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Temperature dependence of optical transitions between electronic energy levels in semiconductors
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We propose a model to describe temperature-dependent electronic transitions using an effective

electron-ion interaction. We present a nonperturbative calculation of the temperature dependence of the
forbidden energy gap of CdTe crystals. The results are compared with similar calculations using the
statistical-function method and both give good agreement with experimental data. It is also demonstrat-

ed that the thermal expansion of the lattice plays a minor role for the temperature variation of the elec-
tronic energy levels.

I. INTRODUCTION

The understanding of the temperature dependence of
electronic energy levels of perfect and imperfect semicon-
ductors is important for technological applications. The
corresponding theoretical models as well as the results of
their application to particular crystals and the compar-
ison with experimental data was reviewed by Cohen and
Chadi, ' and is also given in a number of recent papers.
Two methods are currently used to describe the tempera-
ture variation of the electronic energy levels in semicon-
ductors: the perturbative treatment of the electron-
phonon interaction, and the statistical-function method.
In the perturbative treatment the electron-phonon in-
teraction, which depends on temperature through the
atomic displacements, is regarded as a correction to the
adiabatic approximation. In the statistical-function
method the temperature variation follows from the
change of the Gibbs free energy for the corresponding
electronic states. In particular, these methods are used
for the calculation of the temperature variation of the
forbidden energy gap. They are not related to each other
and are inapplicable for the calculation of the tempera-
ture variation of energy levels of localized defects.

The temperature variation may be separated into an
explicit harmonic and an implicit anharmonic part. Usu-
ally the explicit contribution is remarkably larger than
the implicit one. We here present a temperature-
dependent effective electron-ion interaction potential
which accounts for the large contribution of the
electron-phonon interaction. Using this model we per-
form a direct, nonperturbative calculation of the temper-
ature variation of the forbidden energy gap. The method
also serves to understand the temperature variation of the
luminescence of the A center in CdTe crystals. The ob-
served shift of the emission energy has a maximum at a
temperature of about 20 K, which is not far from the
minimum of the thermal-expansion coeScient of CdTe at
25 K. In order to understand such temperature-
dependent transitions between electronic energy levels in
semiconductors, we first study the temperature variation

of the forbidden energy gap of CdTe crystals. Our results
are in good agreement with experimental data, and we ex-
plain why the explicit contribution is large compared to
the implicit one. We also demonstrate that there are no
numerical differences between our direct calculation and
the statistical-function method.

The paper is organized as follows. In Sec. II we give a
theoretical background for the calculation of the temper-
ature dependence of optical transitions between electron-
ic energy levels of semiconductors. In Sec. III the
theoretical model of the temperature-dependent
electron-ion interaction is described, and we indicate the
difference between the conventional perturbative treat-
ment and our direct method. The results of our calcula-
tions of both methods are compared with experiments for
CdTe in Sec. IV.

II. TEMPERATURE DEPENDENCE
OF OPTICAL TRANSITIONS

Here we describe crystals consisting of NN nuclei and
NE electrons by a Hamiltonian of the form

TI+ TE+ yE —I+ yE —E+ yI —I

where T gives the kinetic energy of the nuclei,

N g2Tt= —g
I=1 I

and MI denotes the nuclear masses. The Hamiltonian
Eq. (1) may be used for an all-electron calculation by ap-
plying the frozen-core approximation. In the latter case
there are NN rigid ions and NE valence electrons. The
kinetic energy of the electrons is given by

E g2
T = —g b, ,

&
2m

%e denote the coordinates of the electrons by r,-,
i = 1,2, . . . , NE, and of the nuclei or ions by RI,I= 1,2, . . . , NI. The potential energy of the electrostatic
repulsion of the electrons is
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vE-E
1, . . . , N~e

8m C.O

coordinates RI. For a semiconductor in thermodynamic
equilibrium, we then consider a canonical ensemble for
which the partition function is given by

and of the ions is

ZZVIr e

8 Irido I,J
IWJ

where ZI denotes the charges of the nuclei or ions. The
potential energy of the electron-ion interaction may then
be written in the form

'= g g U, (lr, —R, l),
i=1I=1

~here UI is the spherically symmetric electron-ion in-
teraction potential. In the method adopted here we do
not consider spin-orbit interaction or other relativistic
effects.

