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Dynamics of a two-level system with Ohmic dissipation in a time-dependent field
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Dynamics of a two-level system with Ohmic dissipation driven by a time-dependent cw field in the
noninteracting-blip approximation are studied. It is found that at low temperatures when a, a friction
parameter, lies between —,

' and 1, the localization predicted by Chakravarty [Phys. Rev. Lett. 49, 681

(1982)] and Bray and Moore [Phys. Rev. Lett. 49, 1546 (1982)] disappears, and the rate constant for tun-

neling of the particle increases with the intensity and frequency of the field. For 0(a &
2 quantum

coherence is observed, and the transition temperature from the coherent to the decay regime depends on
the field intensity. When the intensity parameter approaches the zeros of the zeroth Bessel function
coherence disappears. This transition from coherent to incoherent motion oscillates with the intensity of
the field, giving rise to a cascade of transitions at difFerent temperatures.

I. INTRODU(+ION

Recently there has been considerable interest in the
time evolution of an electron in double-well structures in
a time-dependent field. ' In the absence of a field, an
electron initially localized in one well at time zero will
tunnel in an oscillatory manner from one well to the oth-
er. Hanggi and co-workers' have shown numerically that
a laser field with appropriate values for amplitude and
frequency can stop the oscillating behavior through a
suppression of tunneling. Numerical calculations on
model quantum-well systems show that the dynamics of
the laser-driven electron can be fairly well reproduced by
a two-level Hamiltonian (TLS). A discussion of a two-
well potential with a two-level system may be found in
the review by Leggett et al. The analysis of a TL model
provides an integrodiSerential kinetic equation for the
population in a given well (or a dipole moment in an opti-
cal representation). This approach can be used to de-
scribe a host of phenomena including electron localiza-
tion, ' low-frequency generation, "' and even harmonic
generation. Additionally, the efFect of a static field or
the presence of a second laser can also be obtained. The
quantum coherent motion of the electron becomes dissi-
pative if an interaction with a bath is included. In the ab-
sence of an electric field the system loses coherence when
temperature increases. Holstein was the first to consider
a transition between coherent and incoherent motions of
an electron interacting with phonons in a one-
dimensional solid state, ' while Niu" studied this prob-
lem using the path-integral formalism first introduced by
Chakravarty and Leggett. ' Niu found the dependence of
the transition temperature on the parameters of a TLS, as
well as a phonon spectrum and electron-phonon cou-
pling.

The interaction with a strong electric field drastically
changes the physical picture. A time-dependent evolu-
tion of the TLS interacting with (acoustic) phonons in a
strong time-dependent electric field has been studied by
the present author. ' If the frequency of the field is much

larger than the relaxation phonon energy, the following
effect has been found: the particle may be localized in the
metastable well. This localization is driven only by the
electric field, and is due to quantum interference of the
particle motion and electric field. The dissipation does
not destroy the effect, and the decay rate becomes negligi-
bly small. Thus localization may be observed even for
systems in which the electron interacts strongly with the
phonon bath for low temperatures, as shown in Ref. 13.

The physical picture may be different for a specific
particle-boson interaction, a so-called Ohmic dissipa-
tion. ' This phonon spectrum is used to describe a dissi-
pation in the tunneling of a superconducting phase in
Josephson junctions at low temperatures. ' This specific
type of boson gives rise to a qualitatively different effect
for the time evolution of the superconducting phase when
the coupling exceeds a threshold value. The supercon-
ducting phase is trapped in a metastable state of a sym-
metric double-well system. ' We study what happens to
the system if we irradiate the Josephson junction by a
strong microwave field (e.g., a free-electron laser). Will
this localization be destroyed?

