PHYSICAL REVIEW B

VOLUME 49, NUMBER 1

1 JANUARY 1994-1

Magnetization of uniform Josephson junctions

D.-X. Chen and A. Hernando
Instituto de Magnetismo Aplicado, Red Nacional de Ferrocarriles Espafioles-Universidad Complutense
de Madrid (RENFE-UCM), P.O. Box 155, 28230 Las Rozas, Madrid, Spain
(Received 29 July 1993)

The magnetization curves and phase, field, and current-density profiles for uniform Josephson junc-
tions (JJs) with length 2L are calculated from the sine-Gordon equation. It is found that M starts to be a
multivalued function of H at I=L/A;=1,=1.995, A, being the Josephson penetration depth; when
I>1,, increasing and decreasing H will cause M to jump so that hysteresis loops are formed; the hys-
teresis loops of very long JJs with / >>1, have a shape similar to that of type-II superconductors (SC2s)
with a surface barrier but both have quantitative differences; being cooled in a constant field, JJs show a
Meissner effect distinct from that of SC2s. These results are explained in terms of Josephson vortices.
One of the most fundamental differences between JJs and SC2s is that there is a surface current separat-
ed from the vortices for the latter but not for the former.

I. INTRODUCTION

Josephson' derived his dc and ac equations to describe
the electromagnetic properties of a system consisting of
two superconductors weakly linked across a thin insulat-
ing layer. The linked part is now called a Josephson junc-
tion (JJ), and the phenomena directly connected to these
equations are referred to as the dc and ac Josephson
effects. Such junctions are usually classified into two
types, short (narrow) and long (wide), discriminated by
the ratio /=L /A;, where 2L and A; are the length and
penetration depth of the junction, to be less or greater
than 0.5. For short JJs the field produced by the currents
flowing through them has a negligible influence on their
properties; on the contrary, the self-field effect has to be
considered for long JJs.

Considering a gauge-invariant phase difference, the dc
Josephson equation for JJs in a uniform applied field
parallel to the junction plane and perpendicular to the
junction length results in a sine-Gordon equation which
contains A;.'~7 Analytic solutions of this latter equation
have been given by a number of authors.! ~® It is reduced
to a first-order linear differential equation for short JJs
because their A; can be regarded as infinite. Its solution
for the transport critical current as a function of the ap-
plied field has the form of the Fraunhofer diffraction pat-
tern® in physical optics. For long JJs, however, the solu-
tions are in general multivalued, consisting of elliptic in-
tegrals. Concerning their magnetic properties, Kulik?
has made systematic derivations for the case of /— oo,
giving the equilibrium magnetization curve. For the case
of finite /, transport properties have been computed by
Owen and Scalapino,” and some magnetization curves,
M (H), were obtained by Yamashita and Rinderer’ exper-
imentally based on a mechanical analog model.
Knowledge of the magnetization of uniform JJs has up to
now been gained from these theoretical or semitheoretical
works.

In this paper, we will extend this knowledge by sys-
tematic and. accurate computations directly from the
sine-Gordon equation. The [/ range is chosen to be as
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wide as necessary and possible (from 0.25 to 20). No
external current is applied to the JJ so that the subject
can be referred to as the magnetization of JJs. Since it is
difficult to envisage precisely the magnetic properties of
JJs without detailed computations, some important
features of JJs were ignored up to now. They are studied
in this work.

The model and mathematics are introduced in Sec. II.
Some computed results are given in Sec. III with prelimi-
nary phenomenological analyses. The magnetization is
further described in Sec. IV. Following tradition, our
presentation will be parallel to the magnetization of
type-II superconductors (SC2s). Since the similarities be-
tween long JJs and SC2s have been universally em-
phasized in the literature, we are mainly concerned with
the unique properties of JJs and the essential differences
between both. The conclusions are given in Sec. V.

II. MODEL AND MATHEMATICS

Let us consider a uniform junction J between two bulk
superconductors §; and S,, as shown in Fig. 1. The
length of the junction, along the y axis, is 2L; its thick-
ness, along the x axis, is 2d =2A; +¢, where A, is the
London penetration depth of the superconductors and ¢ is
the thickness of the insulating layer. A uniform magnetic
field H is applied along the z dimension of the assembly,
which is infinite so that there is no demagnetizing field.

