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%'e study transport properties of phase-coherent quasi-one-dimensional disordered conductors in the
diffusive regime, in terms of the eigenvalue distribution of the two-terminal transmission matrix. Using
an expansion in inverse powers of the classical conductance, we calculate the average transmission eigen-
value density and the two-point correlation function for fluctuations in the density. A formula for the
average value and the variance of a general linear statistic on the transmission eigenvalues is obtained.
Our results confirm an earlier hypothesis, based on random-matrix theory, that fluctuations are universal
in the diffusive regime and ultimately determined by level repulsion.

I. INTRODUCTION

Recent advances in the technology of microfabrication
have enabled the experimental observation of a number
of interesting quantum interference effects at low temper-
ature. Two important examples are the weak-localization
correction to the average Boltzmann conductance of thin
metallic films' and the sample-specific reproducible
fluctuations in the conductance of small metallic
wires.

The microscopic theory of these phenomena has been
formulated on the basis of impurity-average Green-
function techniques and has explained many features of
experiments on mesoscopic systems. In this theory, weak
localization arises as a result of coherent backscattering
of electrons diffusing through the sample in the presence
of time-reversal symmetry, while infrared divergences in
ladder diagrams lead to conductance fluctuations that are
always of order e /h, independent of sample size (as long
as it is smaller than the inelastic length) and degree of
disorder (provided conduction is metallic), i.e., universal
conductance fluctuations.

An alternative theoretical approach pioneered by Lan-
dauer, called the scattering approach, relates transport
coefficients of phase-coherent mesoscopic systems to
asymptotic scattering states at the Fermi surface, de-
scribed by the reflection and transmission matrices for a
two-terminal sample. There are three different theories
based on this approach.

The first theory, ' called the local maximum-entropy
approach, derives a Fokker-Planck equation for the evo-
lution with sample length of the probability distribution
of the transfer matrix of the system. The second
theory, "' called the global maximum-entropy ap-
proach, is built on ideas from classical random-matrix
theory' and proposes an ansatz for the probability distri-
bution of the transfer matrix of the whole sample. The
third theory' proposes a Hamiltonian for the coupling
between small shces of the sample and evaluates averages
involving different elements of the scattering matrix using
supersymmetry. Two basic simplifying features, common
to all these approaches, are that the sample is assumed to

have a quasi-one-dimensional geometry, and that two-
terminal measurements are considered.

While the local maximum-entropy and the supersym-
metric approaches constitute an exact macroscopic
description of an underlying weak-scattering microscopic
theory, the global maximum-entropy approach has been
shown recently' to be an excellent, but approximate
description, since the numerical value of the amplitude of
the fluctuations in the conductance is not in precise
agreement with that of diagrammatic calculations.

The scattering approach to two-probe quantum trans-
port theory has been developed for a variety of observ-
ables in different physical systems, e.g., the conductance
and shot-noise power of a phase-coherent conductor, the
conductance of a disordered microbridge between
normal metallic and superconducting leads, and the
supercurrent-phase relationship of a point contact
Josephson junction. All these quantities can be expressed
as linear statistics' on the eigenvalues f'; =(1+k;)
0&A, , ( Do, of tt, where t is the transmission matrix.
Therefore, in general one is concerned with

A= ga(A, ;),

where a(A, , ) is an arbitrary smooth function.
In the diffusive regime, when the length L of the sam-

ple is much larger than the mean free path I, but much
smaller than the localization length, one expects quantum
interference to affect both the average and the variance of
A, which in general can be obtained from the formulas

