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Structural and electronic properties of cubic, 2H, 4H, and 6H Sic
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We study the structural and electronic properties of various polytypes of SiC through self-consistent
ab initio pseudopotential calculations. For the wurtzite (2H), 4H, and 6H structures, the equilibrium lat-
tice constants and bulk moduli are very similar to those for the cubic structure. The energies calculated
for the polytypes considered here are very close to within 4.3 meV/atom, which may explain the poly-

typism of SiC. The 4H structure is found to be lowest in energy because of the attractive interactions be-

tween the alternating cubic and hexagonal stacking layers, while the wurtzite structure is most unstable

among the polytypes. We find the asymmetric charge distribution for a Si-C bond to be on the boundary
separating the zinc-blende and wurtzite phases, which should be related to the polytypism of SiC. In the
hexagonal polytypes, the M conduction-band energy increases, while that of the K point decreases as the
hexagonal close packing becomes more prominent. Thus, the conduction-band minimum state located
at the X point for cubic SiC changes to the M point, and then to the K point for the 2H structure. For
the cubic structure, the density of states near the conduction-band edge increases slowly with energy,
while it shows very rapidly increasing behavior for the 6H polytype because its conduction-band edge
states are flattened due to the band folding and the energy-increasing behavior of the M state when the
hexagonal-close-packing nature is enhanced.

I. INTRODUC. 11ON

SiC crystallizes in either a cubic or a hexagonal form,
and exhibits polytypism. ' The polytypes consist of
identical layers, whose stacking sequences diSer, and can
be considered as natural superlattices. Although several
theoretical studies have been performed, 3 6 the origin of
the polytypism is still the subject of many investigations.
The SiC polytypes are semiconductors with a wide range
of band gaps, varying from 2.39 eV in the zinc-blende
structure (3C SiC) to 3.33 eV in the wurtzite polytype
(2HSiC). ' Among many polytypes, 3Cand 6H SiC are
of great interest because these materials are used for the
fabrication of electronic devices; 3C SiC is used for high-
temperature, high-power, and high-frequency operation
of devices, while 6H SiC with a band gap of 2.86 eV is a
promising material for blue light-emitting-diode applica-
tions. The strong bonding between the Si and C atoms
in SiC makes this material highly resistant to high tem-
perature and radiation, and thus causes low diS'usion
rates for both dopant and host atoms. Moreover, p- and
n-type dopings have been shown to be easier, compared
with other wide-band-gap materials such as ZnS, ZnSe,
and GaN. In spite of such unique properties of SiC,
electronic-device applications have been delayed. In re-
cent years, with the development of crystal-growing tech-
niques, interest in SiC and its device applications has
been growing rapidly.

To understand the polytypism, it is important to exam-
ine the structural properties of the polytypes of SiC. Re-
cently, the first-principles 1ocal-density-functional tech-
nique has been applied for studying the ground-state
properties of the cubic ' and 2H polytypes of SiC."'
Those calculations were not performed for the 4H and
6H structures. From extensive pseudopotential calcula-

tions, Heine and co-workers investigated the interaction
energies between the SiC double layers to examine SiC
polytypism. The energy band structure and the elastic
properties of SiC in the 3C structure have been calculated
by several groups. ' ' Calculations using linear com-
bination of atomic orbitals for 2H SiC showed valence-
band features which agree with experiment, but unrealis-
tic conduction bands were obtained due to the restriction
to nearest-neighbor interactions in the Hamiltonian ma-
trix. ' Recently, a first-principles linear muIn-tin orbital
(LMTO) method was used to study the energy-band
structures and optical properties of 2H, 4H, and 6H
SiC. '