Upon applying H below the lower critical field H,, of
the superconductors, two kinds of currents, circulating in
S, and S, and in J, appear. The magnetization M of the
junction is provided by the latter. Owing to the infinite z
dimension, currents are uniform along the z axis and the
field produced by the currents has a z component only,
which is also uniform along the same axis. Moreover,
taking the original point of the coordinates as the center
of the junction, the currents flowing along the y axis can
be equated with those flowing in two infinitely thin sheets
on the planes of x ==d, so that the internal field H; be-
tween these sheets becomes independent of the x coordi-
nate. Thus, the problem turns out to be one dimensional.
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FIG. 1. Schematic of a Josephson junction assembly. The
junction J is bordered by two long-dashed lines. The circulating
currents in S, and S, are shown by short-dashed lines, on each
of which there are two arrows pointing in the clockwise direc-
tion of current. The other four arrows within J and its border
represent the junction currents. Applied field is along the z axis.

For the sake of simplicity, dimensionless quantities are
defined for L, y, H, H;, and M as

IE}\LJ, nE%J—, hE;*, hizgl, mEé{ ,
(1)

with
A=V @ /dmpgdod (2a)
H*=®y/4muph,d , (2b)

where ®, is the flux quantum and J, is the maximum
tunneling current density at zero field. Thus, the sine-
Gordon equation for the gauge-invariant phase difference
6 can be written as®

d*0/dn*=sing , (3a)
with
d6/dn=h, . (3b)

Owing to the symmetry, we only need to consider one-
half of the junction, whose boundary conditions are

6=0 for =0, (4a)
h;=h for n=1. (4b)
The solution of Eq. (3a) with condition (4a) is*
1 o do'
=1 , (5)
2 fo VisinX(6' /2)+a?

where a is a constant to be determined by condition (4b).
For computation, Eq. (5) is further expressed in terms of
elliptic integrals as

n=k{n'K(k)+(—D)"F[(—D)"O—n'm)/2,k]} , (6)

where K and F denote complete and incomplete elliptic
integrals of the first kind. The argument

k=(1+a?) 172 (7)

n is the maximum integer less than 6/7+1, and
n'=n—[1+(—1)"]/2.

The computations are carried out with a MATHEMATI-
CA program, aimed at obtaining an a (6;) function, where
0, is the 0 at =1, that satisfies condition (4b) for a given
I with an accuracy better than 0.01%. Having a(6,),
m (h) is computed using

h=2V/sin%(6,/2)+a?, (8a)
m=b/uy—h=6,/1—h . (8b)

These two equations are derived from Egs. (3b) and (4b),
and b is the averaged flux density B of the junction nor-
malized to H*.

The profiles of phase, internal field, and current density
can also be obtained after obtaining a(8;). Changing 6
stepwise from zero to a given 6,,0(7) is computed from
Egs. (6) and (7). This function leads directly to k;(7) us-
ing Eq. (8a) whose & and 6, are replaced by 4; and 6, re-
spectively. The normalized current density j=J/J,
where J is the current density, is then calculated from the
original dc equation

Jj =sinf . 9)

III. COMPUTATION RESULTS

A. Magnetization curves

The computed m (h) curves for [ =0.5, 1, 2, 4, 8, 12,
16, and 20 are plotted in Figs. 2(a)—2(h) successively. We
see that m oscillates around the A axis for all the curves,
which is a natural consequence of the sine function in Eq.
(3a). By measuring the distance between the points where
m =0 and defining the h period as (Ah);=h; ,—h;,
where h; is h at the jth zero-m point counted from O at
h =m =0, we have

(Ah);=2m/I for j=1. (10)

This equality is not exact but very accurate for large j.
Examining carefully the values for small j, we find that if
1 =2, the error of Eq. (10) is within £0.4%. For [ <2,
the actual (Ah); can be ~1.5% greater if j =1, but this
error decreases quickly with increasing j. The situation
for 1> 2 is different,where the error of calculated (Ah); is
negative at small j. The largest error is around —5% at
j =1, and it changes slowly with increasing j if / is large.

Thus, [ =2 serves as a critical case that separates the
positive and negative errors of Eq. (10). It also divides
the m (k) curves into two types. m is a multivalued func-
tion of 4 if I > 2 but it is single valued if / <2.