( A ) =I a(A, )p(A, )dA, , (1.2)
0

var( A) =f a(A )a(A, ')K(A, , A, ')dl, d A,',
0

(1.3)

in which p(A, ) and K(A., A, ') are the average level density
and two-point correlation function, respectively. It is
clear from (1.2) and (1.3) that these functions contain all
statistical information concerning weak-localization and
universal mesoscopic fluctuations. The advantage of the
random transfer-matrix approach is that, once one knows
p(A, ) and K(A, , A.'), the behavior of many different linear
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statistics can be investigated with very little extra effort.
The present work is concerned with the exact calcula-

tion of both p(A, ) and K (A, , A, ') in the limit of a large num-
ber of transverse scattering eigenchannels, N, on scales
for k much larger than the mean level spacing. Using a
moment expansion technique developed in the context of
the local maximum-entropy approach, ' we show that
the average and the variance of a general linear statistic
in a quasi-one-dimensional disordered conductor are
given, respectively, by

& A &
= 2(a(0)Gs+ f dk a(k)(1+e "

)
277 0

f dk a(k)k sinh(kyar)
2]33'ir'G

II. FORMULATION OF THE SCATTERING PROBLEM

Our model system consists of a disordered sample of
finite length L and finite transverse cross-section W to
which two perfectly ordered semi-infinite leads are con-
nected. The leads support X scattering channels. The
electron wave propagates coherently through the disor-
dered sample and multiple elastic scattering can con-
veniently be described by a transfer-matrix M, which re-
lates the wave amplitudes on the left to those on the right
of the sample. It has been sho~n ' ' that M performs a
Brownian motion on its group manifold described by the
Fokker-Planck equation

(}P([A jar) y (3 g)(])( {gj )
B7 ' ] Bit

and

X ln(1 —e ""), (1.4)
a2+,n', "([Xj ) ~( [Xj,r), (2.1a)

var(A)= f dk k(1 —e "")a (k),= 2
p~'

where

(1.5) where r=2S/(PN+2 P) repr—esents the diffusion time,
S is the sample length in units of the mean free path, and
2)I"( [A. j ) and 2),''( [A, j ) are, respectively, drift and
diffusion coefficients given by

t(k) = f dx cos(kx )a [sinh (x /2)],
Q

A,;(1+I,;)
n,'"({Xj)=1+2',+P g

j(Ai) i j
(2.1b}

Gs =Nl /L is the classical Boltzmann conductance, and P
is a symmetry parameter (P=l for systems with time-
reversal symmetry and without spin-orbit scattering,
P=2 for systems without time-reversal symmetry and
P=4 for systems with time-reversal symmetry in the
presence of spin-orbit coupling). Equations (1.4) and (1.5)
show that weak localization [second term in (1.4}] and
universal fluctuations are, in fact, a very general feature
of quantum diffusion, and affect a large number of trans-
port quantities, in addition to conductance. A short ac-
count of Eq. (1.5) has previously been given elsewhere. '

This paper is organized as follows. In Sec. II we define
the scattering problem which is specified by attaching
two semi-infinite ordered leads to the left and right of a
disordered region. The leads serve to connect the sample
to electron reservoirs wherein perfect phase randomiza-
tion is supposed to occur. The multiple-scattering pro-
cess is described by a diffusion equation, for the evolution
with sample length, of the probability distribution of the
transfer matrix of the system. Using an expansion in in-

verse powers of the classical conductance we obtain
differential equations for generating functions, which
turn out to be related to p(A, ) and E(A., j].') by means of
Fredholm integral equations of the first kind. These
equations are solved exactly in Sec. III and some exam-
ples of physical interest are studied. In Sec. IV we give
an alternative derivation of l( ( i(,, A, ') by considering
Gaussian fluctuations in the level density. The global
maxiinum-entropy result for K(A, , A, ') is recovered by solv-

ing the associated stochastic equation using an adiabatic
approximation. The distinction between the fractional
fluctuations of open and closed transmitting channels are
shown to be a crucial difference between local and global
maximum-entropy approaches. Conclusions and a sum-

mary are presented in Sec. V.

n(2)([xj )=x, (i+a, ) . (2.1c)

(2.2)

in which J=ii; j~A,
—

A,j~~.
%e define the generating function

(2.3)

in which g) —1 is an auxiliary parameter. Inserting
(2.3) into (2.2) we find the evolution equations

2a, & r, &
= q(1+q) (2—p) &r„&—

p& r'„&
an . an

(2.4}

ar„
28,&I 1 &&= il(1+g) (2 —p) r&

+(i}~g) .