In this paper, we present the results of ab initio pseudo-
potential calculations for studying the ground-state prop-
erties of SiC in the 3C, 2H, 4H, and 6H structures. These
include the zero-pressure lattice constants, bulk moduli,
and total energies. The stability of the polytypes is found
to be strongly related to the hexagonal-close-packing na-
ture, and the 4H structure with alternating cubic and
hexagonal stacking layers is found to be most stable
among the polytypes. The energy-band structures and
deformation potentials of the direct and indirect band
gaps for the polytypes are also calculated and compared
with available experimental data and other calculations.
As the hexagonal stacking nature becomes more prom-
inent, the polytypes show significant changes in the con-
duction band; the energy of the lowest conduction-band
state at the M point is found to increase, while the K
conduction-band state shows the opposite behavior.
Thus, the lowest I -X gap in the cubic structure changes
to the I -M indirect gap in the 4H and 6H structures,
while for the 2H polytype with purely hexagonal stacking
layers the lowest conduction-band state occurs at the K
point. Moreover, the conduction-band edge states for the
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6H polytype with a large unit cell are nearly fiattened due
to large band foldings; thus, its density of states near the
conduction-band threshold shows rapidly increasing
behavior, compared with other hexagonal polytypes. In
Sec. II we describe the method of calculation. In Sec. III
the structural properties are presented and discussed. In
Sec. IV the results of the calculations for the energy-band
structure and the density of states are given and discussed
with relation to other theoretical and experimental re-
sults. We summarize the results in Sec. V.
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II. METHOD

In our calculations we use the self-consistent total-
energy pseudopotential method' ' within the
local-density-functional approximation (LDA). ' The
exchange-correlation contribution to the total energy is
described by the Wigner interpolation formula. For the
C atom, the 2p orbital is strongly localized because of the
lack of p core states, and thus a large number of plane
waves are required to achieve a high degree of accuracy.
Norm-conserving nonlocal soft pseudopotentials for Si
and C atoms are generated by the scheme proposed by
Troullier and Martins, ' then the Kleinman-Bylander
type of fully separable pseudopotentials are construct-
ed. Since the p pseudopotential of carbon is very deep,
controlling this potential is the main factor in achieving
total-energy convergence. In the present calculations for
SiC, we use the kinetic-energy cutoF (E~„) of 50 Ry in
the plane-wave expansion of the wave functions. As we
increase E~ to 100 Ry, the change in total energy is less
than 20 meV/atom. For 6H SiC, the matrix size is found
to be about 5000 for the equilibrium volume. To diago
nalize such an extremely large Hamiltonian matrix, an
eicient iterative diagonalization method which was re-
cently developed by us is employed.

To see the energies, we examine the cubic and hexago-
nal (2H, 4H, and 6H) polytypes Since th. ese polytypes
have tetrahedral bonds, their local atomic arrangements
are. the same up to the second neighbor. The structural
difference in the polytypes is well understood by consider-
ing the stacking sequence of the cubic (111)or hexagonal
(0001}planes. ' All the structures consist of pairs of Si
and C layers with successive pairs displaced sidewise
(each pair is designated by A, 8, or C in Fig. 1}. In 3C
SiC, every fourth stacking layer is positioned on top, giv-
ing rise to the stacking sequence ABCABC. . . , as seen in
Fig. 1. The stacking sequence of the 2H structure is of
the type ABAB. . ., while ABCB. . . and ABCACB. . .
are the sequences for the 4H and 6H structures, respec-
tively. Assuming that the 3C and 2H structures are ex-
tremes in the parameter describing the percentage of hex-
agonal close packing (often called "hexagonality") with
0 and 100%o respectively, we get the hexagonal nature of
50% for the 4H structure and about 33% for the 6H
structure, examining the hexagonal stacking for individu-
al layers. The periodic supercells for the 2H, 4H, and 6H
structures contain four, eight, and twelve atoms, respec-
tively.

The summation of the charge density over the irreduc-

FIG. 1. Atomic structures of the polytypes of SiC are de-
scribed in the hexagonal (1010) plane. A, 8, and C denote the
type of atomic layer. The bonds aligned along the cubic [111]
axis are denoted as on-bonds while the sidewise bonds are
denoted as o8'-bonds.

ible Brillouin zone (BZ) is performed using a set of
equivalent k points. For the cubic structure, we use a su-

percell containing six atoms, whose atomic layers are
stacked along the cubic [111]direction, to compare its
energy with those for the 2H and 6H structures. In this
case, we choose 10 k points in the irreducible BZ, uni-

formly divided by four cuts along the I -M direction in
the hexagonal BZ and two cuts along the I -A direction.
When we test the case of the BZ divided by five cuts
along the I'-M direction (corresponding to 15 k points for
the cubic structure), the change of the total-energy
difFerence between the 2H and 3C structures is found to
be only 0.2 meV/atom. The equivalent sets of k points
for the 2H and 6H structures are generated by three cuts
and one cut, respectively, along the I -A direction with
the same grids in the hexagonal plane, resulting in 12 and
6 k points. For the 4H structure, we generate the
equivalent set of k points to compare with the 2H struc-
ture by cutting twice less the I -3 axis. This choice of
the equivalent sets of k points ensures consistency in the
comparison of the total energies for all the polytypes.