B. Phase, field, and current-density profiles

To show the phase, field, and current-density profiles
we have to define some typical cases. We choose four
values of / which in logarithmic scale are symmetrically
located on either side of the critical case of / =2. Such
an [ range also covers the lengths of most practical short
and long JJs, and its lower and upper limits. can be well
compared with the ideal cases of / —0 and «. Moreover,
we choose 6, to be 7 /2 multiplied by small integral num-
bers in order to simplify the plots. Thus, in Figs. 3, 4, 5,
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and 6, we show (a) 6(7), (b) h;(n), and (c) j(n) profiles
for 1=0.25, 1, 4, and 16, respectively, at 6,=iw/2,
i=1,23,...,8

The profiles for / =0.25 given in Fig. 3 are practically
the same as the ideal ones for /—0. The 4; is constant
against 1), which means that the field produced by
currents is negligible. 0 is a linear function of 7, resulting
from the integration of constant 4;. The profile of j is al-
ways a part of sinusoidal function of 7, as easily visual-
ized from Eq. (9) and a linear 6(%). In other words, a JJ
of 1 =0.25 is a typical short one.

On the other hand, one can see the departure of the re-
sults for / =1 given in Fig. 4 from those for /—0 de-
scribed above. This departure can be easily observed
from the h; profiles; they are no longer flat. According to
the traditional classification, this JJ of / =1 is a long one.

The trend of change in the profiles continues for even
greater I. We see wave-shaped 4;(n) and severely non-
linear 6(n) for / =4 in Fig. 5. However, it is interesting
that the wave forms of j(7) are not sensitive to / even
when it is increased to 4. For 0,=4m, j(7) is still very
close to sinusoidal. Only when 8, is small, can one see it
tilted towards the JJ edge (p=1).

Tremendous changes occur for all three profiles when
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1 =16 as seen from Fig. 6. 0 shows stages, #; becomes
peaks, and j(7) has a unique shape close to dh;(7)/d.
These should be characteristic features of very long JJs,
which will be our main concern in this work.

In the cases of 6,=4m, two field and current periods
are present as long as we are able to see the periodic
feature. These two periods are exactly identical. For
27 < 0, <4, there is a fractional period besides the com-
plete one; the former is exactly a part of the latter. Such
accurate periodicity is also ascribed to the sine function
in Eq. (3a).

We should emphasize that all these profiles are calcu-
lated for low fields (or small ;). Increasing 6, for larger /
will result in the profiles approaching those for smaller /,
although the number of periods will be greater.

IV. JOSEPHSON JUNCTION MAGNETIZATION

A. Initial susceptibility

After describing in Sec. II some phenomena appearing
in the m (k) curves and the profiles, we now come to
deeper and quantitative physics, i.e., the Josephson junc-
tion magnetization. We start with the simplest property,
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FIG. 2. Computed m (h) curves for I =0.5 (a), 1 (b), 2 (c), 4(d), 8 (e), 12 (f), 16 (g), and 20 (h).
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namely, the initial susceptibility, X;,. It can be observed
from Fig. 2 that the initial slope of the m (h) curve de-
creases with increasing I. It follows, with an accuracy
better than 0.1% in computations with finer 8, steps, that

Xini=(dm /dh);, _o=1""tanhl —1 . (11

This equation can be obtained by solving Eq. (3a)
with sin@ replaced by 6 under the boundary conditions
h;(l)=h;(—1)=h and using Eq. (8b). Therefore, the
0.1% can be regarded as the maximum computation er-
ror for the field.

Actually, this X;,; is the same as that for an infinite slab
of SC2 in the Meissner regime,® owing to the exponential
decay of field from the surfaces. In Figs. 3—6, we did not

FIG. 3. The 6(%) (a), A;(n) (b), and j(%) (c) profiles for
1=0.25. In each case, eight curves from the very-short-dashed
line to the solid line are for 8,/7=0.5, 1, 1.5, 2, 2.5, 3, 3.5, and
4, respectively.

show h; profiles for very small 2 or 6,. But the h;(7)
curves for 8;=m/2 in Figs. 5(b) and 6(b) are rather close
to exponential.

In our model, the three circulating currents at very
small 4 in a very long JJ assembly can be equated with
one closed current sheet, as shown in Fig. 7(a). In S, and
S, it is distant from the surfaces by A;, whereas in J, by
A

B. Josephson vortices

The second property of JJs concerns the periodic na-
ture of the field and current profiles, namely the presence
of Josephson vortices (JVs). Because of the importance of
this feature it has been emphasized in most of the existing
works on long JJs, and so we give it priority over the rest.