We write the Born-Oppenheimer approximation of H
in the form

Z( T, V) =exp
Eo'( V)

g exp
k, T

Evib( V)Op (13)

F(T, V) = —k&T lnZ(T, V), (14)

where kz is the Boltzmann constant. The electronic
ground state Eo' of a perfect semiconductor crystal is
nondegenerate, but in the case of imperfect crystals we
have to multiply the right-hand side of Eq. (13) by the de-
generacy of the electronic ground state. This gives an ad-
ditional contribution to the Helmholtz free energy, for
example of —kz T ln2 for a twofold spin-degenerate elec-
tronic state. Equation (13) holds in the case of
E'„' —Eo' &&k&T for all excited electronic states v. We
will assume that this condition is valid for the semicon-
ductors considered here. This means that the system
cannot be brought to an excited electronic state by
thermal excitation. We then obtain the Helmholtz free
energy by

with

Hel TE+ VE I(RO)+ -VE E+ VI I(RO-)-

and

H"'"=T +E"(RI ) —E"(RI ) .

(7)

(8)

which may be separated into an electronic and a vibra-
tional part:

F(T, V)=EO'(V)+F"' (T, V) .

Because of the harmonic approximation using Eq. (12) we
find

=0,
R =RI I

Here E,"are the eigenvalues of the electronic Hamiltoni-
an H", and the vibrations of the crystal are obtained by
introducing the positions RI of the minimum of the
Born-Oppenheimer electronic total-energy surface
E'„'(RI ) defined by

BE'„'(RI)
(10)

I

Using the definitions for entropy

S(T, V)=— BF
BT

F"'b(T, V)= g —,'%co +k&Tln 1 —exp
J

(16)

(17)

so that the RI depends on the electronic state considered.
We further describe the ionic motion in the harmonic ap-
proximation so that the vibrational Hamiltonian may be
written in the form

H"' = QAcoj(ajaj. + —,') .
J

According to Eq. (9) the vibration frequencies mj depend
on the electronic state considered, and a~ and a. are the
corresponding creation and annihilation operators, re-
spectively. The eigenvalues E of the Hamiltonian H of
Eq. (7) are then given by

and pressure

p(T, V)=—

G(T,p)=F+pV .

Here the difference between F and G can be neglected at
normal pressure. The Gibbs free energy G is thus calcu-
lated as a function of the nuclear positions RI and the
equilibrium positions RI are defined by

av, (18)

we can calculate the Gibbs free energy by solving the
equation of state (18) for the volume V= V( T,p ):

E =E"+E"' =E"+ QAco (n +—')
J

(12) aG

where n. =0, 1,2, . . . are the occupation numbers of all
the vibrational states, and p= In „nz, . . . I describes the
vibrational spectrum E"„'.

The Born-Oppenheimer approximation allows us to
calculate the eigenvalues of the Hamiltonian in Eq. (7) as
a function of the crystal volume V defined by the nuclear

Due to Eq. (13) the Gibbs free energy and other proper-
ties of the thermodynamic equilibrium are determined by
the electronic ground state of the semiconductor only.
The reason for this is that the semiconductor cannot be
brought to the excited electronic state by thermal exrita-
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tion. The situation is dilerent, however, when a crystal
is brought to an excited electronic state by optical excita
tion. The application of the Born-Oppenheimer approxi-
mation means practically that we consider the sernicon-
ductor to consist of two subsystems: the inhomogeneous
electron gas, described by the electronic part of the Ham-
iltonian, and the ionic system, described by the vibration-
al part of the Hamiltonian. The interaction of the two
subsystems (the electron-phonon coupling) is small, and
both subsystems are considered to be in contact with a
heat bath at temperature T. Therefore, applying quan-
tum statistics the equilibrium state defined by the Gibbs
free energy is found from the partition function calculat-
ed, taking all many-electron and vibrational energy levels
into account.

We assume that the initial state is the thermodynamic
equilibrium. Then, in the case of absorption of a photon
by the electronic subsystem, the Franck-Condon princi-
ple postulates that the absorption process is so fast that
the final state is not a thermodynamic equilibrium but is
characterized by an appropriate electronic state, whereas
all the nuclear positions are kept fixed. In a second step
the system then relaxes to new nuclear positions. In the
third step the system may release its electronic energy by
an optical emission process, which again does not lead to
a thermodynamic equilibrium. In a fourth step the sys-
tem finally relaxes its nuclear coordinates to their equilib-
rium positions as in the initial state. This leads to the
Stokes shift between absorption and emission lines, and is
usually interpreted using the so-called configuration-
coordinate diagram.

