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Optical second-harmonic susceptibilities:
Frequency-dependent formulation with results for GaP and GaAs
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A formula for frequency-dependent optical second-harmonic susceptibilities for insulating crystals, in-

cluding local-field corrections, is presented. In analogy to a formula given previously for the static limit,
the formula is analyzed in terms of "virtual electron" (ccv) and "virtual hole" (vvc) terms to obtain a nu-

merically stable form. Numerical results for GaP and GaAs agree with most of the experimental values

suggested in a recent review article by Roberts. Miller s hM is predicted to vary by 13% from the laser
lines at 10.6 to 1.32 pm for GaP.

I. INTRODUCTION

Technical difhculties delayed the accurate calculation
of second-harmonic susceptibilities y' ' for more than
two decades. The initial discovery of second-harmonic
generation lead to rapid advances in the theory (see, e.g.,
Ref. 2). For example, the present understanding of the
classical electrodynamics of second-harmonic generation
dates to this period. Bond-charge models were used to
predict second-harmonic susceptibilities, most notably by
Levine. Although band-theoretic formulas were derived,
they were too complicated and delicate for their applica-
tion at the time. One problem concerned apparent diver-
gences in the theory. ' Another problem concerned un-
certainties regarding local-field corrections. ' Yet anoth-
er diSculty stemmed from insuSciently accurate matrix
elements. "

Recent research has seen considerable progress on
some of these classic problems. For example, a proof
that the second-harmonic susceptibility of an insulator to
a vector potential is finite in the static limit has been
given recently. A band-theoretic formalism with local-
field corrections within the vector theory has been
presented recently (recapitulating, in part, earlier
work' ), but with an attempt at a realistic numerical eval-
uation. " Recently, the second-harmonic susceptibility
was evaluated for some 15 III-V and II-VI semiconduc-
tors using the self-consistent orthogonalized-linear-

I

combination of atomic-orbitals method (OLCAO) this
reference contains an excellent summary of the theoreti-
cal situation in its introduction.

In Ref. 13, I presented a formula within band theory
for optical second-harmonic response to an external sca-
lar potential for a crystal, including local-field correc-
tions. The use of a scalar potential simplifies the formal-
ism compared to a vector theory; however, it limits the
calculation to the Kleinman-allowed symmetries. ' '
Fortunately, these are the largest ones. ' Previously, we
evaluated y' ' in the static limit for GaAs, GaP, A1As,
A1P, ' ' selenium, ' ' a-quartz, ' urea, and four poly-
types of SiC. ' Typically, we have achieved agreement
within experimental uncertainties for these materials.
The goal of the present work is twofold: to present a ver-
sion of the frequency-dependent formula including local-
field corrections that has no apparent divergences, and to
evaluate the formula numerically for both GaP, a materi-
al used as a reference standard for second-harmonic sus-
ceptibilities, and GaAs.

II. FORMULA FORy' '{—2';co, a))

Considering the second-harmonic response to be the
sum of the response of individual electrons in a crystal
governed by a reduced Hamiltonian Hz leads to the for-
mula
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which is equivalent to Eq. (5.13) of Ref. 13 with the notational modification given in Ref. 17. In Eq. (1), H, =q V&HI,
(which is a generalization of the momentum operator p), Hz =

—,'q. V&q VzHz, where q is the wave vector of the external

perturbation, and co its frequency. The local field in linear response is given by P(co), where the external perturbation is
taken to have unit strength. Atomic units are used. The band index n runs over the valence (i.e., occupied) states.
Also, G„i(co)=g ~mk)(mk~l(e„i, e—i, +co) is a Green operator; the sum on m is over all states. Of course,
H&~nk) =e„zonk). (Note that g+ —,'=1.)

