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A numerical study is performed on the conductance in quantum wires and their junctions in strong
magnetic fields. For the lowest Landau level, the energy and system-size dependence of transmission
probabilities and their fluctuations is quite universal and characterized by a single parameter within the
numerical accuracy. The critical exponent obtained from the width of the transition region between ad-
jacent quantized plateaus is in good agreement with that of localization of bulk Landau states. For the
first excited Landau levels, strong mixing between the edge state of the lowest Landau level and bulk

states destroys the universality.

1. INTRODUCTION

A key ingredient of the quantum Hall effect is the lo-
calization of Landau states in the presence of random po-
tential fluctuations. It has been shown in various
different ways that the Hall conductivity is quantized into
integer multiples of —e?/h when states around the Fermi
level are all localized. Several reviews have been pub-
lished already.!™® In quantum wires, on the other hand,
the Hall effect is understood in terms of the transmission
probability of edge channels.* In fact, the Hall resistance
is quantized whenever backscattering of edge states is
negligible. The relationship between these two pictures
remains unclear. The purpose of the present paper is to
study the conductance and its fluctuation in two-
dimensional systems in high magnetic fields based on the
edge-current picture and to compare the results with
those predicted in the bulk-state picture.

In the picture based on bulk Landau states, the width
of the Hall steps, i.e., the region where the Hall conduc-
tivity changes from a quantized value to another, is deter-
mined by delocalized states existing in the vicinity of the
center of each broadened Landau level.>® In the edge-
current picture, on the other hand, the Hall-step width is
determined by backscattering through mixing with bulk
states. There have already been various theoretical inves-
tigations on such mixing.”~°

The conductance fluctuations are universal in metallic
diffusive systems when their size becomes smaller than
the phase-coherence length. This has theoretically been
shown first by perturbation calculations.!”!* Fluctua-
tions in the quantum Hall regime have also been the sub-
ject of both theoretical and experimental study. For ex-
ample, a perturbation calculation, valid only for highly
excited Landau levels,'* and a numerical study'® have
been performed. Effects of a Hall electric field were in-
vestigated quite recently.!® It is known experimentally
that fluctuations become appreciable in the transition re-
gion between quantized plateaus.!”!® Magnetic-field
dependence of the correlation field of fluctuations has
been studied for diffusive quantum wires in high magnetic
fields."®

In this paper, the scattering probabilities of edge states
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are calculated numerically for both two- and four-
terminal geometries. It will be shown that the depen-
dence of the Hall-step width on the wire width is deter-
mined by the energy dependence of the localization
length of bulk Landau states, in agreement with the
behavior predicted in the bulk-current picture. The fluc-
tuations and the distribution function of the conductance
are calculated in a two-terminal geometry and their
universal behavior is demonstrated. The universality pre-
vails also for various transmission probabilities in a four-
terminal geometry. In Sec. II a brief discussion is given
of the model and the method of calculation. Some exam-
ples of numerical results are given for the average con-
ductance and the fluctuation in a two-terminal geometry
in Sec. III and in a four-terminal crossed-wire geometry
in Sec. IV. Section V deals with a brief summary and dis-
cussion. A very preliminary account of a part of the
present work has been published elsewhere.2%%!

II. MODEL AND METHOD

We consider a two-dimensional (2D) system on a
square lattice and introduce effects of scattering through
randomness of site energy distributed uniformly with a
width corresponding to broadening I" of the Landau level
calculated in the self-consistent Born approximation.?223
A magnetic-field H is included in the form of a Peierls’
phase factor in the nearest-neighbor transfer integral.
The lattice system with M sites in the y direction, for ex-
ample, corresponds to a continuum system with width
W =(M + 1)a for sufficiently large M, where a is the lat-
tice constant.

