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Pair excitations in solids
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The pair-excitation probability in the weak-field regime is calculated using a fully quantized interac-
tion Hamiltonian, for both the rotating- and fixed-atom cases. The peak of the absorption occurs at the
sum of the final-state energies of the two atoms and the transition probability is shown to be proportion-
al to the inverse square of the laser detuning and to the inverse cube of the nearest-neighbor distance. In
addition, retardation effects result in a system size dependence for the transition rate not previously pre-
dicted. The significance of retardation effects is shown to depend on the excited-state coherence lifetime,

the distance of closest approach, and the wavelength of the transition.

I. INTRODUCTION

Mixtures of several substances sometimes exhibit ab-
sorption or emission bands which neither of the basic
constituents possesses. These absorption or emission
bands correspond to the sum of the transition frequencies
of two of the constituents. This phenomenon has been re-
ferred to as a double transition, simultaneous transition,
or pair excitation, and has been known for some time.
The first observation by Crawford and Welsh' in 1949 in-
volved the vibrational absorption spectra of compressed
Hz, 02, and N2 gases. Although the dipolar infrared ab-

sorption spectrum of homonuclear diatomic molecules is
forbidden because of symmetry considerations, in the
compressed state, the dipole selection rule may be broken
by the polarization of one molecule by the quadrupole
field of the other and/or by an asymmetric distortion of
the electronic-wave-function distribution due to the over-
lapping of atomic orbitals during the collision. In later
studies, stronger lines were observed in mixtures of CO&
and N2, 02 and H2 (Refs. 3 and 4) and simultaneous
rotational-vibrational transitions were measured in CO
and Hz mixtures. In addition, simultaneous transitions
in liquid mixtures ' and solids " have been reported.
Theoretical efforts, ' ' along with a review article, ' ex-
ist on the earlier observations of this phenomenon.

Other more re6ned gas-phase experiments were initiat-
ed by Gudzenko and Yakovlenko. ' ' In the experi-
ments ' by White et al. on metal vapors, the authors ob-
served the following processes using a white light source:

Ba(6s 'So)+Ba(6s 'So)+irito(3394 A)

~Ba(6p 'P, )+Ba(51 'Dz),

Ba(6s 'So)+Tl(6p 2Pi&2)+irido(3867 A)

~Ba(6p 'P, )+Tl(6p P3)2) .

Using a laser source, they also observed the reverse of the
former process. Pair excitation has been reported for

intermediate states lying in the continuum, for dipole-
quadrupole collisions, and for two-photon absorption.
A review article on laser-induced collision processes
where pair excitation is considered as one special case
also exists.

Pair excitation has also been observed many years ago
in various crystalline solids such as solid hydrogen,
PrC13, Pr:LaC13, and PrF3, and its reverse process
has been observed in YbPO4. Cross-section ratios com-
paring pair absorption to single-ion transition have been
measured for the above systems. These will be discussed
in a separate section of the paper, where we wi11 directly
apply the theory developed for both transition rates as
well as polarization dependence. More recently there has
been a vigorous effort in quantum electronics devoted to
the phenomenon of photon avalanche. This intriguing
effect has attracted much attention because of its highly
nonlinear thresholdlike behavior as well as its potential
applications for frequency upconversion. 3' Although the
mechanism by which the initial population of the excited
states is achieved is still being debated, one potential can-
didate is pair absorption or cluster absorption. In this
context, the present work may provide a framework for
accurately calculating the avalanche initiation process as
well as shed light on the role of cluster-size dependence
on the rate.

Most of the earlier theories for this phenomenon either
have neglected the importance of the intermediate states
or are based on the impact theory, where the colliding
atomic pairs are assumed to follow a straight trajectory.
The impact theory is probably the most suitable way to
analyze the later series of experiments, where the temper-
ature of the gas is high and pressure is on the order of a
few torr. However, the long-range nature of the interac-
tion process, which is mediated by a potential varying as
the inverse cube of the separation, makes the validity of
such an approach questionable at high pressures ' '

and/or low temperatures. The impact models which are
not fully quantized are less suited to the study of nearly
static systems such as liquid mixtures and solids,
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where the fixed positions allow significant retardation
effects to manifest themselves.

