresponding potential reaches its maximum at
the interface. This boundary condition is approximate,
but it is accurate enough to obtain the phonon modes for
transport calculation. The reduced ionic displacement
field w = (tp„, tp~, w, ) of a phonon mode in GaAs satis-
fies the Helmholtz equation

0.014 tP. ~~=a = O (22)
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= ~aoi ~ (q + q~~) (23)
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where P is the velocity parameter of GaAs, and
q~~

is the
transverse wave vector of the phonon mode.

Each confined phonon is characterized by three param-
eters, q, m, and n, as denoted in the DC model, and the
total optic-phonon potential can be written as

) 1/2
HC ) ~

LO1
~

gHC i rnid

„L)
m)A)q

10
0

15
with

x[2 „(q)+A „(—q)] (24)

FIG. 1. Illustration of form factors due to surface phonons
P&'&, , ()i) [Eq. (20)], where the solid curve corresponds to in-

trasubband scatterings in the ground subband (~j and the
dotted curve corresponds to intersubband transitions between
subbands ()) and ()}.

QHC QHC J ( ) A ) ) ) ~ ~ ~ ~

Here, the normalization constant

(25)
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HCC
1 1 q» (j',.) (q'+ q',.)"'

7

MFH'(&, &', j,j', q, n) = —e~
~ „L,)

HC C
XCl —l', nFl, l',j,j ' (gl —l', n ) ' (27)

C. Huang-Zhu (HZ) madel

and the transverse wave-vector component
q~~

——qj' „/R, j' „is the nth zero of mth order Bessel function
derivative, i.e. ,

J' (j' „) = 0, ur „ is the phonon fre-
quency determined by the dispersion relation [Eq. (23)].
The corresponding electron-phonon Hamiltonian has the
same form as in the DC model [Eq. (11)]but with a dif-
ferent matrix element:

optic-phonon modes in the HZ model. Numerical calcu-
lation shows that the phonon frequency dispersion has
little eKect on the electron transport investigated in this
paper; we thus consider a dispersionless model.

Taking advantage of clues from a simple microscopic
model calculation in rectangular quantum wires, we can
compose the potential of a con6ned phonon mode in the
cylindrical quantum wire from a Bessel function plus a
simple term. This term is a constant for a reverse sym-
metric mode with maximum potential at the center of
the wire, a linear one for a reverse antisymmetric mode,
and a square term for a reverse symmetric mode with
vanishing potential at the center of the quantum wire.
The Frohlich potential of confined optic phonons in the
HZ model can be expressed as

HZ(
) ) (

LO1 )1/2~HZ imP

77L, n )g

xe'~'[A „(q) + A „(—q)], (28)
According to the results of the lattice dynamic theory

of Huang and Zhu, both the normal optic displacement
and the potential should vanish at the interface in quan-
tum wells and rectangular quantum wires. By assum-
ing that the same boundary conditions are satis6ed in
cylindrical quantum wires, we propose here the con6ned

with

Hz 1 Hz m =.. . , —1,0, 1, . . .
V „=~C „C „(r);

Here,

' Jo(*.' H ) —Jo(&.')
C „(r) = ( J (h„H) —J (h„)R.,

, J-(a. R) —J-(g. )(H)'

form=0
for ~m~ = 2s+1, s = 0, 1, 2, . . .
for ~m~ = 2s, s = 1, 2, 3, . . .

with zeros g„and h„ ful6lling equations

h„ J' (h„ ) —J (h„ ) = 0

and

(31)

a J' (~. ) —2J-(g. ) =o
respectively. The series of h„and gm are determined by solving Eqs. (31) and (32) in the ranges

m+1 ( g. m m"n gn (~,n+i

and

(32)

n n~

& hi ——7869;
h = 10.40;

h2 ——11.25;
h = 1391;

g2 g3
n n~

g gi ——9.017;
g~: 11 50'

g2 ——12.51;
g2

——15.11;

Note that Phonon modes corresPonding to solutions of Eqs. (31) or (32) in ranges of 0 ( ho, go ( j'
~ do not exist

actually because they are identical to modes of hz or gz . C „ is the normalization coefficient, for m = 0,

(CHZ)
—2

[2 2~2 + ( 1)2] J2( 1)

for ~m~ = 2s+1; s = 0, 1, 2, . . .,

(C „) = (h„) J (h ) — Ji i(h„)I', (h„)

4s(s + 1) J2 (hm)
16 (s + ) J (hm)p (hm)m n (hm)S ~m~ n n (35)

and for ~m~ = 2s; s = 1, 2, 3,
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32s —1 s+1 32s s —1
((Hz )

—2 J2( m) 2a2+2 ( ) ( + ) +( m)2 ( ) J (P)F' (P)
gfA g 77K

4 4(s2 —1) 32a(a —1) (a +. 1) 2 32s(a —1)
(36)

where

F'o(f) = 1 —Jo(()
8

I' (() = 1 —2 ) J2s(() —Jo((); fol' s & 1 ~

In the case of q = 0, values of the series of CH „are

Coq ——0.6479;
& C~ ——0 5733'

C"' = 0.5533;

CO2
——0.4750;

CHz 0.4378;
CHz 0 4197.