As for the Abrikosov vortex (AV) in SC2s, the concept

FIG. 4. Same as Fig. 3,but / =1.
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of the JV was introduced by solving Eq. (3a) for / — .
The solution has a soliton type, h; taking a maximum at
7=0 and being equal to zero when n=1I:

6=4arctane” . (12)

It gives 6(—1)=0, 6(])=2m, and 6(0)=m. Obviously,
this JV contains one @, of magnetic flux since the entire
change in phase difference is 27. Its field and current-
density profiles are almost identical to those shown in
Figs. 6(b) and 6(c) for 6, =27 but with two differences as
follows: (1) The latter are centered at 7=8 but not O be-
cause in their calculation 6 at the center has been chosen
as 0 but not 7. (2) There is an unobservable difference in
the profile shapes since Eq. (12) implies that @ =0 but in
the other case a =0.001 32.

Analogous to the single JV in an infinite JJ, the JV in a
finite JJ should be defined as a current vortex associated

FIG. 5. Same as Fig. 3, but / =4.

with a field peak whose total flux equals ®,. From Figs. 5
and 6, we see that =0 is always the border of a JV. The
total number of JVs in the half of JJ is defined as

n,=0,/2m . (13)

If n, is an integer, there exist complete JVs only; other-
wise, we have an incomplete JV cut by the JJ edge.

In Fig. 7(b), we draw a schematical JV structure for a
JJ containing two JVs whose fields are along the applied
field, as in the case of / =16 and 6, =2 shown in Fig. 6.
Two schematical figures of JV structure in long JJs are
found in the literature, both having different features
than shown in Fig. 7(b). Figure 19 of Ref. 4 shows a
structure containing three JVs, one being at the junction
center and the other two on each side. On the other

FIG. 6. Same as Fig. 3, but / =16. For overlapped curves,
6,/m values are indicated. The data are not available for
6,/m<1.5and n<10.
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hand, Fig. 149 of Ref. 6 draws two JVs located at either
half of the JJ, both giving fields opposite to the applied
field. We note that all three cases concern static magnet-
ic properties only, no transport current being applied.
The above definition of a JV in finite JJs is valid for all
the three configurations. However, careful analyses on
the three will lead to a deeper insight into the nature of
JVs, and thereby it turns out that some additional prop-
erties have to be attached to them.

The illustration in Ref. 4 is consistent with the soliton
solution since in both cases a JV is centered at the JJ. To
obtain such a solution one has to assume 6= at the
center instead of 0. This is also acceptable considering
the symmetry, but it is not realistic since it will introduce
an overly high energy to the JJ compared with the case of
0(0)=0. Actually, the current induced by small fields al-
ways produces a field opposing the applied field, thus
shielding the interior. Such a state has a lower energy
than that with a centered JV since both the average field
and current associated with two fractional edge JVs are
smaller than those of an almost complete JV at the
center. With increasing field, the two fractional JVs,
which carry fields in the same direction as the applied
field, become larger and form two complete ones. There-
fore, the configuration in Ref. 6 is not realistic and the
field carried by the JVs should have the same direction as
the applied field.

Thus, we can add two properties to the JVs in uniform
JJs that are not subjected to a transport current: (1) The
field carried by JVs always points in the direction of the
applied field, and (2) a JV can never form at the JJ center.
We have argued these from the process of the first JV for-

FIG. 7. (a) Low-field shielding state. (b) A state with two
complete JVs. Applied field is along the z axis.

mation, but similar arguments can be made for any other
cases. Therefore, these properties are in general valid.

JVs in a JJ have another important property: (3) There
are no distance and overlap between two adjacent JVs
even if one of them is fractional. This follows directly
from the periodicity of the h; and j profiles; the periods
are continuous.

Adding these three properties, JVs defined in this way
are still not the ones that are of common concern. The
reason is that the above definition is valid for all uniform
JJs regardless of whether they are short or long. Tradi-
tionally, the concept of JVs is used for long JJs only,
when they are analogous to SC2s.!~7 Universally defined
JVs can be used for some particular cases only; this im-
plies that some important characteristics of the JVs must
have been overlooked, and without a further specification
their applications would involve errors. At this point, we
switch our topic to the properties of long JJs.

C. Magnetic irreversibility

As mentioned in Sec. III, when [ is greater than 2, m
becomes a multivalued function of 4. This means that at
a given value of 4 there can be several different states pos-
sible. The energies of these states are different since they
contain different numbers of JVs. For example in Fig. 6
for the case of / =16, the states containing 0.25, 0.75,
1.25, and 1.75 JVs correspond to the values of h very
close to 1.41. If fixing the h as 1.41, these n,’s should be
almost unchanged. The lowest energy is for n,=0.25.
Since these states are not continuous, movement from
one to another will undergo an m jump. During the
Jjump, the JJ is not in equilibrium and its supercurrent-
bearing ability is surpassed; i.e., the ac Josephson effect
will play its part accompanied by high-frequency oscilla-
tions and energy losses. We will not consider the ac effect
in more detail but simply use the m jumps to represent it.
In reality, such jumps do not occur everywhere. When
we sweep A up and down, the magnetic state (h, m) will al-
ways follow the continuous m (h) curve unless /& reaches
its local maximum or minimum where (h,m) jumps to the
nearest point on the same curve with the same h. The
magnetization process is reversible when following the
m (h) curve but irreversible when undergoing an m jump.