The transition from coherent to incoherent motion is
the other subject of interest. In the absence of a field,
Garg has found ' that transition exists and occurs at
some temperature T' for 0 & a (—,', where a is a dissipa-
tion parameter which will be defined below. As shown in
Ref. 17, T' goes to zero with respect to a. We study this
transition in a low-temperature limit when m.kT &&%co„
where co, is a characteristic frequency of the bath, and
find how T' depends on the amplitude and frequency of
the field. The effect of dissipation on the coherence-
incoherence transition has been studied numerically by
Dittrich, Oelschlagel, and Hanggi' when the tunneling
potential has been chosen as a quartic double well (a
Duffing oscillator), and a dissipative bath is considered in
a stochastic approximation. This approximation is valid
in the high-temperature limit, when m.kT »%co, .' The
decay rate was found to increase with temperature. At
high temperatures, an application to nonadiabatic chemi-
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cal reactions in a condensed phase has been considered in
Ref. 20. In this limit the rate constant depends strongly
on the value of the photon frequency, the reaction heat,
and the reorganization energy of the solvent. As shown
in Ref. 20 the rate constant may be suppressed by three
orders of magnitude (localization), or increased by 18 or-
ders of magnitude (delocalization), or may oscillate with
respect to the intensity of the field.

To start the analysis, we derive a kinetic equation for
the population in a noninteracting-blip approximation
first introduced by Chakravarty and Leggett' and subse-
quently discussed by many authors. ' ' ' ' In Sec. III
we derive a formal asymptotic solution for long times for
a cw laser field. The analysis of this solution is presented
in Sec. IV. Section V contains discussions and con-
clusions.

The theory presented below may be applied to the tun-
neling in a superconducting phase in Josephson junctions
irradiated by a microwave laser field.

—i%co b (4c)

b =(ifibg /2){exp[ —iII(t)]o+ —o exp(ill(t))]

+i%a) bf . (4d)

cr~=(cr„bier )/2 .

The tunneling probability may be defined as

P (t)=[1+(o,(t) }»]/2 .

Thus we look for the time dependence of matrix element
11 of matrix 0, In the Heisenberg picture the equation
of motion for the Pauli matrices ' and the boson opera-
tors can be found easily, and take the following forms:

cr+=2(i/2) {A'Acr, exp[kill(t)] —2V(t)o ~], (4a)

o, =i%a, {cr+exp[—iII(t)]—exp(iII(t)}o ], (4b)

b =(ilbg /2){cr~exp[ —iII(t)]—exp(iII(t))o

II. GENERAL KINETIC EQUATION
IN NONIN l'ERAL. I'iNG-BLIP APPROXIMATION

In the spirit of earlier works "" we consider a two-
level subspace of the particle linearly interacting with an
oscillator bath. Thus, we have a spin-boson Hamiltonian
of the form

Ahox/2+1—i +co(bttb,
t

+o, gg((b(+b(} o, V(t) . —
I

%e may eliminate the field dependence by introducing
the following substitution:

cr+(t)=exp 2i f V(r)dr u+(t)
0

:—exp[ iF ( t) ]u+ (t);
thus for cr, and II(t) we obtain the following equations:

o', =i'd, {cr+exp[iF(t)—iII(t)]—H. c. ]
—(b, /2)

&& f dt&cr, (t, ){exp[iF(t)—iF(t, )]
0

Here o„and cr, are the Pauli matrices, 6 corresponds to
the tunneling matrix element between the two minima
(splitting between the levels}, b& and b& are the boson
(phonon) operators, co& is the frequency of the 1th boson,
and g& is a particle-boson coupling. The electric field is
introduced as a driving force V(t), where

and

Xexp[ —iii(t}]exp(ill(t& })+H.c. ]

(6)

Il(t)=II' '(t) —2 +gt f dt&sinco&(t t, )o,(t, )—, (7)
1

V(t) =isoF. (t) .

Here po is a dipole moment, and E (t) is an electric field.
As in small polaron theory, ' we apply the canonical
transformation

S=exp[(o, /2) g(g&/co&)(b&~ b&)]—:exp(i—o,II/2), (2)
1

which eliminates the electron-phonon term in Eq. (1), and
renormalizes the tunneling matrix element, so that the
Hamiltonian takes the following form:

S%S '= (fiber„/2)[cr—+exp(iII)+—cr exp( —II)]

+R ga)(b( b(+cr, V(t),
I

where o + are matrices defined as

where

II' '(t)= i gg&[e—xp( iso&t)b&(0) —H c ]. — . .
1

(8)