&r„&—](3&r r'& —4'9
( g)2

(2.5)

The variables A. ,
~ 0 (i =1, . . . , N) appearing in

(2.1) are the eigenvalues of the matrix X
=(M M+(M M) ' —2)/4 and are related to the
transmission eigenvalues r; by A, ; =1/f'; —1.

From (2.1) it has been shown that the average of an
arbitrary function f( {A, j ) satisfies the following evolution
equation:
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We are interested in the metallic regime, which is defined

by the inequalities 1 &&5 &&N. In this regime it makes
sense to expand ( I' ) and ( I „I&) as +Hp(g, g)+ O(S /N }, (2.7)

N N(r„r,) =
2 g(q)g(g)+ —+(P)[g(q)f(g)+g(g) f(q)]

and

(r„&= g—(p)+4'(P)f(p)+hp(p) +—O(S /N )

(2.6)

where %(P)=—(P—2)/P.
Inserting (2.6) and (2.7) into (2.4} and (2.5), taking N

and S to infinity keeping their ratio Gz fixed, using the
fact' that the third cumulant ((I „I~I z)) &O(1/Gp)
and equating coefficients of each power in Gz, we find

that g(g), f(g), hp(rl) and Hp(rl, g) satisfy the following
set of coupled differential equations:

dg(rl ) 2q+ 1 1

dry 2rl(rl+ 1) 2g(el+ 1)

df(rl) 1+(2r}+1)g(r}) (2rl+1)g'(g)+2g(7})
2'(rl+ 1)g(g) 4'(rI+ 1)g(g)

hp(g) = — [rl(1+g)[4 (13)f'(rl)+Hp(rl, rl) I ],
7l

(2.8)

(2.9)

(2.10)

rl(1+rl) ' ll'(P)f(g)g'(g)+2g(g)Hp(rt, g) —2g(g)g(g)hp(rl)
'9 .

g(rl)h p—(g)+ —
~

hp(r—l)g (g)+ (rl g) =0 . (2.11)
4

& (g —g)'

It is convenient to make the following change of variables:

rl = —,
' [cosh(x) —1], g= —,

' [cosh(y) —1],
and to define new functions

g (x ) =sinh(x )g [sinh (x /2) ],
f(x)=sinh(x)f [sinh (x/2) ],
fp(x) =sinh(x)h p[sinh (x /2) ],
Pp(x, y)=sinh(x)sinh(y)Hp[sinh (x/2), sinh (y/2)] .

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

In term of the new variables we can rewrite (2.8)—(2.11) as

dg(x)
8x

(2.17)

df (x) 1 sinh(2x ) —2x

2x sinh (x)
(2.18}

d p x 2~ 1 d 1
( }+ (~)

3x +(x —3)sinh (x)
dx x P "

x dx P x sinh (x)
(2.19)

2% (p)
2(1—x )sinh (x)—4x +x sinh(2x) &( )X( ) + 8 (, ) —2 f ( ) — f (

C)X 2x sinh (x)

[cosh(x) —cosh(y )]~
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where

and

—Q(x, y ):H—ii(x,y) x—hei(y)

y—f&(x) q—i (p)X(x)X(y), (2.21)

try parameter P predicted by classical random-matrix
theory. '

III. EXACT SOLUTIONS OF THE
INTEGRAL EQUATIONS AND APPLICATIONS

%'ith the use of the identity

~( )
d

1
sinh(x)

dx x
(2.22)

sinh(x) sin(kx )cos(ky)
cosh(x)+cosh(y) o sinh(kn)

one can show that the integral equation

(3.1)

The functions g(x), f(x), h&(x), and Q(x,y) must satisfy
the conditions

sinh(x )g(y)dy (x)
o cosh(x ) +cosh(y)

