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Transport properties of direct-gap semiconductors are calculated in order to find the best ther-

moelectrics. Previous calculations on semiconductors with indirect band gaps found that the best

thermoelectrics had gaps equal to nk&T, where n = 6 —10 and T is the operating temperature of
the thermoelectric device. Here we report similar calculations on direct-gap materials. We find that
the optimum gap is always greater than 6k&T, but can be much larger depending on the specific

mechanism of electron scattering.

I. INTRODUCTION

Thermoelectric devices are usually made &om
semiconductors. ~ The best performance is found with
materials whose energy gap, between electron and holes,
is about 10k~T, where T is the operating temperature
of the device and kgb is the Boltzmann constant. This
empirical rule suggests that low temperature thermoelec-
tric refrigerators should be made from semiconductors of
small energy gap. Here we model the efBciency of narrow-

gap semiconductors which have direct gap.
Chasmar and Stratton2 (CS) first investigated the op-

timum gap of a thermoelectric semiconductor. Their
model was valid for indirect gaps. They found that the
best gap was about 6kBT. Later Mahan did a simi-
lar analysis and found 10k~T for indirect-gap materials.
Most narrow-gap semiconductors have direct gaps, and
the present analysis is intended te investigate this case.
For indirect gaps, neither the effective masses nor the
dielectric functions are strong functions of the gap. By
contrast, in direct-gap materials all of the transport pa-
rameters, such as effective masses, dielectric screening,
and band nonparabolicity, depend strongly upon energy
gap. ' The present analysis is very different in detail
&om the previous calculations.

To quantify the quality of different materials for ther-
moelectric applications, we need to assign a number to
each material. This number is the thermoelectric Bgure
of merit Z defined as~

Here cr is the electrical conductivity, S the Seebeck coefB-
cient, and K, the thermal conductivity. If we are trying to
pump heat &om a cooler region to a hotter one, we need
high pumping efficiency (high S), low production of heat
through Joule heating (high o), and low backwards con-
duction of heat (low r) Zhas units of.inverse tempera-
ture, so it is generally quoted as ZT, with T the absolute
temperature. At present, bismuth teHuride alloys have
the highest value, with ZT 1 at room temperature.

To obtain the figure of merit of a given material, we

need to calculate the transport coeKcients that appear in
Eq. (1). In semiconductors, this has often been studied
during the past 50 years, resulting in a good understand-
ing of their properties. ' We want to use this knowl-

edge to search materials for improved thermoelectrics.
A calculation of transport coeKcients in semiconduc-

tors can be characterized by specifying the band struc-
ture, the scattering mechanisms, and the density of con-
duction electrons or holes. After the pioneering work
by Ioffe, there have been many attempts to model ZT
on different levels of approximation. CS (Ref. 2) did
a careful analysis considering parabolic bands and in-
cluded the scattering in the relaxation time approxima-
tion; they found that 6k~T is the optimum gap. They
assumed Maxwell-Boltzmann statistics for the electron
gas. A similar calculation by Mahan also considered
a semiconductor with parabolic valence and conduction
bands in the relaxation time approximation. He found
that a value of the gap of 10k~T is more realistic in both
the degenerate and the classical regimes. Both values
6kgyT and 10k~T are pointing to the family of narrow-

gap semiconductors, a family where most of its compo-
nents are direct gap materials and therefore their bands
are strongly nonparabolic.

In this work, we include the nonparabolicity of the
bands using k p theory, in a two band Kane model.
Section IIA is a brief description of this model. We use
the classical Boltzmann equation to describe the effect
of external fields on the electron system. Narrow band
gap semiconductors are made of elements with a large
electronegativity difference. Therefore the polar optical
mode scattering is one of the most important scattering
mechanisms to be considered in our calculation. In semi-
conductors, the energy of the optical phonons is compa-
rable te the electronic energy scale, and scattering of an
electron with polar optical modes will take the electron
out of its energy shell. This makes the relaxation time
approximation inappropriate for eur purpose. We use
the iteration method 6rst reported by Rode te solve
the Boltzmann equation. The most important effect as-
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sociated with the nonparabolicity of the bands is the de-
pendence of the effective mass on the value of the energy
gap. As a result, the dependence of the scattering mech-
anism on the effective mass plays an important role in
our analysis. %'e use two of the most important scat-
tering mechanisms in these materials that show different
dependence on the effective mass. These mechanisms are
polar optical modes and ionized impurity scattering, and
their respective scattering rates are discussed in Sec. II C.
We calculate the integrals involved in the calculation of
the transport coefficients (see Sec. IID) numerically, to
avoid assumptions on the degeneracy of the electron sys-
tem. In this work we will not model the lattice thermal
conductivity and it will be included as a parameter in
our calculations.