In reality it is impossible to solve Eq. (6) analytically ow-
ing to the nonlinear properties introduced by II(t), and
we therefore suppose that the phonon subsystem is weak-
ly disturbed by the TLS. This is the erst supposition in
the noninteracting-blip approximation. ' The details and
the validity condition have been discussed in Refs. 8 and
14. In the framework of this approach we find the first
correction for II(t) in the expansion with respect to b, us-
ing Eq. (4b}, i.e., (8) in place of (7) replacing exp[ill(t}]
with exp[iII' '(t)]. In this way II is independent of o, .
Substituting II(t}back into Eq. (6), we obtain the follow-
ing kinetic equation:

cr, =(i'd/2)(exp(iF(t)) {exp[—iII' '(t)+II"'(t)]cr+(0)+o+(0)exp[ —iII' '(t)+II"'(t)]]—H. c. )

(b, l4) f dt, [exp{i(F(t)——F(t, )]]{exp[iII' '(t)]exp[ —iII' '(t, )]o,(t, )

+o,(t, )exp[iII' '(t, )]exp[ —iII' '(t)]]+H.c. ) .
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II'"(t) is expected to be a small correction owing to the presence of b.. Making use of the Feynman identity

exp[s( A +8 ) ]=exp(sA )T,exp f ds, exp( —s, A )Sexp(s, A ) (10)

and the Baker-Hausdorf identity

exp( A +J )=exp( A )exp(S )exp( [ A,S]/2), (11)

we expand the exponents with respect to II"'(t). Here the commutator [ A,k ] is supposed to be a c number. It is pos-
sible to show that

exp[ —iII' '(t}+II'"(t}]

=exp[iII' '(t)]exp iA—Ef dt, exp[iF(t, ) —iII' '(t, }][exp[—iQ, (t t,—}/m] —1]o+(0)—H. c. , (12}
0

where

Q)(t)/~=—ggl sin(a)(t ) .
I

(13)

As we have already mentioned, the transition probability is determined by the (11) element of the tr, (t) matrix. This
means that nonvanishing terms appear only in the first-order expansion in 6 of expression (12). Introducing the
definition

x —=(o,)„,
we obtain the following kinetic equation for the population x:

dxldt = —b, f dt&sin[F(t) —F(t, ) —II' '(t)+II' '(t, )]sin[Q, (t —t, )/n ]
0

t]cos F f F t& II t +II f] cos
&

t t~ 7T x (14)

In this equation II' ~(t) is still an operator over boson fields. To find the population (x ) we must average over boson
fields, assuming an equilibrium distribution. We suppose that the average of the product of the operators x(t) and
II' '(t) in the integrand of the second integral in Eq. (14) may have to be decoupled, and be presented as
(x ) ( II'0'). ' ' '~ This is the second supposition of the noninteracting-blip approximation. Finally, one obtains the fol-
lowing master equation for the average population (x(t) ):

d(x)/dt= 5 f—dt, sin[F(t) —F(t, )]exp[ —Qz(t t, ) /n]s—i n[ Q(t t, )/n]—
—b2 f dt, cos[F(t)—F(t, )]exp[ —Qz(t —t, )/m ]cos[Q,(t t, )/n—](x(t, ) ),

with the initial condition III. KINETIC EQUATION IN A cw ELEC.I'RIC FIELD

To average the exponent, we have used the results of
small polaron theory

(exp[+i[II' '(t) —II' '(t, )]] ) =exp[ —Q2(t t, )/n ), —

where

= gg& [1—cos(co, t) ]coth(Pcs& /2) . (17)
I

1«s easy to check that Eq. (15) coincides with the master
equation obtained in Refs. 21 and 22 in the absence of the
electric field. In the case of a vanishing interaction with
phonons, this equation matches the master equation ob-
tained in Ref. 4 (Qz =0, Q& =0). It should be noted that
this equation is of a nonconvolution type, and therefore
cannot be solved by a usual Laplace transform. It also
cannot be derived by the method of Niu, "who essential-
ly used the Laplace transform as well.

as

Q~(t)= f dec(J(co}/co )sin(tot),
0

Q2(t) =f d ~(J(m)/aP) [1—cos(cot )]coth(Pco/2),

(19)

(20)

where qo is a distance between the wells. A discussion of
the connection between a double-mell and a two-level one
is presented in Ref. 8.