The band-to-band transition of a perfect cubic crystal
is a special case because the only configuration coordi-
nate is the lattice parameter or crystal volume (a phase
transition to a difFerent crystal structure requires much
more energy}. The change of the crystal volume due to a
photon of, say, 1 eV is so small that it can neither be rnea-
sured nor calculated directly. The smallness of the corre-
sponding volume work also cannot cause a measurable
Stokes shift for band-to-band transitions. The situation is
different, however, for transitions involving electronic de-
fect levels where the nearest-neighbor atoms may relax
their position as a consequence of an optical transition.
These processes, described by the four steps, can be cal-
culated using the following method. The initial state of
thermodynamic equilibrium is calculated using a canoni-
cal ensemble and the Born-Oppenheimer approxima-
tion. " The Gibbs free energy is obtained from the parti-
tion function Eq. (13) which contains the electronic
ground state only. After the absorption of the photon the
excited nonequilibrium state is described by a partition
function Z„similar to Eq. (13), modified by replacing Eo'
by the excited electronic energy level E". We here as-
sume that there are no other electronic energy levels
within the region of k&T. We further assume that E„"is
nondegenerate, because this would result in entropy
changes of the electronic subsystem leading to an energy
exchange with the heat bath. The lattice relaxation, de-
scribed above as step 2, can now be found from
G„(T,p, RI) derived from Z„and using Eq. (20) accord-
ingly. Keeping these relaxed nuclear coordinates fixed,

the system may release its energy to the electronic ground
state in step 3 giving G(T,p, RI). The following lattice
relaxation of step 4 leads to equilibrium positions RI by
use of Eq. (20).

Therefore, in case the lifetime of the excited electronic
state is suSciently large to allow for the relaxation of the
atomic nuclei, we obtain a difFerent crystal volume,
different equilibrium positions RI of the nuclei, and
difFerent vibration frequencies fuuj compared with the
values for the electronic ground state.

In the case of a perfect semiconductor crystal there are
many other excited electronic energy levels above the en-

ergy gap Eg within kz T. We will assume that these excit-
ed electronic states give approximately the same vibra-
tion frequencies, so that the Helrnholtz free energy again
may be separated into electronic and vibrational parts.

When a semiconductor in an excited electronic state
emits a photon and returns to the electronic ground state,
then, due to the Franck-Condon principle, the energy
difference is given by the difFerence between the
Helmholtz free energies in the excited state F„and
ground state F0.

hv=hF=F —F =E"—E"+F"' —F"'
x 0 x 0 x 0 (21)

BEF
dT

REF
BT

REF
BT v

dAF—Ba
Bp

(22)

where hF is given by Eq. (21). Here B denotes the bulk
modulus

B(T,V}=—V Bp

av,
and a the thermal-expansion coeScient

(23}

and this difference has been separated into electronic and
vibrational parts. Equation (21) describes transitions be-
tween electronic states which both refer to the same posi-
tions RI of the nuclei, which are equilibrium positions of
the initial state. We further neglect the same variation of
the volume in the electronic excited and ground states re-
lated to the change of the electronic configuration.

Equation (21} does not give a rigorous description of
optical transitions in semiconductors, but contains simple
approximations to describe the temperature shift of opti-
cal transitions. The electron-phonon interaction is taken
into account in a more indirect way by assuming different
vibration frequencies for the electronic ground and excit-
ed states. Due to this, Eq. (21) cannot be used to de-
scribe properties such as line shapes, which depend on
many details of the electron-phonon interaction.

In order to calculate the temperature dependence of
optical transitions between electronic energy levels of
semiconductors, we distinguish between the implicit tem-
perature dependence, originating from the thermal ex-
pansion, and the explicit temperature dependence, origi-
nating from the vibrational part of the Helmholtz free en-
ergy taken at a axed crystal volume V:
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av
V BT

(24}
elastic potential given by E'„'(Rt} in the harmonic ap-
proximation.

=hv(0)+ g
) 'AN)

exp —l
B

(25)

where b,Ace& is the di6'erence of the vibration energies in
the electronic excited and ground states. Here hv(0) is
the photon energy at zero temperature including the
zero-temperature vibrations, and we used Eq. (16) and the
assumption Mco « fico The .vibration energies fico, are
determined by the dynamical matrix obtained from the

Comparing the experimentally observed temperature
derivative of the energy gap E of various semiconduc-
tors (see Table I), with the pressure derivative of the ener-

gy gap multiplied by the bulk modulus and the thermal-
expansion coefficient, we find from Eq. (22) that the im-
plicit temperature dependence (second term) is remark-
ably small compared with the explicit temperature depen-
dence (first term). We therefore restrict ourselves here to
the calculation of the explicit temperature dependence of
optical transitions, which can be calculated from the
Helmholtz free energy at a given volume V.