We found that ZT is maximum when the chemical po-
tential is around the bottom of the conduction band. The
behavior of ZT as a function of the band gap E~ has two
regimes. For EG (( k~T, ZT decreases as E~ decreases.
The system cannot satisfy both requirements: to have the
chemical potential near the bottom of the band and at
the same time to avoid the existence of holes as minority
carriers —a well known undesired effect. For EG )& k~T,
ZT is fIat without dependence on the value of the gap.
The figure of merit depends only on the parameters of
one band through the 8 parameter of CS. We will give
a definition of B in Sec. II D. However, if the band struc-
ture of the system is nonparabolic, the effective mass is
changed as we are changing the band gap, and therefore
the B parameter is changed. In this regime, the behavior
of ZT depends on the behavior of B with the effective
mass, as we will describe when presenting our results.

where e is the electron charge. In the following subsec-
tions we will describe in detail each ingredient for the
calculation of these quantities and derive thereafter the
transport coeKcients of the model material.

A. Band structure

As we mentioned in the Introduction we will use the
two band Kane model to describe the bands near the
I' point of the Brillouin zone of our model semiconduc-
tor. This description has been used successfully to de-
scribe real materials such as InSb, Hg Te, CdSe, and many
others. The dispersion relation of the bands is given by
the equation

h2k2

2m* (6)

where p'(s) = dp(s)/ds, and the group velocity of the
electrons or holes

where m* is the effective mass at the band edge and EG
the band gap. This dispersion relation is a good ap-
proximation when the spin-orbit splitting is either much
greater or much less than the band gap EG. From this
equation we can calculate the density of states

II. MODEL FOR A NARROW-CAP
SEMICONDUCTOR

The low field transport coefBcients that enter the def-
inition of Z are the response function of the system to a
small electric field or temperature gradient. These exci-
tations produce a particle current, defined as

The k p theory just described allows us to know the
dispersion relation of the material given the experimental
values of the effective mass m' and the band gap E~. As
we will show in our results, regarding the thermoelectric
properties of the material the most important effect of the
nonparabolicity is not the change in shape of the energy
bands, which is only important far from the band edge,
but the variation of the efFective mass with the band gap.
This dependence can be parametrized as

4' 3

and heat current given by within very good approximation. Here P represents the
Kane matrix element.

e(&(~) &(h)) (4)

-(~) -(~)+ j~

where i = e, h for electrons and holes respectively, ck
(i)

is the band dispersion relation of electrons or holes, and

v&', ——1/h Be& /Bk, is the pertinent group velocity. The

distribution of electrons or holes f&' in an electric field
or temperature gradient is the quantity calculated as the
solution of the Boltzmann equation. The total electric
and heat currents are then given by

B. Boltsmann equation

During the past 50 years the classical Boltzmann equa-
tion has been used to describe the efFect of external
fields in solids. Although a more formally justified de-
scription should be given using the quantum Boltzmann
equation, for the calculation of low field dc transport
coefBcients the classical equation gives results in very
good agreement with the experiments. '

We will only show here the form of the Boltzmann
equation that we used in our calculation. The derivation
of this form is too long to be presented here, and can
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p'(s) L,[Pi] = 1 (io)

and

'(r) L, [P 2]
= ~ —y, ,

where we have used

t' Bfp '1 hk 7'T
fi = fo(&i ) + 2:

~

— l, «Wi(&i ) — 42(&k)
Bey m' T

(12)

fp is the Fermi function, z is the cosine of the angle
between the electric field E or the thermal gradient (we
assume both are parallel) and the wave vector k, and L,
is the collision operator given by

be found in detail in Ref. 4. The classical Boltzmann
equation reduces to the following two equations:

2 ¹Z2e4
S (kk')=—

V, he2

xb(si, —si, ) .

