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Phonon dispersion in red mercuric iodide

Hock-Kee Sim* and Yia-Chung Chang

Department of Physics and Materials Research Laboratory, University of Illinois at Urbana- Champaign,
Urbana, Illinois 61801

R. B. James
Physical Sciences Department, Sandia National Laboratories, P. O. Box 969, Livermore, California 94550

(Received 28 June 1993)

We present theoretical studies of phonon modes of undoped Hgl: in its red tetragonal form. A
rigid-ion model including the Coulomb interaction is used which gives the best fit to the neutron
scattering, infrared reflectivity, and Raman scattering data. The calculated sound velocities are also

in accord with experiment.

I. INTRODUCTION

Red mercuric iodide (Hgl,) is a semiconductor which
shows great potential for - and x-ray-spectrometry
applications.! =24 The electronic structures of the system
have recently been studied by a relativistic linearized
augmented-plane-wave method?® and by an empirical
pseudopotential method.2¢ However, no theoretical stud-
ies on the phonon modes have been reported so far to our
knowledge. Among the known experimental results on
Hgl, phonon spectra, only six low-lying branches have
been measured by inelastic neutron scattering.?’” The
measurements were along the two high-symmetry direc-
tionms, i.e., A and A, in the reciprocal lattice space. Thus
far, infrared?® and Raman measurements??:3° have only
dealt with the higher-frequency modes at small wave vec-
tors. In this paper, we present a theoretical study of the
phonon dispersion curves by using a rigid-ion model sim-
ilar to the one described in Ref. 31. We show that the
model gives a good fit to the neutron scattering, infrared
reflectivity, and Raman scattering data when the long-
range Coulomb interaction and short-range force con-
stants up to second-nearest-neighbor distances are in-
cluded.

II. THEORETICAL MODEL

Hgl, is a tetragonal crystal whose unit cell consists of
two Hg and four I atoms as illustrated in Fig. 1, with
lattice constants @ = b = 4.37 A, and ¢ = 12.44 A. The
lattice has inversion symmetry about the midpoint be-
tween two neighboring Hg atoms. It is convenient to
choose a tetragonal unit cell in which the four corners
are occupied by Hg atoms. The z, y, and z axes are cho-
sen to be parallel to the lattice vectors a, b, and c. If the
origin is chosen at the center of the tetragon, the atomic
positions of the two Hg atoms are (0,0,0) and (%,%,£) and
those of the four I atoms are ($,0,—0.139¢), (£,0,0.361c),
(0,5,0.139¢c), and (0,3,—0.361c). The nearest-neighbor
Hg-I, I-1, and Hg-Hg separations are 2.79 A, 4.14 A, and
4.37 A, respectively. The next nearest-neighbor I-I and
Hg-1 separations are 4.37 Aand 4.99 A, respectively. The
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third-nearest-neighbor I-I distance (4.64 A) is less than
the second-nearest-neighbor Hg-I distance. The third-
neighbor force constants have not been included in the
present calculation, since we find that the I-I interac-
tions play a less significant role than the Hg-I interaction.
There are two layers of I atoms between two closest Hg
planes. As there are six atoms per unit cell, the total
number of phonon branches is 18. The point group of
the system is {E, 01,02, S1, S2, 53,0251, S102}, where E
is the identity, oy (02) is a reflection about the y-z (z-2)
plane, S; is a 90° rotation about the z axis followed by
a reflection about the z-y plane, S, = SZ, and S3 = S3.
The representation of the point group is given in Table L.
In addition, the system has inversion symmetry as men-
tioned earlier. The complete group-theory analysis for
the Hgl, structure has been reported in Ref. 32.

With the use of symmetry, the dynamic matrices are
readily obtained. The indices for atoms enclosed in the
tetragonal unit cell are shown in Fig. 1. For equivalent
atoms displaced by one lattice vector in the z-y plane

2 "

FIG. 1. Crystal structure of Hgl.
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TABLE I. The representation of the point group for Hgl.. A; 0 0
<I>(1,5) = 0 Bl D1 =0’2¢(1,5’)0’2—1
—-100 0 E. C
oan=| o010}, (0 -1 0) !
001 0 01 —1a—
0-1 0 1 2510’1®(1,3)01 151 1
Sl = 1 0 0 , 0-— , — ! -1
&h e (13
01 0 0-1 0 .. .
_ where we have used the fact that ®(1,5) is invariant un-
53 = -10 O N 0‘251 = -1 0 0 . . . .
00 —1 0 0-1 der o, (see Fig. 1), which leads to vanishing zy, zz, yz,