Equation (1) is not the best form numerically because of the apparent divergences in the formula: (i) for the static
limit for an insulator, (ii) due to degenerate states, and (iii) at the frequencies of valence-to-valence transitions. Equa-
tion (5.19) of Ref. 13 addresses the divergences of type (i). However, certain terms in Eq. (5.19) remain manifestly diver-
gent, but they can be removed using algebra, and the difference of the sum rule of Sec. III of Ref. 17 and Sec. VI of Ref.
13. Taking this sum rule into account leads to a formula without type (i) divergences

l 1 U
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where

&«(co)=G«(co)G„i,( —co)(1 —
I «) (nkI }

and F„&=e„&—Hz is the pseudoinverse of

G„i,=g ~„~ mk ) ( mk /(e„i, —e q),
1.e.,

G„„F„„=1—~nk)(nk~ .
[In Refs. 18 and 19, the symbol Q„z(co) has a different
definition. Note that G„i, and G«(co) are distinct. ] In ad-
dition to the use of the sum rule, the relation

Q„i,(co)(F„g—co G„i,) =G„„
was applied five times to simplify Eq. (5.19) of Ref. 13. It
is simple to verify that the static limit of Eq. (2) is
given by Eq. (2) of Ref. 17, using the relation
lim„oS'„i,(co)=G„i,.

Most discussions of second-harmonic generation con-
sider terms equivalent to the third and fourth terms of
Eq. (1) which correspond to the second and third terms of

I

Eq. (2). Additional terms arise in the present formalism
due to terms in H2, which vanish for a local potential but
can contribute if a nonlocal potential is chosen, and the
local-field corrections (i.e., any term containing P).

In his discussion of the formalism for second-harmonic
generation, Aspnes suggested a classification of terms as
vvv, vvc, or ccv, depending upon whether 0, 1, or 2 of the
intermediate states are in the conduction bands. (The ex-
tra v arises from the starting bra (nk~ and terminating
ket ~nk). ) We have previously extended this notation to
speak of cv and vv terms as well. ' This division is fruit-
ful, because the vvv (and vv) terms vanish in Eq. (2), as
they did in Aspnes's formulas. The ccv terms are given
conveniently by restricting the Careen's operators which
appear in Eq. (2) to the conduction bands. [This restric-
tion causes terms 11, 12, and 16 to be eliminated from
Eq. (2) altogether; these terms are the diagonal elements
terms of the vvc contribution. ] The vvc terms may be
reworked to avoid apparent divergences associated with
occupied orbital degener acies and orbital energies
separated by co or 2'. The result is
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where the sums over states in Q„q(co), G„z, and F„t, (and
their n ~m counterparts) are restricted to the conduc-
tion bands. The static limit of this expression reproduces
Eq. (5) of Ref. 17 as corrected in the erratum.
[Specifically, the erratum reports that in term 2 of Eq. (5)
of Ref. 17, —76„j,G & should be —46„&G & and
—7G„&G' s should be —10G„&G'z.]

Surprisingly, the computational difficulty of Eqs. (2)
and (3) is only somewhat worse than its static limit,
which has been implemented previously. ' ' To imple-
ment the formulas given in this section, the "virtual
machine" approach which we have used for other opti-
cal response properties (i.e., the dielectric function, opti-
cal activity, and static second-harmonic response' '

)

proved to be adequate for the frequency-dependent
second-harmonic susceptibility with nearly no recoding
in Fortran. Instead, Eqs. (2) and (3) were encoded as
about 500 statements in a special-purpose optical
response language, compared to 250 statements of the
same language needed for the static limit. Experience
with Gap indicates that about 20% additional computa-
tional time is required per frequency for the frequency-
dependent formula compared to the evaluation of its stat-
ic limit alone. The computational time is dominated by
changing from the plane-wave representation to the
eigenstate representation and back.