O(k, k', X)
[k'+ k" —2kk'X + q,'&]'

(15)

L.[y] = S»(s) y(.),
where the function Sii(s) is given by

(16)

m'N;Z&2&e p'(s) (1 —X)O(k, k, X)

2k'

In this equation, the function 0 is the overlap integral
between the wave functions describing the state with im-

pulse k and the one corresponding to k'. We have 0 = 1

for parabolic bands. This equation assumes random dis-
tribution of impurities with concentration N, . After re-

placing this differential scattering rate in the collision
operator given in Eq. (13), the latter has the simple
form

L.[&l = dk S(k, k') '
(2vr) s 1 —fo(si )

I'
x P(si, ) —X—P(si, )k

In this case, the solution of the Boltzmann equation
given in Eqs. (10) and (11) is very simple, with the re-
laxation time given by

In this definition of the collision operator, X is the co-
sine of the angle between k and k' and $(k, k') is the
differential scattering rate for an electron in the state
characterized by k to make a transition into the state
characterized by k'. These scattering rates will be dis-
cussed in the next section. We will solve Eqs. (10) and
(11) by the iteration method first described by Rode.
In the case of elastic scattering, it gives the same result
as the relaxation time approximation, but it also works
very well in the case of inelastic scattering, where the
relaxation time approximation fails.

C. Scattering mechanisms

e k2dk ( Bfpl
Vgf =

E~ 7r ( BE )
(i4)

where e, is the static permittivity of the material. The
differential scattering rate due to ionized impurities is

As mentioned in the preceding section, the scattering
mechanisms are included in this formalism through the
difFerential scattering rate S(k, k'). We consider here the
scattering of electrons with ionized impurities (II) and
polar optical modes (POP). These are good representa-
tives of the two different classes of scattering, i.e., elastic
and inelastic, and they have different dependence on the
effective mass. We need the last property to show dif-
ferent behavior of ZT for large band gap later in this
work.

Let us present first the ionized impurities scattering. It
comes from the screened Coulomb interaction of an im-

purity of electric charge Zyye with the carriers. We con-
sider the simplest possible screening, represented by the
Thomas-Fermi approximation with characteristic wave
vector given by

«i(&) = S»(&) ' = &'(&)&i(s)

The reason for this is that ionized impurity scattering
is elastic, that is, the energy of the electron is the same
before and after the collision. The situation is different
in scattering with polar optical modes that we are going
to discuss next.

For polar optical modes we will assume that the opti-
cal phonon branch has an energy Ruo independent of the
momentum of the phonon and, as with ionized impuri-
ties, the screening is well described by a Thomas-Fermi
approximation. Under these assumptions the differential
scattering rate is

n.e2~ 1

v... inc„z.&

(k2 + k'2 —2kk'X)O(k, k', X)
(k'+ k" —2kk'X+ q' )2

( 1 1)
x

I
n+ + I

~(si 'i + ~o) (19)
2 2p

In this equation eo is the permittivity of vacuum and K
and K, are the high frequency and static dielectric con-
stant, respectively. The upper sign corresponds to the
process of absorption of a phonon and the lower sign to
the emission. Using this to calculate the collision opera-
tor of Eq. (13) yields

L, [P] = Spop(e) 4 (s) Sp~op(s) 4 (s + ~p) —Spop(s)
xP(s —Ruo) . (2o)

The explicit form of Sp'op(s) (i = 0, +, —) is obtained
directly from the definition of L . The solution of the
Boltzmann equation in the case of inelastic scattering is
not so straightforward as in the elastic case. The collision
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operator mixes difFerent energy shells because the energy
of the optical phonons cannot be neglected. There are
two methods that are generally used in this situation: the
variational method and the iteration method. We used
the iteration method in the Gauss-Seidel formulation.