We consider both two- and four-terminal geometries,
schematically illustrated in Fig. 1. For the two-terminal
case, a wire with width W in the y direction and length L
in the x direction is connected to an infinitely long ideal
wire, which is eventually connected to a reservoir. For
the four-terminal geometry, we shall consider a junction
of two wires with length L and width W. Ideal wires are
connected at all ends. In order to calculate transmission
probability for the entire energy range of the broadened
2D Landau levels, we shall lower the bottom energy in
the ideal wires by AE (I'<AE <fio,—I with
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o,=eH /mc) as shown in Fig. 1. This is required be-
cause without AE current-carrying edge channels disap-
pear in ideal wires and the transmission likewise vanishes
when the energy is smaller than that of the lowest Lan-
dau level.

The transmission probabilities are calculated using the
Green-function technique already described.?* The con-
ductance can easily be given by the Biittiker-Landauer

formula. In the two-terminal CaSe, for example, we
ha ve
G — T
> 2. 1

with T being the transmission probability, where a small
spin splitting is completely neglected. We should make
the magnetic flux passing through a unit cell as small as
possible in order to avoid peculiarities characteristic of
lattice systems.?® Actual numerical calculations are per-
formed for systems with width W lying between W /I=35
and 50, where ! is the magnetic length given by
I=V'c#i/eH. The corresponding number of the lattice
sites are listed in Table I. For these parameters, the lat-
tice system can simulate the corresponding continuum
system quite well, although there remain some effects due
to the nonparabolicity, as will be discussed in the next
section.

The transmission probability for a given energy is cal-
culated by averaging over those of typically a few times
103 different samples. The broadening of the Landau lev-
el is I'/fiw,=0.2 and the energy shift is chosen as
AE =4, /2. Actual numerical calculations show that a
slight change in the choice of the shift causes negligible
effects for wires with sufficiently large width. Numerical
calculations are performed for L /W =1, 1, and 2 in the
two-terminal case and for L /W =3 in the crossed-wires
geometry.
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FIG. 1. Schematic illustration of a quantum wire (a) and its
crossing (b) with width W and length L. The wire is confined by
infinitely high barriers in one direction and connected to an
infinitely long ideal wire, which is eventually connected to a
reservoir. The bottom energy is raised by AE from that in the
ideal wire.
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TABLE 1. Wire width in units of the magnetic length / and
the lattice constant a, and corresponding magnetic flux passing
through a unit cell in units of the flux quantum ®,=ch /e.

W/l W /a a’H /d,

5.0 8 0.062 17
10.0 16 0.062 17
15.0 24 0.06217
20.0 40 0.03979
25.0 56 0.03172
30.0 80 0.022 38
35.0 100 0.019 50
40.0 128 0.015 54
50.0 200 0.009 95

III. TWO-TERMINAL GEOMETRY

A. Critical exponent of localization

Figure 2 shows an example of the conductance as a
function of energy for a typical system with width
W /1=20 and length L /I=20. The conductance van-
ishes below the energy of the broadened 2D Landau
level (E <#w,/2—T) and becomes e2/m#i above
E >#w,./2+T. In the energy range of broadened Lan-
dau states, on the other hand, it exhibits a large fluctua-
tion with amplitude of the same order as the conductance
itself and consists of sharp spikes and peaks.

Figure 3 gives some examples of calculated energy
dependence of the averaged conductance given by
(G)=(e?/m#h){T) for the lowest Landau level, where
(---) denotes a sample average. The dotted lines
represent the transmission probability for square systems
with L /W =1 in the absence of randomness. Except for
the narrow system with W/l =S5, it is essentially a step

W/1=20.0
10 LN=20.0
| F/hw,=0.20 n

L

Conductance (units of e2/xH)

I\ |

P R i P L L 1 i
0'8.2'5 030 0.35 040 045 050 055 060
Energy (units of hw:)

FIG. 2. An example of calculated conductance of the lowest
Landau level as a function of energy. W /I=L /1=20.
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function rising at the energy of the Landau level in two
dimensions, which is slightly smaller than #iw,_ /2 because
of the small nonparabolicity present in the lattice model.
The transition probability in the presence of randomness
exhibits a much slower increase and the energy depen-
dence becomes steeper with an increase of the system
size.
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FIG. 3. Calculated conductance and its fluctuation (the open
symbol) as a function of energy for the lowest Landau level.
The circles denote the results for a short rectangular system
(L/W= % ), squares those for a square (L /W =1), and triangles
those for a long rectangular system (L /W =2). The dotted line
represents the conductance in the absence of randomness. The
solid lines represent Eq. (3.1) and the dashed lines are guides to
the eye. (a) W/I=20 and (b) W /1 =40.
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In order to deduce the effective energy width over
which the transmission probability increases from zero to
unity, we fit the results to the function