We have used 2 as the critical /, below which there is
no existing irreversibility in the magnetization. Writing
this / as /., it can be determined with higher precision by
detailed computations as

[,=1.995, (14)

which corresponds to a first jump occurring at h =h,
=2.319, where m =—0.239 and 6,=4.15. These not-
simple numbers suggest that the value of /., would be
difficult to obtain analytically.

We now argue that when / =I, the influences from the
self-field and the applied field can be regarded as being
balanced. At very low A, the self-field opposes 4 and
tends to decrease y;,; from O to —1. We can use this y;,;
as a characteristic quantity to define the strength of the
self-field relative to 4, and regard y;,;= —0.5 as a critical
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FIG. 8. The h;(n) profiles of a junction with /=1, when
6,=3.14, 3.64, 4.14, 4.64, and 5.14.

value at which both fields have balanced influences. Us-
ing Eq. (11), this leads to a critical /, /. =1.915.

In terms of JVs, such a low-field shielding state is a
vortex state of n, <<1. With increasing h, n, increases,
and a greater fraction of JV enters the JJ from the edge.
The shielding state ends at n, =0.5 with 6, =, where the
h; takes its maximum value / at the edge and decreases
monotonically with 7—0. When n,20.5, h; near the
edge will be greater than 4; i.e., part of the JVs starts to
reinforce the magnetization. This feature is common for
all JJs. However, there is a qualitative difference between
shorter and longer JJs. For the former, a continuous flux
increase (6, increase) during the first JV entry requires an
increase in A, since the flux of the JVs is mainly provided
by h; for the latter, however, the same flux increase re-
quires a decrease in h during the JV entry, since the flux
carried by the JVs is mainly produced by the vortex
currents (or contributed by the self-field), and the entry of
JVs itself already brings in overly large flux. These two
cases are separated by / =/,, where h remains constant at
a certain moment during the flux entry. Several A,(7n)
profiles for I =1, are given in Fig. 8 to illustrate this situ-
ation.

Since both I, and I, are very close to 2, this should
serve as an unambiguous boundary between the self-field
and applied-field dominated JJs. If we further calculate
Xini 2s a function of / using Eq. (11), we will find that the
traditional short JJs with [<0.5 corresponds to
Xini > —0.076. Symmetrically, we can define very long
JJs using X;, < —0.924, which leads to / >13. Thus,
with increasing /, JJs can be short (/ <0.5), long reversi-
ble (0.5<! <2), long irreversible (2</<13), and very
long (I > 13). Such classifications work well for low #; the
relative self-field effect weakens with increasing h, and at
sufficiently high A the properties of longer JJs will ap-
proach those of shorter ones.

D. Hysteresis loop

When [ >, starting from the state where m =h =0
and increasing A, the magnetic state will move reversibly
along the lowest sections of the m (h) curve with vertical
jumps in between. Each jump corresponds to a sudden
increase in JJ energy. When decreasing 4 from a max-

imum value, the state will move along the highest sec-
tions of the m (h) curve with each jump corresponding to
a sudden decrease in energy. Four jumps are drawn for
[ =4 in Fig. 2(d). In this example, there are two separat-
ed loops consisting of reversible sections and jumps. For
greater /, such loops may be combined into one larger
loop, as easily visualized from Figs. 2(e)-2(h). However,
even when / is very large, there are always a few separat-
ed loops at high h, above which no more loops exist, and
the magnetization curve becomes reversible.

As an example of very long JJs, / =20, the m oscilla-
tions become very dense, and there are 14 loops com-
bined into one, which is similar to that of type-1I super-
conductors (SC2s) with a surface barrier. We now focus
on this situation.

As is well known, there is a thermal equilibrium
H . (B) curve for a SC2, and the presence of a surface
barrier shifts the field for vortex entry and exit to
H.,>H, and H, <H,, at a given B.>' From a zero-
field-cooled state, increasing and then decreasing H result
in a hysteresis loop consisting of two linear segments with
a —1 slope (if the cross-sectional dimensions are much
greater than Ay ) and M, (H ) and M, (H_,) curves.