01 0 100 B and zz components. With use of inversion, we further
S102 = (10 0), E= (010). obtain
00-1 001 3 (2,4) = (1,5), B(2,4') = d(1,5),
®(2,6) = 9(1,3), ©(2,6")=2(1,3),

(+a or £b), we denote them by the same index number

with superscript /, ”/, ', and """ in a counterclockwise where 6 denotes an atom equivalent to atom 6, but dis-
order when viewed from the top. For an equivalent atom placed by a lattice vector c.
displaced by a lattice vector ¢, we denote it by the same For nearest-neighbor I-I interactions, the use of inver-
index number with a bar on top. sion symmetry will lead to symmetric matrices, and we
For nearest-neighbor Hg-I interactions, we have have
J
A2 Dy E;
®(3,6)= | D2 By F>
E; F, C,

02%(3,6' )0, = 018(3',6)0] " = 0102,®(3',6')0; 'o7 ! = 51 8(5,4')S?
=01519(5,4)S7 o7 = S38(5,4)S; ! = 0,.538(5' ,4’)5;10;1.

f

For nearest-neighbor Hg-Hg interactions: where we have used the fact that ®(3,3') and ®(4,4')
4. 0 0 are invariant under o,. With use of inversion, we further
3 .
#(1,1)=| 0 B; D, obtain
0 —D3 C;s B(4,4"") = (5,5, ®(4,4") = &(5,5"),
=51%(1, l")Sl—1 =029(1, 1/")(72—1 (I>(6,6”) _ @(3’3/)’ Q(G’GHII) _ @(3,3111).

=S71®(1,1") 8y,

where we have again used the fact that ®(1,1’) is invari-
ant under o;. With use of inversion, we further obtain

$(2,2') = ®(1,1'), ®(2,2") = &(1,1"),

®(5,5") = ®(4,4'), ®(5,5"") = ®(4,4"),
®(3,3"") = ®(6,6'), ®(3,3") = ®(6,6").

For second-neighbor Hg-I interactions, we have
@(2, 2III) — Q(l,l”’), @(2,2HH) — @(1’ ].IIII).

Ag 0 0
For second-neighbor I-I interactions, we have ®(1,6) = 06 Bg Dg
Ay 0 Dy 0 Eg¢ Cg
$(3,3') = 0 B; 0 _ -
-D, 0 C,4 =029(1,6')0;, 7! = (5101)8(1,4)(S101)
=5:9(5,5)S ! =5:9(1,4)S; 1,
=019(3,3" )01 " and with use of inversion

= 5102%(5,5" )02 71571, _ _
$(2,3) = o(1,6), ¥(2,3") = 2(1,6'),

A5 0D5
®(4,4)=| 0 Bs 0 ®(2,5) = ®(1,4), ®(2,5") = &(1,4)).
i (2,5) = 2(1,4), 2(2,5") = 2(1,4)

— 5,8(6,6) g-1 The other interaction matrices not listed here can be

1 ’ 1 obtained by using the Hermitian property of the dynamic
=019(4,4")o7? matrix. Two constraints are imposed due to the transla-
=510,9(6,6")0; 1S T, tional invariance:
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2(A1+Bl+A2+B2+A6+Bs)
+A3+ B3+ A4+ Bs+ As + B =0,

2(01+Cz+C6)+C3+Cq+Cs=0.

In all, we have 26 independent adjustable parameters for
describing the short-range interaction.

The long-range Coulomb interaction is calculated by
the Ewald method, with 2e* on Hg ions and —e* on I
ions, where e* is the effective charge transfer. We treat
e*?/e as another adjustable parameter, where € is the
dielectric constant.