The Harniltonian used in this study is given by the
Kohn-Sham local-density approximation (LDA) with a
self-energy correction in the form of a "scissors" opera-
tor, i.e.,

I

calculations. ' ' (The GR' approximation is a particular
screened Hartree-Fock approximation. ) This Hamiltoni-
an has been used successfully to predict linear and static
second-harmonic optical response in a variety of sys-
tems. ' ' ' "' To obtain the "scissors" correction, Eqs.
(A5), (AS), and (A22) of Ref. 17 are applied to Eq. (2) and
Eqs. (A5) and (A9) of this reference are applied to Eq. (3).
The application is straightforward, with no
simplification, so the resulting form is not given here.

Huang and Ching also adapt a shifted band structure
in their calculation of the second-harmonic susceptibility
of semiconductors. ' However, their formula is quite
different from the present one. Specifically, we have ar-
gued previously that renormalizing the matrix elements is
an integral part of the "scissors" correction, and that
shifting energy denominators alone is inconsistent.
Nevertheless, Huang and Ching use formulas with shifted
energy denominators, but with unrenormalized momen-
tum matrix elements.

Let me summarize what has been achieved. Equations
(2) and (3) sum to a formula for optical second-harmonic
generation for insulating crystals including local-field
corrections in the presence of a frequency-dependent sca-
lar external field. The resulting formula has no spurious
apparent divergences as the optical frequency approaches
zero or a valence-valence eigenvalue difference, or for de-
generate eigenstates. The a11-valence "vvu" terms have
been removed analytically from the formulas. The static
limit does not require a special analytic form; moreover,
the formulas are only a little harder to evaluate than their
static limit.

H~ =H~ +hi P i, , (4)
III. RESULTS FOR Gap AND GaAs

where 6& is a scalar and I',& is the projection operator on
to the conduction bands at a point k in the Brillouin
zone. In practice, we choose a k-independent 5 equal to
0.9 eV for GaP and 0.8 eV for GaAs, as suggested by GR'

The formulation presented in Sec. II is illustrated with
calculations on GaP and GaAs. The calculation makes
use of the Corning LDA code for the ground states.
The pseudopotentials are found using the method (and
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Lattice constant (nm)

E,„, (hartree)
No. conduction bands included

Nq~, for BZ integration
5 (eV)

Eg LDA (eV)

Eg self-energy corrected (eV)
Expt. (Ref. 39) (eV)
Expt. spin-orbit splitting (Ref. 39) {eV)

0.5450
10

100
28
0.9
1.71
2.61
2.89
0.08

0.5652
10

100
60
0.8
0.49
1.29
1.52
0.34

code} of Hamann. z7 The method is substantially the same
as used in our earlier studies. ' The direct gaps and
spin-orbit splittings for the two materials are given in
Table I, along with the parameters of the calculation.

Our principal interest in this paper is GaP, for several
reasons. (i) Spin-orbit effects are neglected in this calcu-
lation (although scalar relativistic eff'ects are included in
the pseudopotential); spin-orbit effects are smaller in
GaP. (ii} The Brillouin-zone integral is somewhat more
difficult for GaAs due to the region of minimal direct gap
near I'; finite frequency increases the difficulty of the in-
tegration. (The integrand becomes singular at co=E for
linear response, or 2co=Eg for the second-harmonic
response. } For now, the implementation is restricted to
the nonabsorbing regime. (iii) There is higher quality
data on GaP than GaAs due to the work of Levine and
Bethea who measured GaP with the intent of creating a
single reference standard for second-harmonic measure-
ments throughout the infrared and visible regions. A
similar study was performed by Choy and Byer. ~ Most
of the frequency-dependent work of GaAs is for the ab-
sorbing regime, 0'3' hence it is out of the scope of the
present study. Roberts'5 has recently reconsidered the
second-harmonic susceptibility measurement, in particu-
lar the values of the reference standards, and has resolved
an outstanding disagreement between the measurements

TABLE I. The minimum direct band gaps of GaP and GaAs

(at the I point) and the spin-orbit splitting. The "self-energy

corrected" values are just the LDA values corrected by a shift

suggested by GR'calculations. ' The parameters of the calcula-

tion used throughout the study are given here.