(3.2)

lim = 1,g(x )

x-o+

f(x) 1
lim

x~0+ x 3

(2.23)
has a general solution of the form

P(x)= . [P(x+irr) P(—x in)—] .
1

27Tl

Using (3.3) we can solve (2.31) to find

(3.3)

fp(x )
lim

x o+

12—14f3+3P
4513

(2.25) p(x) = + —,'5(x)+Ga 4( ) 1

x +n

Q,y 2

(x,y) (o+,o+ ) x3'
(2.26} + C&(P) d coth(x )(x'+ n') —Zx

26' dx (x +n). (3.4)

(2.27)

and

x sinh(Zx )+2x —4sinh (x)
Zx sinh (x)

(2.28)

since I o=G, i.e., the conductance in units of 2e /h.
Equations (2.17)—(2.20) can now easily be solved to give

g(x) =x, f(x)=X(x),

If we define &(x }:—a [sinh (x /2) ], we can use (3.4) to cal-
culate the average of a general linear statistic as

( A )—:f "p(x)8(x )dx
0

Ga ~
d

0'(p) 8(0) f ~ &(x )dx
2 o 2 2 o

Q(x,y) =8 4xy
(x2 y2)2

sinh(x)sinh(y)

[cosh(x) —cosh(y) ]

(2.29)

dx
ip(/3) d&(x ) coth(x)(x +n. ) —2x
ZG& o dx (x 2+ ~2 }2

(3.5)

where

12—14P+ 3P
2 2

(2.30)

If we now use Eqs. (1.2) and (1.3) with A =I „, we find,
after transforming to the variables x and y, the following
Fredholm integral equations for the transformed average
level density, p(x), and two-point correlation function
k(x, y):

which in Fourier space gives (1.4). It is important to note
that (3.4) should apply only on scales large compared
with the mean level spacing, which is of order 1/Gz. For
x & I/Gs the last term becomes comparable with the first
term and our asymptotic expansion breaks down. In
practical applications it is sufficient to require that &(x)
in Eq. (3.5) have smooth variations on scales of order of
the mean level spacing.

It is more convenient to solve (2.32) by using the iden-
tity

2 fsinh(x }p(x')dx '

o cosh(x)+ cosh(x ')
=xGii +0'(p)X(x ) + h ii(x ) /Gii, (2.31)

sinh(x)sinh(y)IC(x', y')dx 'dy'

o o [cosh(x) +cosh(x') ][cosh(y) +cosh(y') ]

= —Q(x,y) . (2.32) 1
ln

ZPn. 2 BxBy

4n. +(x —y) x+y
4' +(x+y)

k sin(kx }sin(ky)"
xy =32f "dk

2k n.0 1

which together with (3.1) yields

It (x,y ) = f k(1 —e "")cos(kx )cos(ky )dk
g2r2

2

(3.6)

These equations are solved exactly in the next section.
One of the immediate consequences of (2.32) is that
k(x,y) has a universal form, which is independent of Gs,
and displays the same simple dependence on the symme-

(3.7)

Using (1.3) and (3.7) we can write the variance of a gen-
eral linear statistic as
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var( A ):—I dx I dy a (x )8(y)E(x,y)
0 0

1 d&(x) da(y) 4m+(x —y) x+y
dx dy 1n

2p~' o o dx dy 4m'+ (x +y )' x —y
(3.8)

In Fourier space (3.8) reduces to (1.5).
It is also interesting to express p(x) and E(x,y) in terms of the original variables [A, ]. The resulting expressions read

as

GB
p(A, )= + —,'5(A. )+

2&&(l+&) 2 ' &A(1+A, )(4r (A, )+n )

and

+ @(p) I+2K,
2Gs d& 2v'A(1+A)[4r , (A)+n , ]

4r(A, }

[4r (A, )+m. ]
(3.9)