III. RESULTS AND DISCUSSION

The dispersion curves for the lowest ten phonon
branches with six fitted to the neutron scattering data
are shown in Fig. 2(a). The values of the parameters that
provide the fitting are given in Table II. The branches are
labeled by their symmetry representations according to
the notation of Ref. 32 (i.e., Ay, A3, As along I'-Z and
Ay, Az, Az, Ay along T-X). The As is twofold, indicat-
ing transverse modes (with vibrations along z and y),
where A; and A3 are nondegenerate, indicating longitu-
dinal modes (with vibrations along z). It is interesting
to note that the two transverse modes do not coincide
with each other at Z, while the two longitudinal modes
do. This is a consequence of the symmetry of the crys-
tal, since all irreducible representations are two dimen-
sional for the space group at Z (see Ref. 32). The ir-
reducible representations for the space group along the
z axis are denoted A;, Az, Az, and A4 (all one dimen-
sional). The A, and A3z modes have symmetric and an-
tisymmetric sums of y displacements, respectively. The
A; mode contains an admixture of symmetric sums of
z displacements (denoted the z+ component) and an-
tisymmetric sums of z displacements (denoted the z—
component). Similarly, the A4 mode contains an admix-
ture of z— and z+ components. An anticrossing behav-
ior is found near k, = 0.15(27/a) between an optical
branch (with mostly the z— component) and an acous-
tical branch (with mostly the £+ component), because
they both have A; symmetry. All modes are doubly de-
generate at X, since the irreducible representations for
the space group at X are all two dimensional.

it
-
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FIG. 2. Phonon dispersion curves for the lowest six
branches (a) deduced from the present rigid-ion model and
(b) taken from neutron scattering data of Ref. 27.

The symmetries of zone-center modes are labeled ac-
cording to the notation used in Ref. 28. The F (E, or
E,) modes are twofold degenerate when the wave vec-
tor approaches zero from the ¢ axis, which corresponds
to vibrations along the = and y directions. The A (A,
or Az,) and B (B, or B;,) modes are nondegenerate,
which corresponds to vibrations along the z axis. The
subscribes g (gerade) and u (ungerade) denote even- and
odd-parity modes with respect to the inversion center.
Note that if we take symmetric and antisymmetric sums
of displacements for atoms connected by the inversion

TABLE II. Parameters used in the rigid-ion model (measured in units of €2 /v., where v, is the

unit-cell volume).

A B, C
1.79347 -38.03613 -29.98524
A2z B C,
-8.86256 -0.23979 -4.91794
As Ds Aq
7.01133 2.59967 -4.78037
As Bs Cs
-27.74231 8.52126 19.87320
Ae Bg Ce
6.18102 -0.00736 2.48234

D, E,
17.45110 7.94596
D, E; Fy
-77.76311 -6.85426 2.54791
B, Ca D,
-3.98045 -59.02348 -4.47929
Ds
10.60398
De Es e*?/e
-18.88040 2.96253 0.26591
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center, namely, those labeled by 1 and 2, 3 and 6, or 4
and 5 (see Fig. 1), the symmetric sums have odd par-
ity (u modes) whereas the antisymmetric sums have even
parity (g modes). A schematic diagram for atomic dis-
placements in modes of various symmetries can be found
in Fig. 1 of Ref. 28.

For comparison, the neutron scattering data
six low-lying phonon branches are reproduced in Fig.
2(b). The six branches include three acoustical branches
and three optical branches that are derived from the Eg3

(the rigid-layer mode) and the Bfg mode. The fit be-
tween theory and experiment for these modes is quite
good. There are a few other branches derived from the
E! mode and the E; mode, which lie among the above six
branches. These modes have been obsevered by infrared
or Raman measurements, but they are not observed by
neutron scattering. We note that all these modes cor-
respond to transverse vibrations (they have A5 symme-
try along z and Az or Az symmetries along z) when
their frequencies fall within the range of observation re-
ported in Ref. 27. It is conceivable that these transverse
branches have too weak neutron scattering cross sections
to be observed, since the one-phonon neutron scattering
cross section is proportional to |k - €,(k)|?, where €, (k) is
the phonon polarization vector.?* The only branch (with
A, symmetry) derived from the E! mode which has a
longitudinal component lies far above the range of obser-
vation. Note that there is a distinct jump in frequency
at the zone center for this branch which is indicated by
a dashed line. This is due to the anisotropy effect to be
discussed below. The sound velocities obtained here are
listed in Table III and they are in good agreement with
data.