1

(T(E)) = exp[B(E—Ey)]+1

(3.1)

The parameter B or I'(d{T)/dE),,, represents the in-
verse of the effective energy width and E,; the effective
threshold energy. The fitted results are shown by solid
lines in Fig. 3. Although the fitting is not perfect, partic-
ularly in the region where { T) ~0 and 1, this procedure
is expected to be sufficient in determining the effective
width and threshold.

Figure 4 gives the steepness parameter as a function of
the width in logarithmic scales. It is clear that the results
can be fitted to a straight line, except those for W /I =35,
showing that I'd{T) /dE),,, < W'/5. The exponent is
almost independent of the form of the system and is ob-
tained as s =2.210.1.

Figure 3 shows that the threshold energy for square
systems is slightly lower than the Landau-level energy in
two dimensions. This is mainly due to a quantum-
mechanical level repulsion effect caused by interactions
among different Landau levels. The threshold energy be-
comes larger with increasing L for a given W, and that
for systems with different L /W’s becomes closer with in-
creasing system size. Figure 4 also shows the difference
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FIG. 4. Log-log plot of the maximum energy derivative of
the two-terminal conductance as a function of the wire width.
The straight lines represent I'd{T)/dE),,, < W'/ with ex-
ponents s listed at the bottom-right corner. The dots denoted as
I'/AE,, represent the threshold energy difference between
L/W=1 and %, and the squares the difference between
L/W=2and 1. The exponents s’ defined by AE,, « W~/ are
listed at the top-left corner.
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in the threshold energy AEZ =EL/W=2 —EL/W=1 anqd
AE\\/D =gL/W=1_EgL/W=1/2  Although statistical er-
rors are much larger, AEy, is also fitted to a power-law
dependence, AE, < W~1/s". The resulting s'=1.910.2
agrees with s within statistical errors.

Numerical Thouless-number study of localization for
Landau levels has shown that states are all localized ex-
cept those lying in the vicinity of the center in two dimen-
sions.””»?® The critical exponent s, defined by a < |E|*,
with a being the inverse localization length and the ener-
gy origin chosen at the center of the broadened Landau
level, was obtained as s ~2 for the lowest Landau level.
This result was consistent with that obtained in a lattice
model,?® and was also later confirmed by finite-size scal-
ing calculations.*3! More recent finite-size scaling calcu-
lations within a random-matrix model’? gave the ex-
ponent s~=~2.3. A numerical study on the topological
winding number related to the Hall conductivity also
gave a similar result.?

Let E_ (<O0) represent the energy below the Landau
level where the transmission becomes appreciable and
E . (>0) denote the energy above which the backscatter-
ing becomes negligible. For sufficiently large systems
where localization length a ™! is the only relevant length
scale, these energies are determined by the condition
hila(EL)L,a(E)W]=1 with h as a certain function.
This leads to E./T=xC,(W/I)"'* for a(E)x|E[®
with C, as an appropriate constant depending only on
the ratio L /W. Therefore, the width of the energy region
over which the transmission probability varies from zero
to unity is given by E,—E_<W 5 e,
[(d{T)/dE) < (E.—E_)"'<W!s, This means
that the exponents s and s’ obtained above are both equal
to that for the inverse localization length of bulk 2D Lan-
dau states.

In more physical but less accurate terms, E _ is expect-
ed to be determined by the condition a(E_)L ~1 be-
cause the transmission is possible only through bulk ex-
tended states for energy below the bulk Landau level.
Similarly, E | is expected to be determined by the condi-
tion a(E , )W ~1 because the backscattering is possible
only through the bulk states. This argument immediately
leads to the same conclusion mentioned above. It also
suggests a possibility that the exponent s obtained above
is slightly underestimated. In fact, an effective width
W .4 is smaller than W by an amount corresponding to
the extent of the wave function of edge states and the de-
viation of W4 from W becomes more important for sys-
tems with smaller W. This will lead to a weaker depen-
dence of I'(d{(T)/dE),,, on W, than on W, and a
slightly larger value for the exponent s. It is difficult,
however, to estimate the amount of such a deviation be-
cause of the ambiguity in the choice of W .

