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TABLE I. The representation of the point group for HgI2.

(—100)
cr~ —— 010

001)
(0 —1 0)

Sg —— 1 0 0
&0 0 —1)
f 01 0)

S3 —— —10 0
00 —1)

I'0 1 0)
Sycrg —— 1 0 0

I, 0 0 —I)

S2 ——

(1 00)
0 —10

(0 01j
/' —1 00)

0 —10
0 01)
( 0 —1 0)

—1 0 0
0 0 —1)

(100)
010

&001)

(ka or kb), we denote them by the same index number
with superscript ', ", "', and "" in a counterclockwise
order when viewed from the top. For an equivalent atom
displaced by a lattice vector c, we denote it by the same
index number with a bar on top.

For nearest-neighbor Hg-I interactions, we have

(A, o 0)
4(1,5) = 0 BzDy =%24(1,5')02

(0 E, C, )
= Sgcr~@(1,3)o~ 'S, '

= Si@(1,3')S,

where we have used the fact that 4'(1, 5) is invariant un-
der oq (see Fig. 1), which leads to vanishing 2:y, zz, yz,
and zz components. With use of inversion, we further
obtain

C (2, 4) = 4(1,5), C(2, 4') = C(1,5'),

4 (2, 6) = C(1,3), 4(2, 6") = 4(1,3'),

where 6 denotes an atom equivalent to atom 6, but dis-
placed by a lattice vector c.

For nearest-neighbor I-I interactions, the use of inver-
sion symmetry will lead to symmetric matrices, and we
have

(A. D. E.)
C'(3) 6) = D2 B2 F2

(E2 I"2 C2)
&2C (3) 6 )&2 —0lo(3 ) 6)&y = &&&2C (3', 6')o2 0, —Sg@ (5, 4 )S,

= a&s&4(5, 4)s& o'& ——S&4(5', 4)ss ' = O, ssC(5', 4')Ss 'o', '.

For nearest-neighbor Hg-Hg interactions:

(A, 0 0)
4(l, 1') = 0 Bs Ds

L, o —D, C, j
= Si@(1,1")Si ' = +24(1, 1'")02
= S e(i, i"")S„

where we have again used the fact that 4(1, 1') is invari-
ant under 0'i. With use of inversion, we further obtain

4(2, 2') = 4'(1, l'), 4(2, 2") = 4(1, 1"),

4(2, 2'") = 4(1, 1'"), 4'(2, 2"")= 4(1,1'"').

For second-neighbor I-I interactions, we have

I A4 0 D4)
4(3, 3') = 0 B4 0

D4 0 C4)—
= Sg@(5,5') Si '
= ops(3, 3'")o, '
= Sio2@(5,5"')02 Sg

(A5 0DS)
C(4, 4') =

I 0 Bs 0

(—Ds 0 C5)
= SgO(6, 6')Si '
= ~,O(4, 4'")~
= Sg02@(6,6'")o 2 'S, ',

where we have used the fact that 4(3, 3') and @(4,4')
are invariant under 0.2. With use of inversion, we further
obtain

e(4, 4'"') = e(5, 5'), e(4, 4") = C(5, 5"'),

C(6, 6") = C(3, 3'), 4(6, 6"")= 4(3, 3"').

4(5, 5") = 4(4, 4'), 4(5, 5"")= 4(4, 4"'),

C(3, 3"")= C(6, 6'), O(3, 3") = e(6, 6"').

For second-neighbor Hg-I interactions, we have

fA, O 0)
4(1,6) = 0 BsDs

(0 EsCs)

= 024(1,6') a2 ——(s]0'y) 4(l, 4) (s]a'y)

= Si4 (1,4') Si ',
and with use of inversion

C(2, 3) = 4(1,6), 4(2, 3"")= C(1,6'),

e(2, 5) = e(1,4), C(2, 5") = C(1,4').

The other interaction matrices not listed here can be
obtained by using the Hermitian property of the dynamic
matrix. Two constraints are imposed due to the transla-
tional invariance:
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2(Ag + Bg + A2 + B2 + A.s + Bs)

+A3 + B3 + A4 + B4 + A5 + B5 ——0,

2(Cg + C2 + Cs) + Cs + C4 + Cs = 0.

In all, we have 26 independent adjustable parameters for
describing the short-range interaction.