%e consider that the spectrum of oscillator frequencies
is suSciently dense, and the distribution of coupling con-
stants sufficiently nonpathological, that J(co) may be
treated as a continuous and fairly smooth function. %e

Now we specify the boson field considering the envi-
ronment with Ohmic dissipation. s'~ Functions Q, and

Qz [Eqs. (13) and (17)] may be expressed through a spec-
tral density function ' '

J(co)=(n /2) g(gI /gobi)t )5(to ci)I )
I
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J(co ) = rico exp( —co/co, ), (21)

consider the case when the original spectral function
J(co}has a simple power-law form for co & co, : ' ' is the dimensionless friction, coefficient. In this paper as

a particular case we consider only a cw electric (or laser)
field

where g is the friction coefficient and ~, the cutoff fre-
quency in the exponential cutoff. The quantity g is sim-

ply a classically measurable friction coefficient of the ex-
tended system. Q, and Qz are determined from the fol-
lowing equations '

and

V(t) = Vpcos(copt),

8 ( t ) = (2 Vp /cop)sin(copt) =—a sin(copt)

(25)

(26)

Q, (t)=ere tan '(co, t),
Qz(t) =(an. /2)in[1+(co, t} ]

+am in[(m t /P)cosech(n t /P) ] .

Here P is defined as P=Alk—T.

(22)

(23)

(24)

here V0 and co0 are the amplitude and frequency of the
driving force.

To simplify master equation (15), we show how in an
asymptotic long-time limit this equation may be
transformed into a convolution-type integrodifkrential
one. To do this we analyze the first correction in the per-
turbation expansion with respect to (b, /fuop) which is
considered as a small parameter:

T

(xi) = (b/ —
irtcop) Re f dpi f drzexpIia[sin(v&) —sin(rz)]+iQi(r& —rz)/a —Qz(r& —rz)/m] .

Here we have made use of the substitution

(27)

W~CO0t .

Expanding the field-dependent part of the exponent in Eq. (27) into the Fourier series, one obtains

(28)

exp[ia sin(~) ]= g J (a)exp(im ~), (29)

where J (a) are mth order Bessel functions.
After the substitution

+1 ~1 ~

72 71 72

with the help of Eqs. (22)—(24) one finds

(30)

(xi ) = (5/itlcop—) Re g g J (a)J (a)f d~& f drzexp[i(mi mzP&]e—xp[imz~z+i2atan '(co, iz/cop)]
0 0m = —

corn

1 2

7T7z /pcop 1

sinh(nwz/Pcop) 1+(co ~z/cop)

In a low-temperature limit when y =kTn/%co, «—1, Eq.. (31) may be rewritten as

(x, ) —= -(b, /Aco, )'(m, /co, )Reyz -'
oo oo co el y /a)0

X g g J (a)J (a)f dr, f duexp[i(m, m) z+~i—m( z/cop)cuo/y+ima]sinh (u) .
0 0m = —

&x& m
1 2

(31)

(32)

In Eq. (32), we have introduced the following substitution:

'rz = (cop/7'co~ }u

In a long-time limit, when

r&(yco, /cop) ))1,
the integration over u is convergent and time independent, while the integral over ~, gives the term proportional to

[exp[i(mi mz)v] —1]/[i(m—i
—mnz)] .

(33)

(34)

(35)
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In the long-time-scale limit v. &)1, the terms with m& =m2 dominate, and the other terms may safely be neglected. '

When a =0 is the internal integral the term with m, =mz =0 is the largest, and the problem reduces to that of one with
no dissipation. Thus, collecting all the terms with m, =m2 and making use of the following identity:

Jo[2a sin(coot/2)]=JO(a)+2 g J (a)cos(mcoot),
m =1

one obtains

(36)

T

(x, ) = (b,—/ficoo) Ref d~, f drzJOI2a sin[{r,—~z)/2]]exp[ig, (~,—r2)/ir —Q2(r, —~2)/m], (37)

where Jo in Eq. (37) is the zeroth-order Bessel function. In the same way, for r »1 the estimation of the second correc-
tion (x2) yields

~3

(x2)={hjficoo) f dr, f dr4Re(JOI2a sin[(r, —r2)/2]]exp[ig, (r, —ri)/n —Q~(r, —~2)/ir])

XRe(JOI2a sin[(r3 r4)/—2)]exp[ig, (73 r4)jar Q2(73 1g)jar]) . (38)