According to Eq. (15) the electronic part of the
Helmholtz free energy does not depend on temperature,
and therefore the temperature dependence of an optical
transition energy h v is determined by the vibrational part
of Eq. (21), which may be approximated in the following
way:

gpvib
h v( T ) =E„" Eo' + g — b,A'co

Aha.

III. THEORETICAL MODEL

Rt(t ) =Rt+ut(t ) (26)

for each of the ions I, and for the time average we have

(ut(t ) ) =0 . (27)

In the classical limit and in thermodynamic equilibrium,

In order to understand the explicit temperature depen-
dence of an optical transition, we may use Eq. (25) and
determine the change of the vibration energies hfuo. due
to the electronic transition at a fixed crystal volume. As
can be seen from Eq. (25), the temperature dependence of
an optical transition results from a sum over all vibra-
tions of the crystal. Such an integral quantity may well
be understood by simple models in order to avoid
cumbersome first-principles calculations. We here
present two simple approaches. The direct method is
based on an effective and temperature-dependent soften-
ing of the electron-ion interaction potential, whereas in
the statistical-function method the sum in Eq. (25) is re-
duced to a few dominating frequencies, the changes of
which are obtained from simple assumptions. Both
methods yield satisfactory results, and give better insights
into the microscopic processes involved.

We begin by describing the direct method by which we
deduce the change of the electron-ion interaction poten-
tial Eq. (6) with temperature in the classical limit of the
ionic motion. In this approximation the positions of the
ions Rt(t ) are given by time-dependent displacement vec-
tors ut(t ) =(ut, ut2 u j3):

TABLE I. The experimental values of the [dE, (I')/d T]~ at room temperature, and the implicit con-
tribution —3Ba(dEg /dp )z. for the direct energy gap. The data for Si and Ga are taken from the paper
of P. B. Allen and M. Cardona, Phys. Rev. 8 27, 4760 (1983), while other data are from K. W. Boer,
Suruey ofSemiconductor Physics (Van Nostrand Reinhold, New York, 1990)

dEq(I )

dt

dEg—3Ba
dp T

dEg(I )

dp T

Crystal
meV

K
meV

kbar
(Mba r) (10-' K-')

IV
Si
Cxe

—0.22
—0.44

—0.04
—0.17

5.2
13

0.980
0.752

2.59
5.75

III-V
GaAs
InP
InAs

—0.39
—0.29
—0.34

—0.17
—0.09
—0.08

11.3
9.1

10.0

0.746
0.725
0.588

6.63
4.75
4.52

II-VI
ZnS
ZnSe
ZnTe
CdTe

—0.47
—0.45
—0.52
—0.54

—0.09
—0.08
—0.10
—0.05

5.8
6
8.3
8

0.719
0.606
0.500
0.424

6.8
6.9
8.19

4.8
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the mean-square displacement of an ion I is given by

&u,'(T) &=&,'„)
1

NNMI J. Rcoj.
exp —1

B

1+
2

g2 VEI-
+—T Q Q + p ~ ~

2 „aR0aR0
(29)

Taking the time average of this expression, we make the
assumption of uncorrelated phases of the displacements
uI(t },and find

3 g2yE I
&

yE I) yE-1(RO)+ f -y y &u2)
I v= 1 ~Riv

NE NN

=V (R )+—' g g &u )hvI(lr; —RIl),
i =1I=1

(30)

where we have used Eq. (6) and RI =(RIi,R12,R13 ). We
take advantage of the fact that the ionic potential vI is
spherical symmetric, so that the Laplacian can be re-
placed by the simple form ( r =

l r, —RI l ):

E N

& V"&=V"(R',)+-' y g &u'& — '+
r Br

a'VI

dr

(31)
This is approximately equal to a Taylor expansion up to
first order only, and we obtain

NE NN &u2)
&

yE I) yE-1(RO)+-
i=i I=i r Br

NE NN &u )2= g g v, lr, —R', I+
Ir; RII—(32)

The physical interpretation of this result is as follows.
Comparing Eq. (6) with Eq. (32), we see that the time
average of the electron-ion interaction potential V is
reduced because the temperature-dependent effective dis-
tance between the electron and ion is larger than in the
case of nonvibrating ions:

Ir, —R01 I'+ & u,')
(33}

Using the tight-binding approximation we consider only
the s and p valence orbitals at every atom in the CdTe
crystal. Then at the I point the lowest valence-band I 1„
and lowest conduction-band I 1, energies result from the
solution of the secular equation for the two s orbitals s1
and s2, and are given by'