The long-range Coulomb interaction is calculated by
the Ewald method, with 2e' on Hg ions and —e' on I
ions, where e' is the effective charge transfer. We treat
e' /e as another adjustable parameter, where e is the
dielectric constant.

an
CD

CO
CO

Z

III. RESULTS AND DISCUSSION

The dispersion curves for the lowest ten phonon
branches with six fitted to the neutron scattering data
are shown in Fig. 2(a). The values of the parameters that
provide the Btting are given in Table II. The branches are
labeled by their symmetry representations according to
the notation of Ref. 32 (i.e., Aq, As, As along I'-Z and
+1 42 43 44 along I'-X). The As is twofold, indicat-
ing transverse modes (with vibrations along z and y),
where Aq and As are nondegenerate, indicating longitu-
dinal modes (with vibrations along z). It is interesting
to note that the two transverse modes do not coincide
with each other at Z, while the two longitudinal modes
do. This is a consequence of the symmetry of the crys-
tal, since all irreducible representations are two dimen-
sional for the space group at Z (see Ref. 32). The ir-
reducible representations for the space group along the
z axis are denoted b.q, b,2, b,s, and h4 (all one dimen-
sional). The b z and b, s modes have symmetric and an-
tisymmetric sums of y displacements, respectively. The
6q mode contains an admixture of symmetric sums of
x displacements (denoted the x+ component) and an-
tisymmetric sums of z displacements (denoted the z-
component). Similarly, the h4 mode contains an admix-
ture of z—and z+ components. An anticrossing behav-
ior is found near k = 0.15(2m/a) between an optical
branch (with mostly the z —component) and an acous-
tical branch (with mostly the z+ component), because
they both have A~ symmetry. All modes are doubly de-
generate at X, since the irreducible representations for
the space group at X are all two dimensional.

1.5
f (THz) HgI2

(00() ((00) z

1.0

0.5

0 l

0.50 0.25 0

z r
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X

FIG. 2. Phonon dispersion curves for the lowest six
branches (a) deduced from the present rigid-ion model and

(b) taken from neutron scattering data of Ref. 27.

The symmetries of zone-center modes are labeled ac-
cording to the notation used in Ref. 28. The E (Es or
E„) modes are twofold degenerate when the wave vec-
tor approaches zero from the c axis, which corresponds
to vibrations along the 2: and y directions. The A (Aqs
or Az„) and B (Bqs or B2„) modes are nondegenerate,
which corresponds to vibrations along the z axis. The
subscribes g (gerade) and u (ungerade) denote even- and
odd-parity modes with respect to the inversion center.
Note that if we take symmetric and antisymmetric sums
of displacements for atoms connected by the inversion

TABLE II. Parameters used in the rigid-ion model (measured in units of e /v„where v, is the
unit-cell volume).

Ag

1.79347
Ag

-8.86256
A3

7.01133
As

-27.74231
A6

6.18102

Bg
-38.03613

Bg
-0.23979

D3
2.59967

B5
8.52126

B6
-0.00736

Cg
-29.98.524

Cg
-4.91794

A4
-4.78037

C5
19.87320

C6
2.48234

Dg
17.45110

Dg
-77.76311

B4
-3.98045

Ds
10.60398

D6
-18.88040

7.94596

-6.85426
C4

-59.02348

2.96253

2.54791
D4

-4.47929

e /E
0.26591
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E2/

A2

TABLE IV. Zone-center phonon frequencies (in THz) for

HgIq obtained in the present rigid-ion model and from vari-

ous experimental measurements. All but the Az„mode are
calculated at 8 = 0. The A2„mode is calculated at 8 = 7r/2.

Eir

B2„

Theory
Expt.

Theory
Expt.

81
0.587
0.52
82

3.145
3.14

Q3

0.556
0.56
Agg

3.352
3.42'

2
B~g

0.889
0.85

1A2„
3.570
3.69

@1

0.881
0.87'

Q2

4.245

B2„
2.653

1
B~g

4.437
4.38

Eel

Infrared re8ectivity (Ref. 28).
Neutron scattering (Ref. 27).

'Raman scattering (Ref. 29).
Raman scattering (Ref. 27).

0.0 0.2 0.4 0.6
~( /2)

0.8 1.0
IV. CONCLUSIONS

FIG. 4. Angular dispersion of phonon frequencies for HgI2
deduced from the present rigid-ion model.

sion are modes with large strengths of polarization. In
these modes, ions of opposite charges vibrate against
each other. Thus they are also infrared active. The
phonon frequencies of these infrared-active modes were
observed to be at 0.52, 3.14, and 3.76 THz. Our calcu-
lated frequencies for these three modes are 0.587, 3.145,
and 3.57 THz, respectively, in fair agreement with exper-
iment. Note that the A2„mode has a polarization vector
parallel to the z axis. Thus the infrared measurement
must be performed with incident radiation propagating
perpendicular to the c axis, and we have used the calcu-
lated A2~„ frequency at 8 = z/2 to compare with exper-
iment. To compare with experimental data for infrared-
and Raman-active modes, we list the calculated phonon
frequencies at the zone center in Table IV, in conjunc-
tion with experimental values. The agreement between
theory and experiment is fairly good.

We have calculated the phonon dispersion curves for
HgI2 by using a rigid-ion model, including the long-range
Coulomb interaction. With 27 adjustable parameters,
the 6t of six low-lying branches to the neutron scattering
data is very good. We found that as a result of crys-
tal symmetry TA and TO modes do not coincide at Z
whereas the LA and LO modes do. The angular disper-
sion of the phonon modes is studied, and three infrared-
active modes are found which display large angular dis-
persion. The frequencies of these modes and all Raman-
active modes are also in good agreement with experi-
ment.
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