We have described the way to obtain the distribution
of electrons as a response to the applied fields. The in-
formation is in the functions Pq(c) and $2(s). We are
now ready to de6ne the transport coefBcients and lastly
to obtain Z, the thermoelectric 6gure of merit.

D. Transport coefBcients

G1 ——G, +G,( ) (h)

G2 ——G2 —G2( ) (h)

G3 ——G, +G,(~) (h)

(25)

Finally we are able now to express ZT as a function
of the calculated quantities G;. Using the definition of Z
given in Eq. (1) we obtain

these definitions are for electrons; the analog definitions
for holes are obtained substituting —E~ —p for p ev-
erywhere. Total quantities in Eq. (23) are obtained by
adding these, i.e. ,

The transport coefBcients are usually de6ned as the
factors relating the applied field with the response func-
tion, i.e., here the electrical and heat current,

J = o.E —o.SVT
Jg ——To.SE —KpV T,

ZT = TG22

Gg/Bo+ GgGs —TG~~
'

where we have de6ned

/2m* /
Bp ——

KL, 3m253

(26)

where ~p is the electronic contribution to the thermal
conductivity at zero electric field. The thermal conduc-
tivity K is usually de6ned and measured at zero electric
current and is the sum of the lattice contribution K,L, and
the electronic part at zero current K„ then

The parameter Bp is related with the parameter B
de6ned by CS. This relation will be explained in the
next section where we present our results.

III. RESULTS AND DISCUSSION

K = KL, +Kp —TOS (22)

1

37r2

23/2 *1/2
1

23/2 ~1/2
G

23/2 *1/2
3 7

(23)

where the G s are defined by

G,"=
0

G2' = der (s)
0

Gs('l = dep ~'(s)
0

0fp't
~s )
Ofpi
Bs )
Bfp)
~s )

p(~) (~)

"
I &."( ) .

)
These quantities are proportional to the electric-electric,
heat-electric, and heat-heat current correlation function
respectively. The superscript index e is showing that

This is the magnitude in the definition of the thermoelec-
tric figure of merit in Eq. (1). In this work we will model
the electronic part of the thermal conductivity while the
lattice contribution will be taken as a given constant.
About 10 mW/cmK is a reasonable value for most of
the semiconductors under consideration.

After solving the Boltzmann equation we obtain the
(t's, and with them we can calculate the electron distri-
bution function under the influence of the applied fields
using Eq. (12). Replacing this form of the distribution
function fg in the definition of the currents, Eqs. (2) and

(3), we can identify the transport coefficients as

Our model semiconductor is de6ned after specifying
the charge of the impurities (Zyg), its density (N;), the
frequency of the polar optical modes (uo), the high fre-
quency dielectric constant (K ), the static dielectric con-
stant (K, ), the lattice contribution to the thermal con-
ductivity (zL, ), the energy band gap (E~), and the effec-
tive mass at the band edge (m'). These two last param-
eters are linearly related through Eq. (9) in the case of
direct-gap semiconductors. We have chosen typical val-
ues for these parameters. Our results have been obtained
using single ionized impurities with a density of 5 x 10
cm, an optical phonon energy ~p = 19.5 meV, dielec-
tric constants K = 10.29 and K, = 14.15, and ~L, ——10
mW K cm for the lattice thermal conductivity. The
Kane matrix element P [Eq. (9)j that gives the relation
between the effective mass and the band gap was chosen
as 3.5 x 10 8 eVcm.

We have calculated the thermoelectric figure of merit
for parabolic bands, and for non-parabolic bands in two
cases, viz. , when the only scattering mechanism is by po-
lar optical modes and when the only scattering mecha-
nism is due to ionized impurities. We show these results
in Fig. 1 as a function of the band gap E~ in units of
temperature, which is 150 K. In all these calculations
we have adjusted the chemical potential to maximize the
figure of merit. In Fig 1 two regions can be clearly dis-
tinguished: for E~ & 10k~T, ZT decreases always; for
E~ & 10k~T the behavior of ZT depends on the scat-
tering mechanisms and the band structure.