(28)

where the sum goes over all vibration frequencies. Intro-
ducing Eq. (26) into Eq. (6) and applying a Taylor expan-
sion, we obtain

gvE 1-
VE (R )=V (R )+ g uI I BRI I

Es1 +Es2E(I i, „)=
2

Es1 Es2

2
+ V„

1/2

(34)

The upper valence-band state I »„and the upper
conduction-band state I », follow from the secular equa-
tion for the two p orbitals p1 and p2, and are given by

' 2 1/2
Ep1

—
Ep2 + V„„

Ep1+E 2E(I, , „}=

fi fiV„=ri„and V„„=(,'ripe +—',2}~ )—
ltld md

(36)

where g„, happ, and
happ

are universal constants, and m

and d are the electron mass and interatomic distance, re-
spectively. In order to account for the temperature-
induced reduction of the interaction potential [see Eq.
(32)], we replace d by the average of d2+u12 in the off-

diagonal matrix elements [Eq. (36)]. Using Eq. (28) we
then obtain the temperature dependence of the electronic
energy levels in the tight-binding approximation. From
the expansion of 1/(d +&uI )) in terms of powers of
& uI ), one sees that the off-diagonal matrix elements de-
scribe the thermal shifts of electronic energy levels more
accurately than to the second power in the thermal dis-
placements. In the limit of very narrow bands (at large
interatomic distance) the temperature dependence disap-
pear. In our consideration the electron-phonon interac-
tion is partly included in the effective interaction poten-
tial, and that part which is proportional to the odd
powers of the displacements can be further used for the
calculation of transition probabilities to particular states.
In our direct method no extra computational effort is
necessary, because the calculation at a given temperature
is the same as for a calculation at zero temperature.

We may rederive the expression for the matrix ele-
ments of the tight-binding approximation using a
different limiti. ng case. In the nearly free-electron ap-
proximation the ionic potential, which is a sum of atomic
potentials vI(r —RI —uI ) localized at the atomic sites RI,
is developed in terms of plane waves exp[i kr]. A typical
matrix element is'

(exPf —iir'rf Xer(r —Rr —er) exP[iirrf)
I

i K(r—R&
—

u& )= g f vI(r —RI —uI)
I

Xexp[iK(RI+uI }]d r

= gexpjiK(RI+uI)jvI(K),
I

(37)

(35)

Here E, and E are the diagonal matrix elements which,
in the Harrison' version of the tight-binding approxima-
tion, are simply atomic single-electron eigenvalues for the
s and p electrons at the two atoms in the elementary unit
cell. They do not depend on temperature in this approxi-
mation. V„and V are the corresponding off-diagonal
matrix elements. Harrison has demonstrated that for
tetrahedral semiconductors they can be approximated by
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where K=k —k' is a vector of the reciprocal lattice, and
vz(K) is the Fourier transform of the atomic potential.
In the calculation of this matrix element the coordinate r
of the plane wave as well the position Rz of the atomic
sites were taken with respect to one of the fixed lattice
sites (the origin of the coordinate system). We consider a
crystal with constant volume at different temperatures.
An increase of temperature causes a reduction of the in-
teraction potential. This can be seen from Eq. (37), since
an increase of the vibration amplitude uz causes a reduc-
tion of the Fourier transform vr(K) by a temperature-
dependent factor. The conclusion that the vibration
effectively reduces the Fourier transform vr(K) was gen-
erally stated in Ref. 1. The lowering of the scattering am-
plitudes of neutrons by atoms in crystals at increasing
temperatures has been explained in a similar way. ' '
Furthermore, in Ref. 16 the calculation of the thermal
shift of electronic energies in II-V semiconductors was
performed by using pseudopotentials changed by a
temperature-dependent structure factor (Debye-Wailer
factor). This means practically that the concept of nar-
rowing of the interaction potential was indirectly used.
Apart from this our method differs from the above-
mentioned one in that we account for higher powers of
the atomic displacements. The above arguments and
those of Sec. II lead to the conclusion that the vibrational
motion reduces the effective electron-ion interaction, and
the thermal shift of the electronic energy levels can
equivalently be described in both tight-binding and nearly
free-electron approximations. Contrary to the free-
electron approximation in the linear combination of
atomic orbitals (LCAO} approach, the amplitude uz
should not enter the corresponding phase factor
exp [iltRvr), as this factor refiects the symmetry of the lat-
tice and the average position of the atoms, while in the
free-electron approximation the factor exp[iK(Rr+ur )J
accounts for the electron-ion interaction.