Such an approximation is valid in all orders of the expansion, and therefore for kinetic equation (15) may be rewritten
as

d(x )/dr= —(b/irtcoo) Ref drJO[2a sin[(~ —r, )/2]]exp[ig, (r—r, )/m. —Q2(~ —~, )/m](x(r, ) ) . (39)

IV. THE SYSTEM DYNAMICS

Now the kinetic equation (39) is of the convolution
type, and it may be solved by using the Laplace transfor-
mation defined as

x(A, )=f dt e '(x(t)) .
0

The formal solution of Eq. (39) is

x(A, )= 1

A, +5 K(A, )
(41)

This equation has been derived in the long-time limit.
It is of the convolution type. The kernel is dependent on
the field parameter a. When a=0 Eq. (39) reduces to
that of obtained in Refs. 8, 12, 21, and 22.

7
=nkT /fur, —«1,

i v irI'{1—a)l {A,/y+a) J2
2I ( —,'+a)I'(1+A, /y —a)

7r

2I (2a)sin(ncz)
'2a —1

Xg A+
m=1 2co

J (a)+c.c. (44)

Here I' is Euler's I function. In the second term we can
always neglect the A, dependence due to A, «coom/2co, .
However, there are two possibilities for the first term.

(a) Let us consider A, « y. Then

K(0)—= ' J (a)r2r—(-,'+ )
''

' 2a —1

where
f(a,a), (45)

K(A, ) =f dt e 'Jo[2a sin(coot/2)]
0

Xcos[g, (t)/ir]exp[ —Q2(t)/ir] . (42)

where

f(a,a)= g m 'J (a) .
m=1

(46)

According to Eqs. (22}-(24},

cos[Q, ( t) /m. ]exp[ —Q2(t) /m. ]

=cos[2a tan (co, t) ]
mt/P 1

sinh 8t/p 1+(co t)i'

2a

(43)

This function is presented in Fig. 1. It grows with the
field intensity a at a) —,', and never vanishes. The first
term in Eq. (45) goes to zero at small temperatures, so
that the second one dominates the rate constant. This
term is always a nonzero constant at low temperatures,
thus a localization phenomenon found by Chakravarty
and Bray-Moore' no longer occurs whenever the Seld is
applied, (i.e., a@0}.The rate constant r ' defined as

To find integral (42) we expand the zeroth Bessel function
back into a Fourier series using Eq. (36). At long time
the solution of Eq. (39} is determined by the behavior of
K(A, ) at small A.. As in Refs. 8,12, and 17, integrals (42)
and (43} may be performed in a low-temperature limit
when

(x(t}}=exp( tjr)—
is given by th following equation for a )—,':

'2a —1

I'(2 )
(47)
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FIG. 1. The a dependence of the function f{a,a) for selected
values of a.

FIG. 2. The dependence of the rate constant on the friction o:

at difFerent values of the field frequency cop/N, .

Solution (47) is determined by the condition )(.« y, and is
valid for temperatures

' 2a —1
COp 7rkT» f(a, a) .

fKO CO I 2a
(48)

) {/nr(a) J2(
2r( —,'+a)

COp

COc

' 2a —1

(49)

Inequality (49) is always valid when Jo(a}=0. The
dependence of the rate constant on the friction parameter
a is shown in Fig. 2 at different values of the field fre-
quency o)o. When the ratio too/o), =3, the rate constant
goes up with a. At a=2 the rate constant increases by

I

The other restriction on temperature is due to neglecting
the first term in Eq. (44} with respect to the second one,
i.e.,

one order of magnitude. For small values of the field fre-
quency (too/o), =0.3) the rate constant decreases by three
orders of magnitude. We may conclude that lower fre-
quencies are in favor of localization of the particle in the
mestastable state.