The density of states (DOS) is calculated by the linear-
tetrahedron method over mesh points. ' For the cubic
structure, we generate 480 k points in the irreducible BZ,
while for the hexagonal polytypes the numbers of k
points are chosen to be 550, 280, and 224 for the 2H, 4H
and 6H structures, respectively.

III. STRUCTURAL PROPERTIES

For the hexagonal polytypes, the lattice parameters (a,
c, and internal parameter u) are all determined by minim-

izing crystal total energy. In this case, the internal atom-
ic positions are fully relaxed by calculatin the
Hellmann-Feynman forces for a given volume. The
total-energy calculations are repeated for difFerent c/a
ratios with the same volume. With the c/a ratio Sxed,
then we determine the energy-versus-volume curve for
each hexagonal polytype. The equilibrium lattice con-
stant a, the bulk modulus Bo, and its first-order pressure
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derivative Bo are determined by fitting the volume-

dependent total energies to the Murnaghan equation.
The calculated values for a, 80, and 80 in the present

study are shown in Table I and compared with other cal-
culations ' ' and experiments' C, Si, and SiC. The
lattice constants and bulk moduli are in good agreement
with available experimental data to within 0.6% and

10%, respectively, while the calculated axial ratios in the
hexagonal polytypes are slightly larger than the ideal

value, in good agreement with measured values to within

0.6%. For lattice parameters, we should mention that
from previous experience on other materials, the Wigner
formula constructed ad hoc for the exchange-correlation

energy produces better agreement with experiment, while

predictions coming from an exchange-correlation formu-

la with more theoretical justification based on Ceperly
and Alder data usually underestimate the lattice param-
eters. ' In Table I, we find here that for cubic SiC the
Ceperly-Alder correlation gives a lattice constant which

is smaller by 0.004 A. For the 4H and 6H structures, nei-

ther experimental nor theoretical results for Bo and 80
are available. However, our calculations show that in-

dependently of the structure the polytypes of SiC have

similar lattice constants, bulk moduli, and axial ratios.
The lattice constant of 3C SiC is smaller by 0.138 A than

the average of those for Si and C. This reduction of the
lattice constant results from charge transfer from the Si
atom to the C atom, arising from the strong 2p potential
of C when the Si-C bond is formed. The value for Bo in
3C SiC is also 19% smaller than the average (2.71 Mbar}
of the measured bulk moduli for C and Si. We estimate a
value of Bo ranging from 3.2 to 4.2 for the hexagonal po-
lytypes of SiC, but experimental data are not available.

We find the 4H structure to be the most stable at zero
temperature. The calculated total energies for the four
structures are found to be in the order of
E28 +E3c &E6H &E4~. Considering only the Ewald en-

ergy, which is the structure-dependent energy related to
the ion-ion interactions, we find a preference for the cubic
structure because the total energies are then in the order

E3( (E6ff (E4+ (Ega as the hexagonal stacking nature

becomes more prominent. The same trend for the Ewald

energy was also suggested in Ref. 11. Our calculated to-
tal energies for the 6H, 4H, and 2H structures relative to
that of the 3C structure are —1.8, —2.5, and 1.8
meV/atom, respectively, as shown in Fig. 2. Previous
calculations also showed that the energy differences be-

tween the polytypes are extremely small, of the order of
meV/atom. 3 6 When we test the ideal hexagonal struc-
tures with no internal relaxations and ideal c/a ratios, we

TABI.E I. Calculated lattice constants, bulk moduli, and bulk-modulus pressure derivatives for Si,

C, and SiC. The 3C, 2H, 4H, and 6H polytypes are considered for SiC. For Si, C, and 3C, SiC, a
denotes the cubic dimension. For cubic SiC, the results from the Ceperly-Alder correlation are given in

parentheses.
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'Reference 8 (E~„=20Ry for Si and 60 Ry for C).
Reference 28 (E~„=15 Ry for Si and 41 Ry for C).' Reference 1.
Reference 9 (E~„=60 Ry).' Reference 10 (E~ = 32 and 72 Ry using Low'din perturbation).