For large band gap, the problem is reduced to a one
band problem. The chemical potential lies near the bot-
torn of the conduction band. In this way, a compromise
is reached between the thermoelectric power and con-
ductivity. Increasing the value of the chemical potential
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bands and for nonparabolic bands with two different scatter-
ing mechanisms.

&om the conduction band edge improves the conductivity
but decreases the thermoelectric power. Decreasing the
value of the chemical potential produces the opposite ef-
fect. The better situation is obtained when the chemical
potential is around the band edge. This is clear in Fig.
2 where we show the chemical potential that maximizes
ZT as a function of the energy band gap (given in terms
of the thermal energy). When we reduce the band gap,
this picture is changed by the appearance of holes —or
minority carriers to cover the case of p-type materials—
that reduce the thermopower of the system. Therefore,
as t e band gap is reduced, the chemical potential that
maximizes the figure of merit increases while avoiding as
much as possible the existence of holes. But in this case,
the magnitude of the figure of merit is reduced. To stress
this assertion we show in Fig. 3 the density of holes in the
system, as a function of the energy band gap. As a gen-
eral picture, the thermoelectric figure of merit decreases
when the chemical potential of the system is closer than
5kgT —6k~T to the top of the valence band, and this sit-
uation is reached when the energy band gap is less than
5k' T —10IcgyT.

FIG. 3. Density of holes as a function of the energy band
gap E& in units of thermal energy k&T.

7.(s) = ~„'(s/k~T)", (28)

where 7' contains the dependence on temperature, effec-
tive mass, and other material parameters. In the case
of elastic scattering (like the ionized impurity scattering)
our approximation is equivalent to theirs when using

~i(s) = r(s)/'7 (s)

While for small band gap ZT always decreases, for
large values of E~/knT the figure of merit may decrease
or increase depending on the dominant scattering mech-
anism. The key point to understanding this behavior
is that it does not occur for parabolic bands. In non-
parabolic band systems, when the effective mass changes
the band gap is changed. The behavior of ZT shows
the dependence of the B parameter of CS (Ref. 2) on
the effective mass. First, let us define this parameter in
terms of our present calculation and then we will be able
to use it for analyzing this situation.

CS used the relaxation time approximation to describe
the scattering mechanisms by factorizing the relaxation
time as

40
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FIG. C. 2. Chemical potential that maximizes ZT as a func-
tion of the energy band gap E~ in units of thermal energrgy

(30)

Then, we have that B = Bo w'. For inelastic scatter-
ing (like the polar optical modes) it is not possible to do
this separation but we may still extract the dependence
of the P's on the effective mass and assimilate it into a
parameter equivalent to B. Therefore we see that for ion-
ized impurities Sii 1/m* ~ and hence B m*, thus
explaining why ZT increases as the energy band gap in-
reases. For polar optical modes Sp~p m, '~/2 a,nd B

does Dot depend on the efFective mass. As can be seen in
Fig. 1 the figure of merit here is nearly Bat. As another
example, for acoustic phonon scattering through the de-
formation potential interaction, ZT will decrease with in-
creasing energy band gap, because here S m' / . In
a mixed situation —which is the case for real materials—
B = Bo/St~t where S«t is the sam of the scattering rates
for the difFerent scattering modes in the material. Then
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the behavior of ZT as a function of EG will depend on
the relative weight of each scattering mechanism. For
a given material, we should in fact go beyond a general
analysis, and this will be done in a future publication.

In summary, we have presented a calculation of the
thermoelectric 6gure of merit in narrow band gap semi-
conductors. Our model incorporates the nonparabolicity
of the conduction and valence bands, and the elastic and
inelastic scattering mechanisms. We found that the be-
havior of ZT as a function of the energy band gap can be
divided into two well de6ned regions. For EG ( 6k~T,
ZT decreases for decreasing EG because of the appear-
ance of minority carriers. For E~ ) 10k~T, ZT may
decrease or increase as the energy band gap increases,
depending on the dominant scattering mechanism in the
material. In narrow band gap semiconductors for ther-

moelectric applications the optimum band gap will not
be lower than 6k~T and may be higher than this value if
a material is found in which the B parameter of Chasmar
and Stratton increases with increasing energy band gap.
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