B. Fluctuations

Figure 3 contains also the conductance fluctuation
V{(G—{(G))?). The fluctuation takes a maximum al-
most independent of the form of the system, i.e., L /W,
around the energy where the conductance is half of the

5 e
L __ W-20.0
F 1 [he.=0.20 :
: E/fw.=0.46
4 N
< I
@ |
= | :
= ! :
G4l (LMW=2 LIW=1/2
K } :
‘c |
3 |
= l
S2f | i
3 |
2 |
E |
o
1
L —

OO.O ‘ A 0.5 A 1.0
Conductance (units of e2/rh)

FIG. 5. Examples of the distribution function of the conduc-
tance for wires with width W /1 =20. For a square system with
L /W, the average conductance is nearly 0.5¢2/7# and the fluc-
tuation takes a maximum.

quantized value e’/7# and exhibits the steepest energy
dependence. The maximum fluctuation is nearly in-
dependent of the system size and is given by a value very
close to AG =0.31e?/7# obtained by perturbation calcu-
lations for 2D metallic systems in weak magnetic
fields.'°" 13 The fluctuations appear only in the energy
range where the conductance deviates from quantized
values. This is in good agreement with the experimental
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FIG. 6. Calculated fluctuations as a function of the average
conductance for the lowest Landau level for wires with different
width and length.
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FIG. 7. Distribution function of the conductance for systems
with nearly the same average conductance. Solid line:
wW/1=20, L/W= %, and E /#iw,=0.38. Dashed line:
W/1=40,L /W =1, and E /fio, =0.44.

finding that they become appreciable in the transition re-
gion between quantized plateaus.!”!®

This maximum fluctuation is slightly larger than
+=0.29 in units of e?/7# obtained for the uniform
distribution in which the conductance distributes uni-

formly between O and e?/7#. In fact, the distribution
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FIG. 8. Examples of energy correlation functions of the con-
ductance. Solid lines and open symbols: W /I=20 and
E /fiw. =0.46. Dashed lines and closed symbols: W /I =40 and
E /fiw. =0.46.
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function has larger value near O and e?/w# than near
(1)e?/m# at the maximum fluctuation where the average
conductance is (%)ez/ m#. Some examples of the distribu-
tion functions are given in Fig. 5. When (G ) is smaller
than (1)e®/m#, the distribution function has a large peak
at G =0 and a long tail for larger G. When (G ) is larger
than (%)ez/wﬁ, on the other hand, it has a larger peak at
G =e? /i and a long tail for smaller G.
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FIG. 9. Calculated conductance and its fluctuation as a func-
tion of energy for the first excited Landau level. The circles
denote the results for a short rectangular system (L / W==%),
squares those for a square, and triangles those for a long rec-
tangular system (L /W =2). The dotted line represents the con-
ductance in the absence of randomness. The solid and dashed
lines are guides to the eye. (a) W /I=20 and (b) W /1=40.
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Figure 3 suggests the presence of a universal relation
between the average conductance and fluctuation. Figure
6 gives the fluctuation as a function of the average con-
ductance for wires with width W /Il =20, 30, 40, and 50
and length L /W =1, 1, and 2. This shows that the fluc-
tuation is determined within the numerical accuracy by
the average conductance alone. The universality can also
be seen from the distribution function of the conductance
given in Fig. 7, where the distribution function is plotted
for two cases corresponding to different system forms and
energies but having similar (G ) and AG. A correlation
between the diagonal conductivity o,, and the fluctua-
tion of the Hall conductivity o,, in 2D systems on a
torus has been suggested by Aoki.ﬂ'

An important quantity related to fluctuations is the
correlation between different energies. In metallic
diffusive systems, the correlation energy E, is given by
the Thouless energy #D /LW with D being the diffusion
coefficient.’"!* In the present system, the diffusion
coefficient is roughly given by?**?* 27I?/7 with 7~#/T
and the correlation energy is expected to be