Reference 11 (E~„=29.7 Ry).
~ Reference 12 (E~„=23.3 Ry)."Reference 29.
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FIG. 2. Crystal total energies of the SiC polytypes relative to
that of the 3C structure are plotted as a function of the parame-
ter describing the percentage of hexagonal close packing.

find no change in the order of stability, with the corre-
sponding energy difkrences —1.5, —2.3, and 2.0
meV/atom. In previous pseudopotential calculations, s

the cubic structure was shown ta be more stable by about
3 meV/atom than the 2H structure, in goad agreement
with the present result. The cohesiveness of SiC mainly
results from the strong bonding between the adjacent Si
and C atoms; thus, it costs an extremely low energy to
change the sequence af the stacking layers. In fact, the
calculated total energies for the polytypes are so close (to
within 4.3 meV/atom) that the stability of the polytypes
may be significantly a8'ected by temperature and crystal-
growing conditions.

For the 48 structure, the lattice consists of two
difFerent regions with alternating hexagonal and cubic
stacking layers. In a hexagonal stacking layer, the oF-
axis bonds as shown in Fig. 1 face each other along the
hexagonal direction. Then, the overlapping of the charge
densities between the two ofF-bonds induces charge
transfer into the neighboring cubic stacking layers. Fig-
ure 3 shows the planar-averaged charge densities hp for
the 2H, 4H, and 6H structures, which are subtracted
from the charge density of the 3C structure, along the
hexagonal axis. The hp s are found to be very small,
within 1% of the maximum charge density in the 3C
structure. This small difFerence in charge density reflects
the small difference of the total energies between the po-
lytypes. We see clearly that the hexagonal layers of 4H
SiC become slightly positively charged, while the cubic
layers are negatively charged. Since the energy lowering
due to the attractive interactions between the charged
layers is largest for the 4H structure, this hexagonal
structure has a minimum total energy. However, in the
20 structure, since each stacking layer has hexagonal
bonding character, the charge overlap between the neigh-
boring oF-bonds is maximized. Thus, because of the re-
sulting repulsive interactions, the 28 structure is highest
in total energy and the c/a ratio is largest among the
hexagonal polytypes.

The calculated valence charge densities p(r) for 3C,
2H, 4H, and 6H SiC are plotted on the hexagonal (1010)
planes in Fig. 4. We find the charge densities to be simi-
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FIG. 3. Planar-averaged total valance charge densities hp
which are subtracted from that of the cubic structure are plot-

ted along the hexagonal axis. h and c denote the hexagonal and

cubic stacking layers, respectively.

larly distributed around the Si and C atoms, displaying
features typical of ionic bonding. Because of the strong
2p potential of C, the charge density is strongly accumu-
lated around the C atom, resulting in a large asymmetry
in charge distribution. The charge asymmetry of a bond
is very useful to understand the structural properties of
SiC, such as the polytypism and the smaller lattice con-
stant for cubic SiC than the average of those for Si and C.
Recently, Garcia and Cohen made a direct connection
between the valence charge distribution and the ionicity
of a compound, and suggested the asymmetry of the
charge density as a measure of the ionic character of a
bond. They estabhshed an unambiguous procedure to
compute numerical values for the charge-asymmetry
coeScient g and showed that there is a correspondence
between g and the Phillips ionicity f, for many com-
pound materials, except for SiC and BN which contain
first-row elements. Although the Phillips' scale fails to
account for some structural trends of materials contain-
ing first-row elements, if the charge-asymmetry
coeScient g is used instead of f, , many basic properties
of molecules and solids including first-row elements were
shown to be successfully described.