Gap

of Levine and Bethea and Choy and Byer for both
GaP and GaAs.

The results for the dielectric function are given in
Table II. Only the low-frequency behavior of the optical
response functions is given in this study. Two parameters
are adequate to describe the electronic part of the linear
dielectric response in most semiconductors and insulators
over a large fraction of the band gap. The results are of
a quality comparable to those we obtained earlier for the
frequency dependence of silicon and germanium. The
self-energy correction to the LDA is seen to have a
beneficial effect on calculated values compared to the
LDA itself. Also, the values given by Huang and Ching
are presented, which give a good account of the experi-
ments. The disagreement of the present LDA results to
the LDA results of Huang and Ching is most likely due
to basis-set effects, which cause the band gap of Huang
and Ching to be too large by about 0.5 eV. As reported
earlier, ' the present results for the static dielectric con-
stant agree with another high-quality plane-wave calcula-
tion to within 0.2 units of c„.

The principal results of this study are given in Figs. 1

and 2, as well as in Table III. Here, a comparison of
theory and experiment is given for GaP and GaAs at
principal laser lines at frequencies for which 2m(E .
The open symbols represent the data given by the origi-
nal authors. Roberts' has reconsidered the reference
standards used by a number of authors; these are shown
in the figures as corresponding solid symbols. There is
agreement within 140% of the experimental uncertainties
for all rescaled measurements for the two materials. The
effect of local-field corrections is given in Table IV.
These corrections are moderate, and decrease modestly
with frequency. Omission of the local-field corrections
would worsen the agreement with the values of y' ' sug-
gested by Roberts, though not decisively. The effect of
the finite number of k points is expected to be only a few
percent. A convergence study for GaAs at zero frequen-
cy was given earlier. ' For GaP, using 10 k points, the
values for d are 2-3% larger than those given in Table
III.

Several other authors have calculated the dispersion of
y' ' for GaP (Refs. 7 and 12) and GaAs. 67"'~ In all
cases, these authors have considered a wider frequency

TABLE II. The electronic part of the macroscopic dielectric constant c& and the first nonvanishing
derivative c&'(co) for the present calculation, other calculations, and experiment. The subscript "00"in-
dicates the neglect of local-field corrections. The parameters of the calculation are stated in Table I.
Values for these quantities were calculated using this program at other energy cutoffs in Ref. 17.

Material

GaP

GaAs

Condition

LDA/OLCAO (Ref. 33)
LDA

5=0.9 eV
Experiment (Ref. 40)

Pseudofunction (Ref. 11)
LDA/LCAO (Ref. 33)

LDA
5=0.8 eV

Experiment (Ref. 41)

c,oo(0)

9.29
11.1
9.3

9
11.21
14.2
11.5

&i(0)

10.5
8.8
9.1

13.5
11.0
10.9

&00(0)

0.8
1.32
0.67

2.0
2.2
3.86
1.43

1.25
0.63
0.69

3.78
1.38
1.51
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FIG. 1. Nonlinear susceptibility for second-harmonic genera-
tion, d = 2y' ' for GaP. The solid line is our calculation with a
self-energy correction of 6=0.9 eV. The dotted line (marked
LDA) is our calculation in the LDA. The parameters of the cal-
culation are given in Table I. The dashed line (marked HC) is
the calculation of Huang and Ching (Ref. 12). The dash-dotted
line (marked MSvD) is the calculation of Moss, Sipe, and van
Driel (Ref. 7). The diamond (marked GS) is the calculation of
Ghahramani and Sipe (Ref. 35). The circles are the data of
Levine and Bethea (Ref. 28). The squares are the data of Choy
and Byer (Ref. 29). The open symbols are the data as given by
the authors; the solid symbols are the values suggested by
Roberts by reconsidering the reference standards used in a
variety of second-harmonic generation experiments (Ref. 15).