Now we point out an important qualitative conclusion
which can be obtained without the calculation of the tem-
perature variation of the electronic energy levels. Since
the pioneering work. of Fan, ' there has existed the chal-
lenge of understanding why the effect of the thermal ex-
pansion on the temperature variation of the electronic
levels is small compared with the effect of the electron-
phonon interaction. The direct method presented here
offers an answer: The effect of the thermal expansion is
equivalent to replacing the interatomic distance d in Eq.
(36) with d+bd, where b,d describes the change due to
temperature. The effective reduction of the electron-ion
interaction Eq. (32) at a fixed crystal volume is approxi-
mately described by uz, and (d+b,d) in Eq. (36) is re-
placed by (d +Ed ) + (uz ). We therefore have to com-

pare b,d with Q(uz). For a simple description of the
phonon spectrum we use the Einstein model with three
frequencies as discussed in Sec. IV. Taking CdTe as an
example, we find a thermal expansion of hd =0.002 16 A

0
and Q ( uz ) =0.59 A, where we used the lattice parame-
ter a =6.481 A and determined (uz ) according to Eq.
(28). These quantities differ by two orders of magnitude,
and this explains why the effect of the thermal expansion

is much smaller compared with the effect of the electron-
phonon interaction.

We now turn to the statistical-function method and the
calculation of the temperature dependence of optical
transitions according to Eq. (25). The crucial point here
is an estimation of the change of the vibration energies
AAco resulting from electronic excitation. In the case of
a localized state of a deep defect, an electronic transition
at the defect causes a change of the interatomic forces in
the vicinity of the defect. Since these forces determine
the vibration frequencies, which are obtained from the ei-
genvalues of the dynamical matrix, the most simple as-
sumption is that the change of energy of a local vibra-
tional mode Alit is determined by the change of an
effective force constant AE,ff,

M,E,ff
EA'co =

2COm eff
(38)

as in the case of a one-dimensional harmonic oscillator.
Here m, ff denotes an effective mass, which is assumed not
to be changed by the optical transition. The next as-
sumption is that the change of the effective force constant
is related to the difference bE between the initial and
final electronic states of the transition by

8 b,E
eff

q
(39)

where q is an appropriate configuration coordinate in
view of the configuration-coordinate model for optical
transitions. Assuming that the crystal phonons are un-
changed by a transition between two localized states, the
local vibrational modes predominantly determine the
temperature dependence of the optical transition accord-
ing to Eq. (25), and Eqs. (38) and (39) can be used to
evaluate the right-hand side of Eq. (25).

In the case of a band-gap transition in a perfect semi-
conductor, the difference in electronic energies is
b,E=E(I „)—E(l »„). The most simple assumption
then is that Eqs. (38}and (39) may also be applied to find
the change of the vibration energies for all relevant con-
tributions to the right-hand side of Eq. (25). In this case
the interatomic distance may serve as the appropriate
configuration coordinate. For band-gap transitions at the
I point, optical phonons with small wave vectors are
mostly affected. The mean value of the masses of the
atoms in the elementary unit cell are then taken as the
effective mass in Eq. (39).

In order to determine the temperature variation of
electronic transitions, we deduce the necessary informa-
tion with the direct method from the difference of single-
electron energy levels, and with the statistical-function
method from the second derivative of the electronic ener-

gy levels with respect to displacements. In this way we
demonstrate the compatibility of the direct and
statistical-function methods. In the latter method we cal-
culate the change of the phonon spectrum caused by the
change of the electronic state, whereas in the direct
method we calculate the change of the electron spectrum
caused by the change of the phonon occupation numbers
with temperature, as can be seen from the Bose-Einstein
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distribution in Eq. (28). Finally we point out that due to
the increasing randomness of the atomic movement with
increasing temperature, causing an increase of entropy,
the Helmholtz free energy decreases with increasing tem-
perature.