2
1 8 m + [r( A, ) —r(A, '}] r( A, ) + r( A, ')

2n. P ~~&~' m. + [r(A, )+r(A, ')] r(A. ) —r(A, ')
(3.10)

in which r(A, ) =in(&A, +&I+A, ).
We now apply (1.4) and (1.5) to some cases of physical

interest. The conductance G, in units of 2e /h, of a
disordered metal is given by

statistic for the orthogonal case (p= 1) and satisfies~

GNs g aNs( ~' } (3.19)

G= gaa(A, ),

where az(A, ) =(1+A, ) '. From (1.6) we get

2mk

sinh(mk )

Inserting (3.12) into (1.4) and (1.5) yields

( ) %(P) 24'(P)
B 3 456

(3.11)

(3.13)

where aNs(A, }=2(1+23,) . Using (1.6) we find

16 48
var(GNs) =

Gs m

sinh(km/2)
'

thus substituting (3.20} into (1.4}and (1.5) we get

(3.20)

(3.21)

(3.22)

var(G) == 2
(3.14)

in agreement with Refs. 9, 16, and 18. The shot-noise
power P, in units of 4e ~v ~

Ih (v is the applied potential),
of a phase-coherent conductor is given by'

Finally, we consider the supercurrent-phase relationship
I(P), in units of eb/fi (6 is the energy gap), in a point
contact Josephson junction, which is a linear statistic on
the eigenvalues of the transmission matrix associated
with nonsuperconducting states. According to Ref. 21
we have (with P= 1)

P= g ar(A, },

where ar(A, ) =A,(1+1,} . Equation (1.6) then gives

2m.k(1 —2k~}
ar k =

3 sinh(n k )

(3.15)

(3.16}

az(A, ; }sin(P)
1($)=-,' g +I —az(A, ; )sin (P/2)

=
—,'sin(P) g T„+,u„sin "(P/2),

n=0
(3.23)

and thus

( )
Ga %(p) 24(p)
3 45 105GB

var(P) = 46
2835

(3.17}

(3.18)

(3.24)

K„cov(T, T„)= (3.25)

where T„:—g;aG(A, ;) and u„ is related to the Legendre
polynomial P„(x}by u„=(—I)"Pz„(0). Using the gen-
erating function I „we can show that

(T ) = A Gs+B 4(P)+C 4(P)IGs,

in agreement with Refs. 16 and 19. The conductance
G&z, in units of 2e /h, of a disordered microbridge be-
tween a normal metal and a superconductor is a linear

where A, B,C, and K„are defined by the expan-
sions
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and

g(v1)= g ( —1) A~+1
m=0

f(il)= g ( —1) 8
m=0

hti(i})=4(P) g ( —1) C
m=0

Q(il g)= g g ( —1}"+ &a+i,m+irl"0
n=0 m=0

(3.26)

(3.27)

(3.28)

(3.29)

I' '(P)= —,'sin(P) g A„+iu„sin "(P/2)
n=0

=cos(P/2)tanh '[sin(P/2)],

I"'(P)= —
—,'sin(P) g 8„+,u„si n "(P/2)

n=0

[1+—,', sin (P/2)+ —,",,sin (P/2)
sin( )

+ "' sin (P/2)+ ],

(3.32)

(3.33)

in which Q(rl, g) is related to Q(x,y) by

Q(x,y ) =sinh(x)sinh(y)Q [sinh (x /2), sinh~(y/2)] .

Using (3.24) we can write the average of (3.23) as

(I(P))=I' '(P)Gtt+I"'(P)+I' '($)/Gs,

where

(3.30)

(3.31)

and

I' '(P)= —,'sin(P) g C„+,u„sin "(P/2)
n=0

[1+—,'sin (P/2)+ —'„'sin (|I}/2)
sin( )

+,",,",sin (P/2)+ ],
while for the variance we find

(3.34)

var[I(P)]= —,'sin (P) g g E„+, +iu„u sin "(P/2)sin (P/2)
n=Om=O

2

[1+—"sin (P/2)+'"'sin (P/2)+, ",,",, sin (P/2)+ ] . (3.35)

var[I($) ]= —,', sin (P/2),

and therefore rms(I, ) =0.30.