C,",' = 0.3937;.. .

C2H3Z 0.3562;. . . .
(37)

2:„/R;
q,„= & h„ /R;

g„ /R;

for m=0
for ~m~ =2a+1; a=0, 1, 2, . . .
for )m[ = 2a; a = 1, 2, 3, . . .

(39)

and the form factor
1

Fr,r, ;(n) = (dr', , Jr(*,'()
0

xCr r,„(rv()Jr (z', (). (40)

Thus the electron-phonon coupling matrix element reads

MF, (1, l', j,j', q, n) = —en
mL

xC" „I"r"r, , (qr-r, „R), (38)
where the transverse wave vector

The form factors for intrasubband coupling in the ground
subband (i) and intersubband transitions between sub-
bands (oi) and ji) are shown in Fig. 2.

It is worthy of note that the phonon modes of the
HZ model are ad hoc as pointed out by Nash and
Constantinou. However, they are convenient and ac-
curate enough to estimate the electron transport in
this paper. In fact, for wave vectors of interest in
electron-phonon scattering, they are almost the same as
those obtained &om the recently developed hybridization
theory 8'

The surface phonon modes in the HZ model are the
same as those in the DC model and the corresponding
Hamiltonian has been given in Eq. (18).

The factor Vo i(r) in the Frohlich potential of the first
confined phonon mode in Eqs. (8), (25), and (29) is

illustrated in Fig. 3 as a function of the quantum wire

radius for difFerent models. The curve (dotted) of the HZ

model is close to that of the DC model while the potential
of the HC model (dashed line) vanishes inside the wire
and has a much smaller value than those in other two
models at the center of the quantum wire. This results in
a much lower scattering rate in the HC model, as shown
in the following section.

The following parameter values were used in the calcu-
lation of this paper: for GaAs, uI, Q] —36.2 meV, uTQ$ ——

33.3 meV, and Kq ——10.9; for A1As, ~LQ2 ——50.1 meV,
(4)TQ2 —44.8 meV, and K2 ——8.16; In the HC model,
the velocity parameter for GaAs is P = 4.73 x 10 m/s.
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FIG. 2. Form factors for con6ned phonons in the HZ
model Frr, , (qr rr „R) [Eq. (40)] at difFerent zeros of 4. Val-

ues of intrasubband couplings in the ground subband (i}
(dots) and intersubband transitions between subbands (i]
and (i) (circles) are shown.

FIG. 3. The Frohlich potentials of the lowest con6ned
phonon mode in the dielectric continuum (solid line), hy-

drodynamic continuum (dashed line), and Huang-Zhu models
(dotted line) are compared.
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III. ELECTRON TRANSPORT:
RESULTS AND DISCUSSIONS

system in steady state,

eZ+ f(vg) = 0, (4l)
Under the in8uence of a longitudinal electric field,

electrons drift along the quantum wire. Such a trans-
port state is described in the balance equation transport
theory ' by two parameters, the electron drift velocity
vp and the electron temperature T„and they are deter-
mined by the force- and energy-balance equations of the

I

vg f(vg) + w(vg) = 0. (42)

We assume that elastic scatterings are negligible such
that the frictional force f (vg) and energy loss rate w(v~)
per electron are due to phonon scatterings,

f(vz) = ) ~M&& ~~ (q, A)( qII2(l, l', j,j', q, Q~p + qvg)(n(O&&/T) —n[(O~& + qvg)/T, ])
l, l~, j,ji

+ ) ~Mp, (l, l', j,j', q, A)~ qII2(l, l', j,j'q, , A&A + qv~)(n(Aq~/T) —n[(A&A + qvd)/T ])n3KR'
(43)

and

iv(vp) =, ) ~Mii „(q,A)~'Q~pII2(/, ', j,j', q, A~p + qvg)(n(A~p/ ) —n[(O~p + qvg)/, ]}srn3R2
ojsj

q, A+, ) (M p(l, i', j,j', q, A)( O,AII2(, ', j,j', q, A~p+qvg)(n(Oqp/T) —n[(O,a+qvg)/T, ]j
I ' 'Il,l,j,j
q, A

(44)

Here, Mp, (l, l', j, j', q, A) stands for the matrix ele-
ment of Frohlich interaction between electrons and GaAs
LO confined phonons (A = n) or surface phonons
(A = s in DC and HZ models), A~ A is the correspond-
ing phonon frequency, and Mii ~~ (q, A) represents the
matrix element of the other electron-phonon coupling
mechanisms, n3 is the electron bulk density correspond-
ing to a wire density n~ ——vrR n3, II2 is the imaginary
part of the electron density-density correlation function
in the quantum wire, 2 's and n(z) = [exp(z) —&]

is the Bose function. The electron inverse mobility
1/p = E/vg = f (v~)/nieve —comprises the contri-
bution from electron —LO-phonon (Frohlich) interaction
p„and that from other electron-phonon couplings pp

p„comes from confined phonons (p, i) and (in DC
and HZ models) from the surface phonon (p, ). Thus,

= Pp +Pp = Pp +Pc +~s
First, we calculate electron linear mobilities in cylin-

drical GaAs/A1As quantum wires with various lateral ex-
tensions but the same bulk carrier density at tempera-
ture T = 300K. In Fig. 4, inverse linear mobilities p,„
obtained using different phonon models are plotted as
functions of the wire diameter d. The result shows that
linear mobilities &om DC and HZ models and from the
bulk phonon approximation (BK) have almost the same
values over the whole lateral confinement range, while the
HC model gives a much higher mobility in small quantum
wires.