0.05

0.04

IV. NUMERICAL CALCULATION OF E~( T ) FOR CdTe

The purpose of our numerical calculation is to check
the validity of the models described. In fact, part of this
can be found in Refs. 2-5 in dealing with the direct
method in the nearly free-electron approximation. These
extensive calculations were performed for Si and Ge crys-
tals, using the pseudopotential concept and the valence-
force model for the phonon spectrum in first and second
orders of perturbation theory, as well the approach of the
Debye-Wailer factor. The calculated temperature depen-
dence of E ( T) was found to be in fairly good agreement
with measurements, and possible errors were discussed in
detail. We here perform a nonperturbative, direct calcu-
lation of the temperature dependence of the direct energy
gap at the I' point in CdTe crystals within the tight-
binding approach of Harrison. This approximation is
justified because the amplitude of vibration ui and the
thermal change of the interatomic distance b,d are small
compared with the interatomic distance. Our scheme of
calculation contains a number of fitting parameters, but
the final step of the calculation, i.e., the temperature
dependence of the top of the valence band and the bot-
tom of the conduction band, does not include any fitting
parameters except the energy gap at zero temperature.
Now we proceed to the calculation of the band levels at
the I point according to the Harrison method at T=O
K. For CdTe the experimental energy gap at the I point
is 1.9 eV, ' or, including the spin-orbit splitting, 1.606
eV. ' The energy gap obtained using Harrison universal
parameters is two times larger than the experimental
value, and therefore we readjusted the parameters V„
and V„„entering Eqs. (34) and (35), to give V„=2.142 87
eV and V„„=1.771 eV, so that we obtain the correct
value of the energy gap. Further, we need information
about the phonon spectrum to calculate (ul ) according
to Eq. (28), which is valid only for the Bravais lattice. To
this end we take advantage of experimental information
about the heat capacity. We approximate the phonon
spectrum by the Einstein model using three frequencies,
and we assume that the Cd and Te atoms have the same
vibration amplitudes, which is justified by the small mass
difference of about 12%. From the density of phonon
states of CdTe we select three pronounced frequen-
cies: ' fm&=4. 1 meV, fuoz=13 meV (for the acoustic
branches), and fuo3=17. 8 meV (for the optical branches).
Then we fit the experimental values of the heat capacity
taken at temperatures below 25 K from Ref. 22, and for
higher temperatures from Fig. 5 of Ref. 23. The heat
capacity C„ then contains three weight factors g&, gz, and

g3 as fitting parameters:

x; expIx; IC„=ks g g;
(expIx;J —1)

U
U 0.02

0.01

with x; =leo; Ik&T. As a result of the fitting, shown in
Fig. 1, we obtain g& =0.920, go=0. 164, and g3.=1.830.
The sum of the weight factors of 2.914 is not far from the
correct value of 3, resulting from a correct density of
phonon states. From the weight factors g; we calculate
( u& ) according to Eq. (28). In Fig. 2 we show the result-
ing temperature dependence of the energy gap together
with the experimental data taken from Fig. 3 of Ref. 19.
Figure 3 shows the temperature dependence of the band
energies at I'„and I &s„. These results were obtained us-
ing a Sxed interatomic distance of d =2.806 A. Addi-
tionally we assumed that due to our Stting the eSect of
the zero-temperature vibrations is included in the param-
eters V„and V . This efFect would change the energy
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1.58

~ 1.56
(D

LLI
1.54

1.52

1.50 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0 50 100 150 200 250 300
TEMPERATURE (K)

FIG. 2. Temperature variation of the energy gap at point I
for CdTe calculated according the tight-binding approximation
within the Harrison model. Experimental data (dashed line) are
taken from Ref. 19.

0 50 100 150 200 250 300
TEMPERATURE K

FIG. 1. Fit (solid line) of the heat capacity according to Eq.
(40) using three Stting parameters g&, g&, and g3. The experi-
mental values (dashed) were taken from Refs. 22 and 23.
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1.60

~1.56
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C:

LLJ 1 54

1.52

conciuct~on ban

valence band

where we used the bulk modulus B=0.423 Mbar and the
pressure derivative of the energy gap dEg /dp =8
eV/Mbar. Both methods give the same result shown in
Fig. 4.

Applying the statistical-function method we calculated
the change of vibration energies according to Eqs. (38)
and (39), and obtained b fico, = —0.0108 me V,
AAco2= —0.0001 meV, and AAco3= —0.0098 meV. We
here use the mean value of the nuclear masses of Cd and
Te as a good approximation for the effective mass enter-
ing Eq. (39), because the difference of the nuclear masses
is only 12%. With this we obtain from Eq. (25) the tem-
perature dependence of the energy gap of CdTe shown in
Fig. 5.

gap by 9 meV. In Fig. 4 we show the change of the ener-

gy gap due to the thermal expansion only, i.e., we take
(ui ) as a constant and consider the effect of the
temperature-dependent interatomic distance d. The cal-
culation was performed by two methods. In the tight-
binding calculation we used an interatomic distance ac-
cording to the thermal expansion coefficient a [see Eq.
(24}],

d(T) =d(0) exp ,' f a(—T')dT' (41)

On the other hand, we applied Eq. (22) for the implicit
temperature dependence to obtain

dEg
E (T); i;„,= B f a(—T')dT',

8p 0
(42}

0.50

1,50 I I I I i I I I I ] I I I I
I

I I I I ) I I I I j I I I I

0 50 100 150 200 250 300
TEMPERATURE (K)

FIG. 3. Temperature variation of the valence- and
conduction-band levels at the I point calculated according the
tight-binding approximation. The valence-band level is shifted

up by 1.5 eV.