(3.36)

IV. GAUSSIAN FLUCTUATIONS
IN THE LEVEL DENSITY

A quantity of particular interest is the variance of the
critical supercurrent I,=—maxI(P)=I(P, ). It has been
shown in Ref 22 t. hat rms(I, ) =rms[I(P, ) ], where

P, = 1.97. Since all coefficients in (3.35} are very close to
1 we can evaluate the sum approximately to find

r=2t/P . (4.3)

The resulting Langevin equation for each x„can be ob-
tained by using (4.2) and (4.3) in (2.1). We find

dXn
t = —x„+—cath(2x„t )

dt " P
sinh(2x„ t ) I „(t)+

~~„~ cosh(2x„t) —cosh(2x t) v'pp

(4.4)

The objective of this section is to show that K(A, , A, '} re-
sults entirely from Gaussian fluctuations in the level den-
sity, defined as

where 1 „(t) is the usual Langevin force satisfying

(4.5)

o (A, ) =—g 5(A, —A, ; ), (4.1)
Assuming Gaussian fluctuations around the equilibrium
position [x' '], we find that 5x„=x„—x„' ' satisfies

A,„=—,
' [cosh(2x„ t )

—1], (4.2)

on scales that are large compared with the mean level
spacing. This alternative way of deriving E(A, , A, ) bears a
closer relation with the theory of universal fluctuations of
linear statistics developed by Beenakker' in the context
of the global maximum-entropy approach. In fact, we re-
cover Beenakker's results simply by solving the exact sto-
chastic equation for cr(A)in an adiab. atic approximation.

We define new variables [x] and t through the rela-
tions

d(5x„} I n{t}= —g y„(t}5x„+
t&2fl

'

where

{4.6}

y„(t)= g q cofh sm( nq )sin( mq )
q1T

t2(N+1)
q

(4.7)

in which q=(N+1) 'ml and 1 =1,2, . . . , N. Note that
the linearization of the force term in Eq. (4.6) is exact
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only for q « 1 lt, which is the regime that determines the
behavior of linear statistics derived from smooth func-
tions a(A, ).

The normal coordinates

Inserting (4.14) into (4.18) we get

Ko(x,y)=
z f k tanh(kn)cos(kx)cos(ky)dk

pqr o

2
%+1

1 /2

g 5x„sin(nq ) (4.8)

P

1 B sinh(x/2)+sinh(y/2)
ln

pqr BxBy sinh(x /2) —sinh(y /2)

satisfy a set of decoupled Langevin equations

d(5xq ) I q(t)y—(t)5x +
dt s ' t 2p

'

where

(4.9)

which in terms of the original [A, J variables gives

1 B' &A, + v'A, '
Ko(A, , A, ')=,ln

(4.19)

(4.20)

(4.10)

and

y (t)= coth
2t

(4.11}

d(5x } I' (q)
y(t—)5X +

2P

Equation (4.12) can be integrated to yield

(4.12)

5x, (q ) =5xq, (0)e

It is instructive at this stage to introduce an adiabatic ap-
proximation in which we suppose that 5xq is solely deter-
mined by the rapid fluctuations of the Langevin noise, so
that

in agreement with Ref. 15. Inserting (4.15) into (4.18) we
recover (3.7}and (3.10).

In order to understand the fundamental differences be-
tween (4.19) and (3.10) it is useful to discuss differences
between open and closed channels. Frotn (3.11) we see
that only the channels for which aG(A, ;)=O(1) can make
a finite contribution to the average conductance. Thus
we say that a channel i is open if A,; (& 1, while it is closed
if A, , »1. There are three different regimes: The ballistic
regime, where all channels are open, the diffusive regime,
where a finite fraction of channels are closed, and the in-
sulating regime, where all channels are closed. We shall
consider only the diffusive regime.