We first consider the limit case of | — . Its m.,(A,,)
and m(h.,) can be obtained as follows. Although n,
may take any numbers, the b /i, of an infinite JJ in any
case can always be regarded to be equal to the average 4;
within one certain JV. Thus, we have by substituting
6=0 and 27 in Eq. (6) that

b_2m__w
Lo An kK (k)

Since the maximum and minimum A at a given b corre-

(15)

spond to 8,=(2i —1)7 and 2im, i=1,2,3,..., respec-

tively, we obtain from Eq. (8a) for the JJ that
he,=2(1+a>)1?, (16)
h.,=2a . (17

Given a series of values of a, we compute b, 4, and
h., using Egs. (7) and (15)-(17), and then m,, and m,,
using Eq. (8b). m,(h ) and m(h.,) are thus obtained,;
they form an m (h) loop, together with two straight lines
with a —1 slope for 6 =0 and b =b_,, (not shown), as
plotted in Fig. 9. In this figure, we also give the thermal

equilibrium magnetization curve m,(h.), derived by
Kulik.? It is calculated from Eq. (15) and
heg=4E (k)(mk)™!, (18)

where E (k) is the complete elliptic integral of the second
kind.

Three characteristic quantities at b =0, the lower criti-
cal field, h. =h.(0), the first field for vortex entry,
h.,(0), and the last field for vortex exit, A, (0), are

h,,=4/m, h(0)=2, h (0)=0. (19)

These equations can be precisely used for very long JJs.
For comparison, we give the relevant formulas for the

surface barrier of SC2s that have great x, the Ginsburg-

Landau parameter. This kind of SC2s has been regarded
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FIG. 9. The computed m (h) curve for a junction with / =20,
together with the initial magnetization curve [a line from (0,0)
to (2, —2)], me,(h.,) curve, m(h,,) curve, and m,(h.q) curve
for an infinitely long junction. Long-dashed lines give m,(A.,)
and m,(h,,) curves calculated using Egs. (20) derived in Ref.
12 for type-II superconductors.

as an excellent analog of long JJs. For such SC2s, we
have!?

H, (B)=V H +(B/uy? H,(B)=B/u,. (20)

They are much different from the results given by Eqgs.
(15)-(18), which have h_ <b/u, and a much quicker
change in &, with A (see Fig. 9).

After describing the above similarities and differences
between very long JJs and SC2s with a surface barrier,
some other unique properties of the former are worth
mentioning. (1) Their first m jump during increasing 4 is
not from b =0 since Y;,; > — 1 and the initial m () curve
before the jump is not linear. (2) Each jump involves a
fractional vortex entry, although the n, change An, is
very close to unity at low A. (3) There is a field
hi,. =1 —(Ah); above which no more jumps will occur, or
magnetic irreversibility will disappear completely.

E. Meissner effect

We now show a great difference between JJs and SC2s
concerning their Meissner effect. The Meissner effect for
a superconductor is referred to as the flux expulsion in a
fixed applied field H when it is being cooled down from
above the critical temperature 7,. For an infinitely long
ideal SC2 (without vortex pinning and surface barriers), if
its transverse dimensions are much greater than A, at the
minimum temperature, T;,, and H. (T ;.)> H, the sus-
ceptibility y will decrease monotonically during cooling
and reaches — 1. If the surface barrier is considered and
Egs. (20) are valid, then the AVs can hardly exit and Y
should always be close to 0. As will be seen below, the
situation for JJs is much more complicated.

From the definition of the Meissner effect, we cool a JJ
in a constant H. To simplify the problem we assume that
the dimensions of the JJ assembly and A; are fixed in the
temperature region of interest. Actually, the maximum

0.2
0.0

0.2

- L0 4w

FIG. 10. x as a function of /* during field cooling for hl =2
(1), 4.6 (2), 6 (3), 10 (4), 12 (5), and 16 (6).

possible size change is on the order of 10~ even if T, is
as great as 100 K, and the assumption of fixed dimensions
is justified. A; decreases quickly at T=T, and ap-
proaches a stable value when T < T,/2.!! If we are in-
terested in low temperatures, it can be thought to be
fixed; otherwise, the modification to the following results
will be quantitative but not essential.