V. DISCUSSION

Let us first consider the details of the mechanism of the
temperature variation of the energy gap. The band levels
are due to the off-diagonal matrix elements V„and V, in

Eqs. (34) and (35). In our model we introduce the nar-
rowing of the electron-ion potential due to the vibration
amplitudes ui. V„and V become smaller with increas-
ing temperature, and the energy gap decreases. As
V„A V„„ the I'„and I „,energy levels change their po-
sitions with different slopes but the energies at I „and
I &, as well as at I »„and I », are shifted in opposite
directions having the same absolute value of the tempera-
ture derivative. The semiempirical calculation of Ref. 24,
which includes the Fan term only (the vibration ampli-
tude ui in second-order perturbation theory), shows for
temperatures below 50 K that the conduction-band level
I „is weakly dependent on T. The main variation of the
energy gap with temperature comes from the variation of
the valence-band level I &, . Similar results were obtained
in more accurate calculations for Si on Refs. 2 and 5. In
the cases of Si and Ge (where V„»V„„)the change of
the energy gap is mainly due to the shift of the valence
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E -o.5o

1.60

1.58

D —1.00
X
03

—1.50
1.54

m —2.00

LLJ
—2.50

—3.00 I I I ) I I I 1 ] I I I I [ I 1 I I ] I I i I ) I I I I

0 50 100 150 200 250 300
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1.52

1.50 I I I I ) I I I I i
I I I I i 1 I I I i I I I I f I I l l

0 50 100 150 200 250 300
TE MP ERATUR E (K)

FIG. 4. Temperature variation of the energy gap due to the
thermal expansion only.

FIG. 5. Temperature-dependent energy gap calculated ac-

cording to the statistical-function method. Experimental data
(dashed line) are taken from Ref. 19.
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ccT

(T+P) ' (43)

which contains two fitting parameters a and P. It was
originally given by Varshni using the behavior of Es(T)
in the vicinity of zero temperature and above the Debye
temperature as the best way to achieve an empirical fit.
To our knowledge it has no physical foundation. From
Eq. (25) we see that the temperature variation is de-
scribed by the Bose-Einstein distribution. Assuming that
the sum can be evaluated with a few frequencies only,
selected from the peaks of the density of phonon states,
the experimental data may as well be fitted with Eq. (25}
using the energy shifts )&co; as parameters. A similar
form was applied to fit the experimental data in Ref. 26
but no physical justification was given. In Fig. 6 we show
the best fit of E ( T ) by both formulas to the experimental

band. From our calculation for CdTe we conclude that
the temperature changes of the energies at I &, and I &5„

are similar, since the values of V„and V are compara-
ble in magnitude. It is not excluded that in more refined
models, taking the 5s states into account, the temperature
variation of the band levels may be slightly changed.
From the mechanism of the temperature variation of
electronic energy levels presented here, it follows that all
longitudinal and transversal phonon branches participate
for E (T) Th. e longitudinal phonons change the intera-
tomic distance (causing the narrowing of vt ) along the
direction of their propagation, the transversal modes
those perpendicular to their propagation. This qualita-
tive conclusion was also confirmed by the calculation
presented in Ref. 6 for Si crystals. The calculated change
of the energy gap originating from the zero-temperature
vibration is 9 meV and therefore rather small. In Ref. 4
this effect was estimated to be 65 meV.

The experimental data for the temperature variation of
the forbidden energy gap (direct or indirect) are similar
for many materials. Most of these data, found in the
literature, were fitted by the formula

1.62

1.60

(D

1.58

~ 1.56
CL
U

1.54

152
LJJ

0 50 100 150 200 250 300
Temperature (K)

FIG. 6. Observed energy gap from Ref. 19 (points), and fits
according to Eqs. (25) (solid line) and (43) (dashed line).

data for CdTe. The fit by Eq. (25) gave b,fico, = —0.0090
meV, b, i)lco2= —0.0033 meV, and b,irtco3= —0.0158 meV.
These values should be compared with our estimation ac-
cording to Eq. (38). We conclude that the direct fit of
Es(T) as well as our estimation (based on the fit of the
heat capacity) predict a softening of the phonon spectrum
upon electron excitation. The observed inaccuracy in the
determination of EAco2 from both methods is related to
the small sensitivity of the fit by Eq. (25} to the experi-
mental data.
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