The relative contribution of the open channels to the
variance of a linear statistic can be obtained by using the
form of K(A, , A, ') in (3.10) for A, , A,

' « 1. We find

(4.21)
(s s')y (()-——

t v'2p o

For r » 1 lyq(t) one finds

(5X, ) = tanh
q~ 2t

(4.13)
and therefore

var(A )~o~„= f dk k tanh(kyar)a (k) . (4.22)
p~'

(4 14} We get, for instance,

&5X, )= (1—e q ') .1pqn-
From the relation

(4.15)

where ( )o stands for adiabatic average.
Going beyond the adiabatic approximation we get

from (4.9) the exact expression

var(G) ~,~,„= 1
(4.23)

K(A, , A, ')
2

closed 271' p B~B~

For the closed channels we take (3.10) with A, , A,'» l.
The resulting two-point correlation function is

var( A) = g a(A, [x]),a(A, '[x'])d d

nm d~ x=x d& x =x

X (5x„5x.),
Equation (1.3) and the definition

(4.16)
thus

4m +(ink, —ink, '}
(ink, —ink, ')

(4.24}

E(x,y ) —= —,'sinh(x)sinh(y)K[sinh (x l2), sinh (y/2)], var(A}~,), d= f dk k(1 —e " )~a(k)[
psr'

(4.25}

we find

(4.17) where

a(k)—:f dx a(e")e'"" . (4.26)

4I(x,y ) =— dk k cos(kx )cos( ky ) lim t ( 5xq, ) ~ q 2k, .
7T 0 t~0

Applying (4.25) to the conductance yields

(4.27)
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If we use the global maximum-entropy result (4.20) for
the two-point correlation function we find that

IC,(J,X') ~.„„=I(.,(z, z') =I&,(X,X') ~„.„, ,

which, of course, implies

var( A)o~, ,„=var( A)o=var( A)o~,»„d .

(4.28)

(4.29)

On the other hand, for the local maximum-entropy ap-
proach we find inequalities

var( A ) ~,z,„&var( A ) & var( A ) ~,~„,d . (4.30)

This crucial difference between global and local
maximum-entropy approaches has an important conse-
quence: It is not possible to account for the geometrical
dependence of universal fluctuations via suitably chosen
average level densities. A similar conclusion has also
been drawn in Ref. 15.

U. SUMMARY AND CONCLUSIONS

We have calculated exactly the average level density
and two-point correlation function of the transmission-
matrix eigen values of a phase-coherent quasi-one-
dimensional conductor in the limit of a large number of
transverse scattering channels. As a consequence, we
have derived exact expressions for the average and vari-
ance of a general linear statistic on the transmission ei-
genvalues. We have applied the formulas to a number of
examples of particular physical interest. The results
show that weak-localization and universal mesoscopic

fluctuations are, in fact, very general phenomena that ap-
ply to a large number of transport observables in the
mesoscopic regime.

Using the stochastic evolution equation of the level
density we have shown that the two-point correlation
function is completely determined by Gaussian fluctua-
tions, at scales that are large compared with the mean
level spacing. A crucial difference between global and lo-
cal maximum-entropy approaches has been discussed.
The contributions of open and closed channels to the
fluctuations of linear statistics is qualitatively different in
these theories, which, in turn, implies that the basic as-
sumption of the global maximum-entropy approach that
information about the geometric structure could be in-
cluded in the average level density cannot be justified.

We conclude by remarking that since an increasing
number of transport observables for a variety of systems
has been shown to be linear statistics on the transmission
eigenvalues, we expect our results to be of considerable
general interest. Extensions to more elaborate
geometries, while appearing possible, do not seem to be
straightforward and require further research.

We recently learned of related work by Beenakker, in
which the second term of Eq. (1.4) has been obtained us-

ing a different method.
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