range than is considered in the present work. (This, in-
cidentally, accounts for why the other papers use many
more k points than the present one: the evaluation of y' '

is more demanding numerically when it is complex, ' the
same phenomenon occurs in linear response. ) In addi-
tion, a static value for y' ' is given by Ghahrarnani and
Sipe. The study of Moss, Sipe, and van Driel used
empirical matrix elements; these authors noted that the

FIG. 2. Nonlinear susceptibility for second-harmonic genera-
tion, d = 2g' ' for GaAs. The parameters of the calculation are

given in Table I. The double-dash-dotted line is the calculation
of Fong and Shen (Ref. 6). The other symbols are defined in

Fig. 1.

earlier calculation of Fong and Shen was in error due
principally due to matrix element effects rather than
local-field corrections. (A more recent calculation from
this group used a revised method for obtaining matrix
elements which leads to a factor of 3-4 reduction in the
predicted values for y' '.} Ma et al. " have also con-
sidered local-field corrections using a Matsubara formal-
ism, implemented with the pseudofunction method. The
local-field correction of magnitude 3%%uo, comparable to
the present result of —7%, is shown in Table IV. Their
value of the static dielectric constant for GaAs reported
in Table III, namely nine, is quite low. Their values for
d =

—,'yt ', which range from 550 pm/V at 0 frequency to
760 pm/V at 0.585 eV, are substantially higher than oth-
er calculations and the experimental results. Considering
all the calculations, it is clear that a "consensus value"
has yet to emerge.

TABLE III. The frequency-dependent nonlinear susceptibility for second-harmonic generation

dl23 2g]23 in pm/V for GaP and GaAs. Data are given only for frequencies such that 2' &E~, i.e.,
the regime in which direct absorption is forbidden. The frequencies are chosen to correspond to com-
mon laser wavelengths, which are also presented. The term "rescaled" refers to the new scale for the
measurements of Refs. 28 and 29 suggested by Ref. 15. The parameters of the calculation are given in

Table I.

a) (eV)
A, (pm)

GaP

GaAs

LDA
6 =0.9 eV
Expt. (Ref.
Expt. (Ref.
Expt. (Ref.
Expt. (Ref.
LDA
5=0.8 eV
Expt. (Ref.
Expt. (Ref.
Expt. (Ref.
Expt. (Ref.

28) (rescaled)
28)
29) (rescaled)
29)

28) (rescaled)
28)
29) (rescaled)
29)

64.6
37.6

177
86.2

0.117
10.6

65.2
37.8
37+2
41+2

185
87.2
81+5
90+5

0.585
2.12

82. 1

42.8

47+10
78+17

116.0

97+14
173+28

0.94
1.32

142.7
54.1

56+6
61+6
49+9
82+17

1.17
1.06

69.9
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TABLE IV. The effect of local-field corrections on the frequency-dependent nonlinear susceptibility
for second-harmonic generation d&23 2+$23 in pm/V for GaP and GaAs; the conditions of the calcula-

tion are the same as those of Table III. Results are given for 5=0.9 eV for GaP and 5=0.8 eV for
GaAs. The local-field correction is seen to decrease slightly with increasing frequency. The parameters
of the calculation are given in Table I.

co (eV)
A, (pm)

GaP

GaAs

long wave
total
local field

long wave
total
local field

42.1

37.6
—11.2%

92.3
86.2

—7.2%

0.117
10.6

42.3
37.8

—11.2%
93.3
87.2

—7.0%

0.585
2.12

47.7
42.8

—11.1%
123.0
116.0
—6.0%%uo

0.94
1.32

59.8
54.1

—11.1%

1.17
1.06

76.7
69.9

—11.0%

One may consider the results in Figs. 1 and 2 for the
LDA and for the LDA with a self-energy correction of
0.9 eV (for Gap) or 0.8 eV (for GaAs) to be two curves in
a family, parametrized by h. (The LDA corresponds to
6=0.) The magnitude of the static value of d =

—,'y' ' and
the curvature at low frequency will be correlated. Curi-
ously, the calculations of both Moss, Sipe, and van Driel7
and Huang and Ching' display higher static values than
the ones found here, but with less curvature. Hence, our
pictures are substantially different, and the differences
cannot be lumped into a single "energy gap" parameter.