(b) Let us consider the case of A. »y. The I' functions
in the first term of Eq. (44) may be estimated using the
Stirling's asymptotic formula, while the second term is
unchanged as in Eqs. (45) and (46). Then for E(A, ) one ob-
tains

K(A, ) = I (1—2a)cos(ma)){, 'Jo(a)
2a —1

COc

(50)

The first term diverges at a & —,
' whenever A, =O. Then

for the Fourier transform of the population x(A, ), one ob-
tains

g1 —2a

g2{1—a)+g2{1—a) J2(a}+pl—2a COp

COc

' 2a —1

sin(n a )f(a,a )

(51)

where b,,)r=—b,,)r~Jo(a)~' ' (55)

b,,)t:—[r(1—2a)cos(ma)]' " 'b, „,
is a renormalized transition matrix element ' ' with

)5, :—h(b, /n) )
~'

(52)

(53)

is a renormalization of the tunneling matrix element.
The analysis is close to that of Refs. 8, 12, and 17.
Therefore, for a time-dependent probability one obtains

(56}

Ac~ =6,,sexp[kim/2(1 —a)],
where

(54)

For small A, the second term in the brackets of the
denominator in Eq. (51) is small and therefore, as in the
case without field, ' ' there are a branch point and two
complex poles. The branch point determines the in-
coherent part of the time-dependent probability,
(x;„„h(t)& which is the Mittag-Lefiler function. The
coherent part (x h(t)& is due to the contribution of a
complex-conjugated pair of simple poles

where

and

1

1 —a

maXexp —sin 21—a

~a
cos cos b,)rt21—a

(57)
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sin( 2n.a )

7r

10 a=o

xf" z e2a —1 eN

z +2z cos(2na)+z
(58)

A complete analysis for this case is given in Ref. 8.
In the absence of an electric field, as found by Garg, '

there exists a transition temperature T' from the
coherent to incoherent regimes. In this case two complex
poles converge to that of the second-order real one. As in
the case of a zero field, we can write two transcendental
equations determining this temperature:

&, +&2 z i ~mr(1 —a)l (3 /I+a} J2A, '+b, y 2I'( —,'+ a)r(1+ A, '/y —a)
Jo a

2a —1
r r

Np
+b,

N

'2a —1

f (a,a) =0, (59)I' 2a

1 —
A,*+6 Np

N
J

f (a,a)

'2a —1

Np

2N
sin(ma)f (a,a)b,&" ', (61)

is valid [Jo(a) is not too small], we may neglect the third
term in Eq. (59). Equations (58) and (60) may now be re-
duced to those obtained by Garg' with the renormalized

2 kr /~~a) r( +~'/y}
u'r(1 —a+A, '/y)

1/2(1 —a)

(59a)

(A, '/y }[%(a+A,'/y) —4'(1 —a+A, /y)]=1, (60a)

where %(z) is the digamma function. The first equation
is the condition determining the poles of x(A, ) in Eq. (41}
with K(A, ) determined by Eq. (44}. The derivative of this
equation gives condition (60) upon matching of the two
poles. ' The dependence of the transition temperature
T on the friction parameter a is presented in Fig. 3.
The specific feature of the field dependence is the obser-
vation of a cascade of phase transitions with respect to
the field parameter a. Because h,z is field dependent ac-
cording to Eq. (55), we may change the temperature T'
by increasing the field intensity. Jo(a) is an oscillating
function, thus T oscillates as well too. We also see that
at different nonvanishing values of the field amplitude,
the temperature T' is lower than in the zero-field case.
This means that in this range of parameters the field des-
troys coherence.

When the field parameter a is such that Jo(a) is close
to zero, the third term in the denominator of Eq. (51) is
of importance. We may calculate the rate constant using

Xqj(a+A, /y) —%(1—a+A, /y)]=0 . (60)

If the following criterion,

10
0 0.1 0.2 0.3 0.4 0.5

FIG. 3. The dependence of the transition temperature T on
the friction a at different values of the field intensity a.

the iteration procedure, considering the second term as a
perturbation. In this case the estimated rate constant
(T=O) is

(x(t) ) =cos(Qt)exp( t/~)—, (62)

I (1—2a)
N

2a —1

X f(aa)I' 2a
Jo(a) . (63)

In this case it has been supposed that Q~ &&1. The long
period coherent oscillations disappear whenever
Jo(a)=0. In such cases there is only an incoherent de-

cay. The decay rate also changes with parameter a in ac-
cordance with Fig. 1.