Figure 5 shows the c/a ratio of the hexagonal struc-
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ture versus the asymmetry coefficient g for many com-
pounds, including SiC and BN. The compounds indicat-
ed by CI are known to show polytypism, as in SiC. We
Snd a tendency that, if g is roughly above 0.5, the wurt-
zite structure is preferred over the zinc-blende structure.
Then, the c/a ratio of this hexagonal structure is gen-
erally smaller than the ideal value of 1.633. Since g is
proportional to f, , the cation-anion bond with a large g
value possesses more ionic character. The zinc-blende
and wurtzite structures have similar tetrahedral bonds up
to the second neighbor, and the local atomic arrange-
ments which differ in the third neighbor are mapped
upon each other by rotation over n around the bond axes.
Thus, the anion atom in the wurtzite structure is more
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FIG. 5. Comparison of the c/a ratio with the charge-
asymmetry coeScient g dered by Garcia and Cohen (Ref. 32)
for several binary compounds in the wurzite structure. 0: com-
pounds showidg polytypism, *:those with the zinc-blende as
well as the wurtzite structure, 0: those with only the wurtzite
structure, +: those with the NaC1 as we11 as the wurtzite struc-
tures.
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FIG. 4. Total valence charge densities in the hexagonal
(1010) planes for (a) 3C, (b) 2H, (c) 4H, and (d) 6H SiC. Small
and large Qled circles indicate the atomic positions of the C and
Si atoms, respectively. Units are two electrons per zinc-blende
cell volume arith a spacing of 4.

closely bonded to the third-neighbor cation, which is
placed in the adjacent stacking layer right on top (see
Fig. 1), resulting in more attractive interaction between
the anion and cation atoms, as compared to the zinc-
blende structure. Since such attractive interactions are
enhanced for highly ionic systems, i.e., for larger g
values, the wurtzite structure is stabilized against the
zinc-blende structure. In this case, the layer spacings are
reduced by the attractive interactions between the ffrst
and third layers with difFerent charge states, and thus the
c/a ratio is smaller than the ideal value. If g is less than
0.5, the attractive force discussed above is much reduced
for the wurtzite structure, while the repulsive interac-
tions due to charge overlap in the region between the
anion and the third-neighboring cation increases the en-

ergy of the wurtzite structure. Thus, the zinc-blende
structure is stabilized for systems with small g values. We
find that the g values in SiC and BN are in the intermedi-
ate range around 0.5 separating the zinc-blende and wurt-
zite structures. A similar classi6cation of SiC crystal has
also been made based on bond-orbital coordinates r and
r . As discussed earlier, the wurtzite structure of SiC is
less stable by 1.8 meV/atom than the zinc-blende struc-
ture; thus its axial ratio is slightly larger than those for
other compounds with the hexagonal structure. From
these results we conclude that the polytypism of SiC
a1ong with that of BN should be related to the unique
behavior of bond charge asymmetry and the closeness of
the total energies between the cubic and hexagonal poly-
types.

IV. ELECTRONIC STRUc:LURE

The calculated energy-band structures for 3C, 2H, 4H,
and 6H SiC are given in Figs. 6(a)—(d), respectively. For
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TABLE II. Electronic energy levels (Ek in eV) relative to the
valence-band maximum and their pressure coeScients (dEI, /dp
in meV/kbar) for 3C, 2H, 4H, SiC.
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0.29

—0.03

'Reference 9 (semilocal pseudopotentials were employed).
Reference 1.

'Reference 16 (the LMTO method was used).

comparison of the electronic structures of the 3C and 2K
structures, the energy bands for 3C SiC are presented
here in a nonconventional way, where they are drawn at
the equivalent k points in the hexagonal BZ. Since the 2K
structure has a twice-larger unit cell than the cubic struc-
ture, it has twice as many bands at any k point in the hex-
agonal BZ. Thus, two k points in the fcc zone are
mapped onto the same k point in the hexagonal zone, by
folding the bands of 3C Sic as shown in Fig. 6(a). In the
4H and 6H structures, more band foldings come in be-
cause of the increase in the period of the superlattices
along the hexagonal axis.