In the early days of second-harmonic generation, Mil-
ler made the conjecture known as "Miller's rule" that the
quantity

would vary little as a function of frequency, and account
for most of the variation from one material to another
within a given class. 36 In the present formulation, there
is some support for a frequency-independent h~. Terms

2 and 3 of Eq. (2) (after restriction to ccu terms)
which represent the largest contribution to y' ', ' do
have the same energy denominator as the product
y'"(2')[y"'(co) ] as may be seen by comparison with Eq.
(A17) of Ref. 24. However, other terms are present with
a variety of frequency dependencies.

Since Miller's rule remains in use, ' it is interesting to
compare the present calculation for Miller's Esca to exper-
iment, and to the calculation of Huang and Ching. For
this purpose, only the most credible data, that of Levine
and Bethea as corrected by Roberts, ' is shown in Fig.
3. In Gap, between 0.117 and 0.94 eV, the experimental
value of y' ' rises by some 51%. The present calculated
value for hM rises 13%, compared to a rise of 13%15%
for the experiment, and a flat or declining value in the
calculation of Huang and Ching. Hence, the compar-
ison is inconclusive, being consistent with both the pre-
diction of the present theory and with a fixed value for

This situation may be typical: Roberts' remarks
"Miller's rule [is] no worse than the 5-20% precision to
which the [d] coefficients are usually measured. "

IV. CONCLUSIONS

400

E~ 350

Ci

(n 350

~ 300

G
I I

aAs

0.8eV

I I I I

HC
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FIG. 3. Miller's LL~ as a function of frequency. This quanti-
ty should be constant if Miller's conjecture is correct. The solid
line is the local-field calculation. The parameters of the calcula-
tion are given in Table I. The dashed line is from Huang and
Ching (Ref. 37). The solid symbols are from the data for
second-harmonic generation of Levine and Bethea (Ref. 28) as
corrected by Roberts (Ref. 15) with the electronic part of the
dielectric function taken from Refs. 40 and 41.

A formula for the frequency-dependent second-
harmonic susceptibility of an insulating solid within band
theory, including local-field corrections, is given in Eqs.
(2) and (3). In the static limit, the formula reduces to a
formula presented earlier. ' The advantages of this form
are that there are no apparent divergences as (i) external
frequency vanishes, (ii) due to degenerate valence states,
or (iii) an equality of the external frequency and the ei-
genvalue difference of two valence states.

This formula is implemented in the LDA with a self-
energy correction in the form of a "scissors" operator
(i.e., a rigid shift of the conduction bands) using pseudo-
potentials in a plane-wave basis. Results are presented
for GaP and GaAs. The GaP case in more definitive be-
cause the experimental data are better, and because the
theoretical prediction is subject to fewer assumptions,
such as the neglect of a smaller spin-orbit splitting.
There is agreement with the experimental values suggest-
ed in a recent review article by Roberts' to within exper-
imental uncertainties in many cases, and with 140% of
experimental uncertainties in all cases considered.

One of the goals of first-principles calculations is the
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prediction of new materials with useful properties. The
synthesis of P-C3N&, which was predicted to be harder
than diamond, may be a demonstration of this ability.
To accomplish a similar feat for nonlinear optics, materi-
als of interest for nonlinear optical devices wi11 probably
operate near resonance, though still in the nonabsorbing
regime. The present work which suggests that the fre-
quency dependence of y' ' may be calculated accurately
may be seen as a small but real step toward a prediction
of technological interest.
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