2ml?
E.~T W
Figure 8 shows examples of the energy correlation func-
tion

F(e)={G(E)G(E+¢)){G(E?)"!, (3.3)

for wires with width W /[/=20 and 40, which demon-
strates the correctness of Eq. (3.2). We can expect safely,
without explicit calculations, that the correlation mag-
netic field is also given by that estimated in a manner
similar to that in metallic diffusive systems.!* There
seems to be a slight deviation of E. from that given by
Eq. (3.2) for the long system with L/W=2 and
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FIG. 10. Calculated reflection and transmission probabilities
at a wire junction with width W/l =10.

T. ANDO 49

W /1=40. This may possibly be due to a precursor of the
localization effect because the transmission itself is al-
ready quite small ({7 ) ~0.1).

C. Excited Landau levels

The situation changes drastically for the first excited
Landau level as shown in Fig. 9. In fact, the energy
dependence of the conductance itself is quite different
from that for the lowest Landau level and varies consid-
erably with the change in the form of the system. For
systems with a long rectangular form (L /W =2), the
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FIG. 11. Averaged reflection and transmission probabilities
(a) and their fluctuations (b) at wire junctions with width
W /1=20. The lines for (R) and {T.) represent Eq. (4.1)
fitted to the results.
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average conductance first decreases slightly from e?/m#
before reaching 2e?/m# with increasing energy. This
reduction is stronger with increasing system size.

The reduction of the two-terminal conductance at the
energy of bulk Landau states has already been obtained
analytically in the self-consistent Born approximation
and also numerically,’®!5 and is a result of a strong mix-
ing of the edge state associated with the lowest Landau
level with the first excited bulk Landau states. The mix-
ing makes it difficult to extract information on the first
excited Landau level alone and even modifies the nature
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FIG. 12. Averaged reflection and transmission probabilities
(a) and their fluctuations (b) at wire junctions with width
W/1=40. The lines for (R) and (T, ) represent Eq. (4.1)
fitted to the results.
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of the Landau states as well as the edge state.?® In spite of
such complications, however, the facts remain that the
fluctuation becomes appreciable in the energy range
where the conductance deviates from quantized values
and that the maximum in the fluctuation moves to higher
energy with increasing system length L for a fixed width
W. The maximum fluctuation for the long rectangular
system (L /W =2) is approximately the same as that for
the lowest Landau level.

In actual quantum wires, fabricated at a
GaAs/Al,Ga,;_,As heterostructure, for example, the
confinement is given by a slowly varying potential rather
than the abrupt infinite barrier as assumed here. The
strength of the confinement may depend strongly on how
the system is prepared. For a very slowly varying
confining potential, a mixing among edge states and be-
tween edge and bulk states is expected to be negligible be-
cause of a small spatial overlap of the wave func-
tions.’” "% Therefore, the edge states associated with the
lowest Landau level is hardly coupled with bulk states of
the first excited Landau level and the energy dependence
of the conductance becomes essentially the same as that
for the lowest Landau level. Further, a self-consistency
in the confinement potential and the electron-density dis-
tribution is essential.*' 3 As a consequence, the edge
state associated with the lowest Landau level may lose its
character when the Fermi level lies at the first excited
Landau level.

IV. CROSSED-WIRES GEOMETRY

Figure 10 shows an example of calculated reflection (R)
and transmission probabilities, turning right (TR), turn-
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averaged reflection (R) and transmission probability {7 ),
and the inverse of the difference of the threshold energy for
(R ) as a function of the wire width for crossed-quantum wires.
The straight lines represent W'/ with critical exponent s listed.
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ing left (T, ), and going straight (T), as a function of en-
ergy for the lowest Landau level and for width
W /L=10. They exhibit large fluctuations consisting of
sharp peaks and dips in the energy range of the
broadened 2D Landau level.

Using similar results for different samples, we can cal-
culate their averages (R), etc., fluctuations
V' ((R—(R))?), etc., and also the correlation functions
such as ((R—(R )T, —(T.))), etc. Figure 11 shows
an example for W /I =20 and Fig. 12 that for W /[ =40.