Confined-phonon-induced inverse linear mobilities p
and surface-phonon-induced inverse linear mobility p,
are plotted as functions of the wire diameter d respec-
tively in Fig. 5 in the same condition as in Fig. 4.
At the large wire diameter, the surface phonons are
negligible and the confined phonons account for all the

I

optic-phonon effects on the electron transport. When d

shrinks, the surface phonon contribution, which begins to
in8uence the electron transport at a wire diameter about
d = 20nm, increases rapidly ( d 2) and exceeds that of
the confined phonons when d ( 5 nm. In extremely small
wire (d ( 3 nm), the surface-phonon-induced inverse mo-

bility (tu, i) has the same value as the inverse mobility

10

m

I, i, , !

0 5 10 15 20 25 30

d (um)

FIG. 4. Wire diameters d dependence of the LO phonon
Frohlich-interaction-induced linear inverse mobility of elec-

trons in a cylindrical GaAs/A1As quantum wire in the hydro-

dynamic continuum model (circle line), the dielectric contin-
uum model (dashed line), the Huang-Zhu (dotted line) model,
aud the bulk-phonon approximation (solid line) at room tem-

perature T = 300 K.
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FIG. 7. The electron temperature increment correspond-
ing to the condition of Fig. 6 is graphed versus the wire diam-
eter. The results from digerent phonon models are compared
with that given by the bulk phonon approximation.

FIG. 8. Electron mobilities p against the drift velocity
vz in a narrow quantum wire of diameter 6 nm at lattice
temperature T = 300K are calculated in diferent phonon
models. Here, HZ and DC models give almost the same curve.

tered result, especially when the Fermi energy is close to
the top or bottom of a subband (corresponding to the
maximum or minimum of the mobility as a consequence
of electron subband effects2 ).

Figure 6(b) distinguishes confined phonon and surface
phonon contributions in Fig. 6(a). Different f'rom the
linear case, here the confined-phonon-induced mobility
in HC model p, Hc is close to those in DC and HZ mod-
els because the smaller electron-phonon coupling hap-
pens to be compensated by the higher electron temper-
ature required in this model as illustrated in Fig. 7,
where the electron temperature increments at drift ve-
locity vg = 7.94 x 104 m/s are plotted as functions of the
wire diameter d. The curves belonging to DC and HZ
models are just the same and both are close to that of
the bulk phonon approximation.

Finally, the drift velocity (and then the electric field)
dependence of electron mobility in a quantum wire of di-
ameter d = 6nm at lattice temperature T = 300K is
calculated using diferent optic-phonon models as shown
in Fig. 8. The result shows the same conclusion as spec-
ified above, i.e., DC and HZ models predict the same
electron transport behavior as the bulk-phonon approxi-
mation does, but the HC model results in a very difFerent
one. This conclusion can be easily generalized to cases
in the presence of impurity scatterings.

The above results support the conclusion obtained by
Nash: electron-phonon scattering rates should be in-
dependent of the basis set used to describe the phonon
modes. Because the lattice structure of AlAs is simi-
lar to that of GaAs, the influence of AlAs on electron
transport through the GaAs/A1As interface is negligible.
The phonon modes of HC model used in this paper, how-

ever, may be incomplete since the surface phonon modes,
which have been observed experimentally, do not exist in
this model.

IV. CONCLUSION

We have calculated the linear and nonlinear electron
mobilities in GaAs/A1As cylindrical quantum wires of
various lateral extensions with the help of balance equa-
tion transport theory using the dielectric continuum
model, hydrodynamic continuum model, and Huang-Zhu
model to describe the confined and surface optic-phonon,
respectively. The DC model and the HZ model predict
the same electron transport properties (linear and non-
linear mobilities and electron temperature) in quantum
wires as that obtained using the bulk-phonon approxima-
tion, while the HC model gives a scattered result in small
quantum wires. Since the HC model is not applicable to
the description of surface phonon modes in GaAs/A1As
quantum wires, the phonon modes of this model may
be incomplete as pointed out by Nash and should be
superseded by the phonon modes of the more realistic
continuum model developed recently. We conclude that
only bulk optic-phonon description is good enough for
the calculation of the electron transport in GaAs/A1As
quantum wires. In DC and HZ models, surface optic
phonons begin to contribute to the electron mobility in
quantum wire of diameter about 20nm, and dominate
when the wire diameter is less than 5nm. These conclu-
sions are consistent with the results obtained by Tsuchiya
and Ando in GaAs/A1As superlattices, and confirm the
general statement drawn by Nash.
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