We compare the case of an acoustic-phonon bath, as
discussed by the author in Ref. 13, with that of an Ohmic
dissipation one. If Jo(a) =0, the strong quantum decay
with long period oscillations takes place when the parti-
cle interacts with the Ohmic boson bath. As it was found
in Ref. 13 for phonons when Jo(a)=0, the decay rate
decreases as Jo(a), while the coherence frequency goes
down linearly with Jo(a}. Therefore, only the quantum
coherence survives near the zeros of Jo(a). For Ohmic
dissipation one observes the opposite effect; the quantum
coherence is destroyed by the electric field whenever
Jo(a } 0.

V. CONCLUSIONS

In this work we have studied the time-dependent evo-
lution of a TLS interacting with an Ohmic boson bath,
and driven by a tine-dependent cw field. In the
noninteracting-blip approximation, first introduced by
Chakravarty and Leggett, ' we derived the
integrodifi'erential master equation (15) for the transition
probability (x(t)) for an arbitrary electric field. This
equation is of a nonconvolution type, thus it cannot be
derived by the method of perturbative expansion in a La-
place parameter space. " In Sec. III we found that a
long-time evolution may be described by a simpler equa-

where the decay of the transition probability r coin-
cides with rate (47). The frequency Q is determined from
the following equation:

(1—2n)

g1 +2a
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tion (39) with the kernel in convolution. We have found
the exact forrnal solution of this equation by making use
of a Laplace transform. The long-time dynamics are
determined by the poles of x(A, ), which are dependent on
the behavior of the kernel, E(A, ), of the integrodifferential
kinetic equation at small A, . K(A, ) is a nonanalytical func-
tion of k, so an analysis depends essentially on the value
of the friction parameter a.

In the region when —,
' & a & 1, the localization found by

Chakravarty and Bray-Moore, ' no longer takes place in
a low-temperature limit. As shown in Fig. 1, the rate
constant is proportional to the function f (a, a) defined
by Eq. (46), and grows with the intensity and frequency of
the field according to Eq. (47). As shown in Fig. 2, the
rate constant increases by one order of magnitude when a
changes from 0.5 to 2 if a high-frequency field (rap ) ro ) is
applied. For small values of the field frequency
(roplro, =0.3), the rate constant decreases by three orders
of magnitude. This means that the particle tunneling is
suppressed, and the particle is trapped in the metastable
well whenever cop (co, .

For 0&a& —,
' we have found an effect of quantum

coherence in a low-temperature limit when y= mkT/— .
%co, « 1. Numerical analysis of the coherence-
incoherence transition has been performed by Dittrich,
Oelschlagel, and Hanggi' for a Duf6ng oscillator as a
tunneling potential in the high-temperature limit using a
stochastic medium approximation. In our case, to find
the transition temperature it is necessary to solve two
transcendental equations (59) and (60). The approximate
solution has been found for intensities of the field when
Jp(a)%0, i.e., when inequality (62) is valid. The transi-
tion from coherent to incoherent motion obeys the same
set of transcendental equations (59a) and (60a) as in the
case without field, ' but with the renormalized transition

matrix element b,,s in accordance with Eq. (55). T' de-

pends on the intensity of the field, a, so that the value of
T' is one order of magnitude smaller than in the absence
of the field, as shown in Fig. 3. We also found the time-
dependent probability (x(t)), which consists of two
parts determined by Eqs. (56)—(58). The first part de-
scribes the coherent motion, while the second is responsi-
ble for the incoherent decay. The detailed analysis of this
case has been done in Ref. 8. Solutions (62) and (63) have
been found in the vicinity of the zeros of the zeroth
Bessel function. In this case there is a strong decay of the
transition probability with long period oscillations.
When Jp(a) =0 there is only an exponential decay, with
the rate constant determined by Eq. (47). In general, for
0 & a & —, the qualitative physical picture of the dynamics
is as follows: at a =0 there is always coherent motion
below some critical temperature T' (Refs. 8 and 17) (see
Fig. 3), when a strong electric field is applied, and T is
smaller than in the zero-field case. When the intensity a
is close to the first zero of the zeroth Bessel function,
there are long period oscillations with a strong decay.
When Jp(a}=0, one observes only a decay of the transi-
tion probability according to solutions (62) and (63}. In
the small friction limit the decay rate vanishes, so the lo-
calization discovered by Hanggi and co-workers takes
place. This picture qualitatively repeats with the intensity
a due to an oscillating behavior of the zeroth Bessel func-
tion, giving rise to a cascade of the transitions.
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