With the increase of the wire width, the transition re-
gion, where (R) and (T, ) change between zero and
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unity and where (T ) and (T ) are nonzero, becomes
narrower. The effective width of this transition region
can be deduced by fitting the results to

1
(R)= ,
exp —BRr(E—ER)]+1
) 4.1)
<TL>= s

exp[BT(E——Egl )]+1

with two parameters Bz and EX for (R ) and By and E]|
for (T, ). The fitted results are shown by solid lines for
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(R ) and by dot-dashed lines for (7, ) in Figs. 11 and
12. The fitting is not perfect, but this is again expected to
be sufficient in determining the effective width and
threshold.

Figure 13 shows the maximum derivative
—T(d{R ) /dE) < Br and T(d{ Ty ) /dE ), <Br asa
function of W together with AEIR=EI —E{. Within
the numerical accuracy, the critical exponents obtained
for the crossed-wires geometry agree with those obtained
for the two-terminal case discussed in the previous sec-
tion. This is consistent with the fact that a(E) is the only
relevant parameter in the present system.

The results for systems with a different size suggest a
universality similar to that in the case of the two-terminal
geometry. Figure 14(a) gives the average transmission
probabilities as a function of the average reflection proba-
bilities for systems with width W /I =10, 15, 20, 30, and
40. It is evident that the average transmission probabili-
ties are determined by (R ) alone within the present nu-
merical accuracy. The universality prevails also for the
fluctuations and correlation functions as is shown in Figs.
14(b) and 14(c).

Experimentally, the transport coefficients in quantum
wires are usually measured in a crossed-wires geometry
and various interesting phenomena arising from ballistic
transmission across wire junctions have been observed.
One of the most typical examples is the anomalies in the
low-field Hall effect, such as quenching and the last pla-
teau.* These anomalies are believed to arise from the
presence of a large rounding of the corner of the junction.
Such a rounding certainly affects the present results on
the transmission probabilities, but is expected not to alter
the conclusion about the ‘“‘universality” that a(E) is the
only relevant parameter. The presence of a rounding
may introduce another length scale such as a radius of
curvature and makes the analysis much more complicat-
ed. This problem is left for a future study.

V. SUMMARY AND DISCUSSION

We have studied the conductance and its fluctuations
in quantum wires in the quantum Hall regime numerical-
ly. Within the numerical accuracy, the conductance for
the lowest Landau level is characterized by a single pa-
rameter a(E) for both two-terminal and crossed-wires
geometry, where a(E) is the inverse localization length of
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the 2D Landau level. Consequently, for a fixed form of
the system, the distribution function for the conductance
is determined by a single parameter such as the average
conductance. This is quite analogous to the results ob-
tained by a previous numerical study that there is a
universal relationship between o,, and o,, independent
of the system size within the statistical errors.*> For the
first excited Landau level, a strong mixing of edge states
associated with the lowest Landau level and bulk states
modifies the nature of these states, which seems to des-
troy the universal behavior.

A direct comparison of the present results with fluctua-
tions observed in actual systems with size L larger than
the phase coherence L, may require some caution. For
L,W >>L, the system is usually separated into regions
with size L, independent of each other. In this case,
however, clear system boundaries and edge states are not
present in each region, while the present system has a
real boundary potential giving rise to current-carrying
edge states.

The critical exponent for the localization of 2D lowest
Landau states is obtained as 2.2+0.1. This is consistent
with that of almost all the existing theories, either numer-
ical?’ =33 or analytical,‘“’ because actual errors are likely
to be larger than ~ 0.1 estimated statistically. Koch
et al. investigated the wire-width dependence of the
width of the transition region between quantized Hall
plateaus in narrow wires at low temperatures and de-
duced a critical exponent (s~2.3) for the localization
length of bulk Landau states.” The present result
justifies this experimental procedure of determining s, al-
though the lateral confining potential in actual
GaAs/Al,Ga,_,As heterostructures is believed to be
slowly varying rather than the abrupt potential assumed
above.
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