Under these assumptions, the effects of decreasing T
are all due to the increase in J,. From Egs. (1), (2a), and
(2b), we have

HL =20
B 4rpyd

hl , 21

which means that a fixed HL is equivalent to a fixed Al
Thus, although decreasing T' makes the JJ longer and
modifies the m (h) curve in the order from (a) to (h) in
Fig. 2, the (h,m) state remains at the same A/ coordinate.
The h-axis length of Figs. 2(a)-2(h) is actually designed
following this rule. Moreover, this state must move con-
tinuously without any jump, which is energetically un-
favorable. Thus, fixing a value of A/, we can get a number
of (h,m) states located on the m (k) curves in Fig. 2 and
some others that are not shown, from which the suscepti-
bility y=m /h is calculated. Such a y is plotted as a
function of /? in Fig. 10 for different values of hl. From
Egs. (1) and (2a),

_ 4mpodL? ;

12
o, °°

) (22)

which is a measure of J,. Knowing the relation between
Jo and T, the x(/ 2) function is readily reconstructed to a
x(T) function more relevant for the Meissner effect.

We observe from Fig. 10 that instead of a monotonical
decrease with increasing J, (decreasing T), ¥ sometimes
increases. Such a unique behavior is described as follows.
(1) For hl <h,1.,=4.63, all x(I*) curves merge into one
when /%> 30, which approaches —1 if [ is very large
at T,.; in the region /<30, Y decreases smoothly
in most cases, but when Al is close to 4.63, it in-
creases a little before dropping suddenly at [>=~4.
(2) For 4.63+(2i —1)m<hl <4.63+2im, i=1,2,3,...,
Y  decreases  with  increasing /2. (3)  For
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4.63+(2i —2)wr<hl <4.63+2i—1)m, i=1,2,3,..., x
shows a positive peak. (4) The total y change in cases (2)
and (3) decreases with increasing i; when i =1, the lowest
x in case (2) is close to —0.35, and the y peak in case (3)
is a little less than 0.2.

A Meissner effect similar to that of ideal SC2s occurs
in case (1). Changing back to unnormalized quantities,
the condition for this effect to take place is

@, =4uodLH < 220 =1.470, . 23)

That is, if the flux within the JJ and produced by H is less
than 1.47®,, the effect is normal in the sense of y ——1.
However, even in this case, there is a big difference be-
tween the JJ and the SC2. The upper limit of H for
ensuring such an effect in a JJ is very small. Using the
normalized quantities and writing the boundary field for
such a Meissner effect to occur as k|, we have

‘e 4.;63 _ 3.164 W 04

which decreases with increasing / and is only 1/10 of the
“thermodynamic lower critical field” 4., when [ =36.4
and Ypin= —0.973.

F. Essential differences between long JJs and SC2s

Up to now, we have been mainly showing the computa-
tion results of JJs concerning their magnetic properties.
We have also compared them with those of SC2s oc-
casionally. It is clear that some properties look common
for both, but some others are quite different. The com-
mon ones have been emphasized in the literature, so that
some important rules and concepts obtained from SC2
studies have been widely applied to JJ systems. It would
also be promising in a reverse way that the rules and con-
cepts obtained in JJ researches be used for SC2s. One
would benefit more from the latter since the theoretical
treatments for JJs have been made with a high precision.
We have thought of all these possibilities. As a result, we
conclude that although one who studies JJs can get some
ideas from the existing results for SC2s or vice versa,
such kind of mutual benefit is quite limited. More impor-
tant now is to realize the essential differences between
both.

One of the most similar features for JJs and SC2s is
that their x;, is identically expressed by Eq. (11) if /
denotes the half thickness normalized to A; of a slab for
the latter. This means that both have the same low-field
shielding effect characterized by their own penetration
depth. At this point, a difference should not be over-
looked. This effect for SC2s is due to a surface current
which shields the interior up to very high fields, and a
constant Y;; will remain until H =H, (0) where first
AVs enter the body. In the case of JJs, however, the
shielding effect results form the fractional JV on the edge
(for simiplicity we only mention a half of JJ), and the sus-
ceptibility increases continuously with increasing 4 dur-
ing the JV entry. This looks trivial. But as will be shown
below, it is this difference that makes most properties of
JJs distinguished from SC2s.

Since there are both the surface current and AVs in the
mixed state of SC2s, a potential barrier can exist when
AVs are close to the surface, which arises from the in-
teraction between both and forbids reversible AV entry
and exit. This interaction has been treated as the surface
image force. On the other hand, for very long JJs, the m
jumps during the irreversible JV entry or exit cannot be
ascribed to a surface barrier. Surface current merely be-
longs to a fractional JV, whose h; and j profiles are al-
ways exactly the same as a part of those of the internal
JVs. There is not any force other than the one due to the
Gibbs potential of the entire system that acts on all the
JVs. During an m jump, the entire system as a whole
passes through an energy barrier related to the ac Joseph-
son effect. In other words, the state changes from a su-
perconducting one to another across a normal one.