The dispersion curves for all 18 branches are shown
in Fig. 3. It is noted that the phonon frequencies for
three particular branches are different when the wave
vector approaches zero from different directions. Thus
there are discontinuities in the dispersion curves at the
I' point. The dashed lines indicate where the discon-
tinuities occur and how the branches are connected.
This anisotropic behavior is typical for polar crystals
with tetragonal symmetry3® and for polar semiconductor
superlattices.36:37 The physical origin for this is explained
in Refs. 36 and 37 in the context of the rigid-ion model.
The anisotropy is caused by the long-range Coulomb in-
teraction, which in the long-wavelength limit (k — 0)
takes the form3®

27,33 for

4 QiQu [ kik;
Cijk, L1l = — (k—zj —8:.65. | + Dii(1,1),
where Q; is the amount of charge transfer for ion I, v
is the volume of the unit cell, and D is the Coulomb

f(THz)

FIG. 3. Phonon dispersion curves for all 18 branches de-
duced from the present rigid-ion model.

part of the dynamic matrix of the crystal at £k = 0 when
approached from the (0,0,1) direction (c axis). The term
kik;/k® = S;; takes the matrix form

sin?0 0 sinfcosf
S = 0 0 0
sinfcosf® 0 cos?6—1

for k in the z-z plane, where 6 is the polar angle with
respect to the z axis. This term gives rise to angular-
dependent phonon frequencies at the zone center if the
short-range part is not invariant under rotation. The an-
gular dependence of phonon frequencies of Hgl; is shown
in Fig. 4. The three zero-frequency acoustic modes have
no angular dependence, since in these modes all six ions
vibrate in the same direction, which leads to zero polar-
ization, defined as

P = ZuzQz,
.

where u; is the displacement vector. Note that the
angular-dependent part of the phonon frequency in a
given mode is described by

w?(6) = const x ZP{'S,-,J-(G)Pj

%7
where P; is the ith component of the polarization vec-
tor in the mode. The three branches (labeled E.

u’

E2, and A},) that display significant angular disper-

Sound velocities (in 10° cms™!) of acoustic branches for Hgl obtained in the

TABLE IIIL
present rigid-ion model and from Ref. 27.
vl,"(OOI) ’vt’J.(OOl)
(LA) (TA)
Expt. 1.55

Theory 1.51 0.67

‘U[,_L(IOO) v,,”(OOI) v,,l(OOI)
[LA(z)] [TA(2)] [TA(y)]
2.23 1.07 0.74
2.34 1.01 0.58
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FIG. 4. Angular dispersion of phonon frequencies for Hgl
deduced from the present rigid-ion model.

sion are modes with large strengths of polarization. In
these modes, ions of opposite charges vibrate against
each other. Thus they are also infrared active. The
phonon frequencies of these infrared-active modes were
observed?® to be at 0.52, 3.14, and 3.76 THz. Our calcu-
lated frequencies for these three modes are 0.587, 3.145,
and 3.57 THz, respectively, in fair agreement with exper-
iment. Note that the A}, mode has a polarization vector
parallel to the z axis. Thus the infrared measurement
must be performed with incident radiation propagating
perpendicular to the c axis, and we have used the calcu-
lated A}, frequency at § = m/2 to compare with exper-
iment. To compare with experimental data for infrared-
and Raman-active modes, we list the calculated phonon
frequencies at the zone center in Table IV, in conjunc-
tion with experimental values. The agreement between
theory and experiment is fairly good.

TABLE IV. Zone-center phonon frequencies (in THz) for
Hgl, obtained in the present rigid-ion model and from vari-
ous experimental measurements. All but the A, mode are
calculated at § = 0. The A}, mode is calculated at § = /2.

E. E; Bi, E, Bs.
Theory 0.587 0.556 0.889 0.881 2.653
Expt. 0.52° 0.56° 0.85° 0.87¢

E} Aig Al E; Bi,
Theory 3.145 3.352 3.570 4.245 4.437
Expt. 3.14° 3.42¢ 3.69° 4.38¢

®Infrared reflectivity (Ref. 28).
®Neutron scattering (Ref. 27).
°‘Raman scattering (Ref. 29).
9Raman scattering (Ref. 27).

IV. CONCLUSIONS

We have calculated the phonon dispersion curves for
Hgl, by using a rigid-ion model, including the long-range
Coulomb interaction. With 27 adjustable parameters,
the fit of six low-lying branches to the neutron scattering
data is very good. We found that as a result of crys-
tal symmetry TA and TO modes do not coincide at Z
whereas the LA and LO modes do. The angular disper-
sion of the phonon modes is studied, and three infrared-
active modes are found which display large angular dis-
persion. The frequencies of these modes and all Raman-
active modes are also in good agreement with experi-
ment.
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