We find some similarity between the cubic and hexago-
nal energy bands. Similar valence-band widths are calcu-
lated of 15.33, 15.37, 15.41, and 15.49 eV for the 3C, 6K,
4H and 2H structures, respectively, showing very weakly
increasing energy-band width as the hexagonal stacking
nature is enhanced. In the hexagonal polytypes, the
valence-band maximum states at the I point are split into
a twofold (p„and p ) and a onefold (p, ) state by hexago-
nal crystal fields. The 2H structure has the largest band
splitting of 0.137 eV, rejecting the highest hexagonal
crystal Geld, while the 4H and 6H structures have split-
tings of 0.130 and 0.021 eV, respectively.

Our calculated energies and their pressure derivatives
for the conduction-band states are given at high symme-
try points in Table II and compared with other theoreti-
cal and experimental results. All the polytypes con-
sidered in SiC are found to have indirect band gaps.
However, the magnitudes of the band gaps and the ener-

gy of the minimum conduction-band states vary
significantly as the percentage of hexagonal close packing
increases. The 3C structure has the smallest band gap of
1.24 eV from I to X, while for the 2H structure, which is
purely hexagonal the minimum conduction-band state
occurs at the EC point with a band gap of 2.05 eV. These
values compare to the corresponding measured values of
2.39 and 3.33 eV. ' The minimum conduction-band state
at the X point of 3C SiC corresponds to the I', state
which lies on the M-I. axis in the hexagonal BZ, as shown
in Fig. 6(a). For the 4H and 6H structures, however, band
gaps of 2.14 and 1.98 eV are found at the M point, while
the corresponding measured values are 3.27 and 3.02 eV. '

Compared with experimental data, the underestimation
of the band gaps ranges from 1.04 to 1.28 eV, and is
known to result from the use of the LDA in our calcula-
tions. The lowest conduction-band state at the X point in
the cubic structure decreases as pressure increases with a
pressure coefficient of —0.33 meV/kbar with respect to
the maximum valence-band state. This calculated
coefficient is in good agreement with another theoretical
value of —0.33 meV/kbar and experimental data of
—0.34 meV/kbar. ' In the hexagonal polytypes, the M
and EC states in the conduction bands show di6'erent pres-
sure behavior as the hexagonal stacking nature is
enhanced; the pressure coefficient of the M state increases
from a negative value to positive ones, while the E state
shows the opposite behavior. Since it is generally known
that the X-state energy of the cubic structure decreases
with pressure due to its d-orbital character, the hexago-
nal crystal fields induce more d-like character for the K
state. We find that the 4H and 6K structures have very
small pressure coefficients of 0.08 and —0.03 meV/kbar
for the M state, respectively. On the other hand, the 2H
structure has a negative pressure coefficient of —0.71
meV/kbar at the K point. We plot the energy levels at
high-symmetry k points as a function of the parameter
describing the percentage of hexagonal close packing in
Fig. 7. The variations of the energy levels in the poly-
types of SiC are due to the hexagona1 crystal fields. The
conduction-band energies at the M and I. points show
similar increasing variations, while that of the E point
decreases as the hexagonal-close-packing nature becomes
more prominent.

The calculated densities of states (DOS) are presented
for the polytypes of SiC in Fig. 8. The heights of several
peaks in the DOS depend on the hexagonal stacking na-
ture, similarly to the total energy and the energy levels.
The peak near —7 eV decreases on going from the 3C to
the 20 structure, while the —2-eV peak increases. The
shapes of the DOS located between —16.0 and —10.0 eV
are similar for the polytypes considered here, while those
near the conduction-band edges are changed significantly.
The hexagonal polytypes of SiC can be considered as nat-
ural superlattices. The artificial group-III-V superlattices
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are characterized by band folding, band offset, and
charge confinement. However, we cannot use the same
arguments for the 4H and 6H Sic natural superlattices.
Band offset is absent because there is no interface el'ect
on the charge density, as shown in Fig. 4, and the stack-
ing layer cannot be distinguished. Only the band-folding

effect is important. As the band folding increases, the
slope of the DOS at the conduction-band edge becomes
steeper, with a maximum slope for the 6H structure.
Compared v~ith the cubic structure, the conduction-band
state of the 6H structure at the I', point (corresponding
to the X point in the cubic BZ) is shifted to the higher-
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FIG. 6. Calculated energy bands for {a) 3C, {b) 2H, {c)4H, and (d) 68 SiC. Note that the 3C SiC bands are presented here in a
nonconventional way for direct comparison with the wurtzite bands.
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