Also owing to this, for SC2s, H,, cannot be less than
B /u, since when H =B /u,, the density of AVs reaches
such a value that B becomes the same on both sides of the
surface and no net image force can exist. For very long
JJs, however, the k., and h,, are just the 4 corresponding
to a half-edge JV and zero-edge JV, respectively. In this
case, h., <b/ugis obvious; the former is the 4; on the JV
edge and the latter is the average h;, which is greater ac-
cording to the definition of a JV stated in Sec. IV B.

In SC2s, surface barriers can be smaller than the ideal
ones or even negligible, since the image force depends
largely on the surface roughness. If the surface barrier
effects are negligible, the configuration of AVs changes
continuously with H and so does M. Therefore, the
Meq(Heq) curve can be followed. In JJs, however, the
same kind of thermal equilibrium m (k) curve does not
exist. The m,(h ;) shown in Fig. 9 is somewhat mislead-
ing since it is not a reversible magnetization curve, and
moving from one point to another along this curve would
always involve m jumps if it were possible. This is anoth-
er consequence of the above-mentioned difference be-
tween JJs and SC2s.

In SC2s without a surface barrier, the H,; and — M,
increase with decreasing T so that at a given H, y de-
creases continuously to —1 when H,, becomes greater
than H. In the ideal case of surface barrier effect,the AV
exit during decreasing T occurs at M ~0 where the image
force disappears, so that y=~O0 always. In any real case,
the surface barrier effect is in between, and y decreases
monotonically with decreasing T but never reaches —1,
even if volume pinning does not exist. Since the continu-
ous change in the JV configuration in very long JJs re-
sults in an oscillatory m (h) curve, which can be con-
sidered as a counterpart of M, (H,,) in SC2s, its unique
“Meissner effect” is expected.

We will end this section by giving one of the essential
differences between JVs and AVs. For SC2s in the mixed
state, the B is traditionally considered to equal n; @y, n;
being the AV line density.!! This also requires an as-
sumption that the surface current always shield com-
pletely the interior, contributing nothing to B, and thus
each vortex current always providing a @, flux. In a JJ,
there is not a separated edge current that shields com-
pletely the interior. If we regard the current belonging to
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the fractional edge JV to be the counterpart of the sur-
face current in SC2, then we will have the situation that
the flux produced by each vortex is less than ®,. Inits &;
profile, only the part above its minimum is provided by
the vortex; the rest is produced by the applied field # and
the edge JV.

The significance of this difference is far-reaching,
whose influences on the properties of different kinds of JJ
systems will be explained elsewhere. Nevertheless, we
should mention here that the commonly concerned JV is
actually that whose ® is almost entirely contributed by
the field the current vortex produces, although in many
cases, this condition has not been justified. In fact, such
JVs are expressed by the soliton solution (12); they exist
only in very long JJs at low fields and some strictly con-
trolled experiments.

V. CONCLUSION

We have obtained an analytic solution, Egs. (6)—(8), of
the sine-Gordon equation (3) for a uniform JJ of length
2L and penetration depth A;, which is used for comput-
ing m (h) curves and 6, h;, and j profiles, shown in Figs.
2-6. By analyzing the results, our conclusions are as fol-
lows.

(1) JJs can be classified into short, reversible and long,
irreversible and long, and very long ones, the boundary

between them being / =L /A;=0.5, 2, and 13.

(2) JJs have the same feature as SC2s at very low fields,
and their initial susceptibility is expressed by Eq. (11).

(3) When increasing and then decreasing field, the mag-
netization of very long JJs shows a hysteresis loop. Its ir-
reversible parts when [/— o are expressed by Egs.
(15)-(17), which are quantitatively different from those
given in Egs. (20) for SC2s with a surface barrier, as
shown in Fig. 9.

(4) Instead of the thermal equilibrium m(h,,) curve
introduced in the literature, the calculated m (k) curve
should be used for deducing reversible properties of JJs.
As a consequence, the ‘“Meissner effect” of JJs is drasti-
cally different from that of SC2s, as shown in Fig. 10.

(5) The most essential difference between JJs and SC2s
is that besides the vortices there is a surface current in
SC2s but not in JJs. From this, all the unique features of
the magnetization of JJs can be explained by means of
Josephson vortices.
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