In this article, we solve this old problem for the static-
atom limit in solids using a fully retarded formulation.
The electromagnetic field as well as the atoms are fully

quantized, and time-dependent third-order perturbation
theory is used. The atoms or molecules are assumed fixed
in space, so the theory will best describe the pair excita-
tion in solids, such as ion pairs in crystals. In the case of
gas mixtures, Harris and White pointed out that, al-
though dipole-dipole interactions are stronger at closer
distances, the relative atomic velocity is high and the col-
lision duration is short. This results in a contribution to
the pair excitation which is maximized at some separa-
tion and is not a monotonically decreasing function of
distance. To account for the relative motions of the
atoms, a radial distribution function may be introduced
as a weighting factor. In addition, the model we present
neglects three-body collisions or higher-order processes,
since two-body coupling accounts for most of the transi-
tion. Earlier papers on high gas pressures or on liquids
and solids have confirmed that, even at very high densi-
ties, the transition rate is still proportional to the square
of the density or product of two species densities,
confirming that two-body interactions are dominant.

In order to elucidate more clearly the salient features
of this theory, the analysis will be confined to the pair-
excitation process where all the real and virtual transi-

tions are dipole allowed. In most of the earlier treat-
ments, the orientation of the dipole-transition-moment
vectors was constrained in order to simplify the problem.
Often the quantization axis was taken as the line joining
the two particles with magnetic quantum number zero,
while others considered the case where the quantization
axis is fixed in space. In this article, we will consider the
more general latter case in various limits, including the
case of freely rotating atoms.

Figure 1 shows the relevant energy-level diagrams in-
volved in calculating the required matrix elements. ~o)
and ~o') are the ground states of atoms A and 8, ~p ) and
~m ) are the final states, and ~r ) is the intermediate state
of atom A. Figure 2 shows the relevant Feynman dia-
grams in the process. These diagrams are very similar to
those required to treat the problem of circular dichroism
arising from the coupling between nonidentical chromo-
phores, and can also be used for the calculation of
laser-induced collisional energy transfer. In the
collisional-energy-transfer case, state ~o) is the excited
state and ~p ) is the ground state.

II. EVALUATION OF THE TRANSITION RATE

The required transition matrix elements in third-order
perturbation theory in the multipolar interaction Hamil-
tonian are given by

(f I

—(I/~0)p. d Ill) (III —(I/so)p d /I) (I/ —(I/so)p d'fi )
Mg(=g E. E.

I, II iI iII

where
~
i ), ~

I ), ~
II ), and

~f ) are the initial, first inter-
mediate, second intermediate, and final states of the total
system, p, is the electric-dipole-moment operator, d is the
microscopic displacement vector, and E;, is the energy
difference between the states ~i) and ~I). The micro-
scopic displacement vector is given as follows:

' 1/2
Ack Ep

d (r)=i+
k, A,

X Ie' '(k)a' '(k)e'"' —e '(k)a (k)e

(&)

I

where k is the virtual photon wave vector, A, is the polar-
ization index, e' '(k) is the directional unit vector for the
polarization of the electric field, a' '(k) is the field an-

&A, ) y(A, )

nihilation operator, e '(k) and a (k) are the complex
and Hermitian conjugates of e' '(k) and a'"'(k), respec-
tively, and V is the quantizing volume. As an example,
for the first diagram in Fig. 2,

p ~

0 0 0 0 0 S 0 0 ~

~~FIG. 1. Relevant energy levels for the pair-excitation pro-
cess. FIG. 2. Required Feynman diagrams for the process.
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E;&=E,+E,.+nkco —IE,+E,.+(n —l)ficoI

=E„+%co

and likewise

E,n=E, +fico R—a)' .

Using this result, the contribution to the transition ma-
trix from the first diagram is found to be

' 3/2

M, = —ip ' (nkk' }'
2c()V

it'-(r& —r& ) it r&Xe e e; k'
pT PQ

(& PPt
(E fico—)(E A—co+ fico')

(3)

When contributions from all other five diagrams are add-
ed together, we arrive at the total transition matrix given
below:

6
M= gM;

Ac
i g-

26o V

' 3/2

(nkk' )' e "e' '(k')e' '(k')e' '(k)J k

ik'. (r& —r& )
X e

pNlO pP/pPO

(E %co )(E—~ fuu+—%co')

PJ Pt'
(E +fico')(E~ —Rco+Rco')

I; 'l, I't"
(E +fico'}(E +E, )

—ik' (r& —r& )+e
pPPpmO pfO

(E %co)(E—+E,. f'ceo+fico')—

(E, +fico')(E +E, fico+fico')—
};i, 'A"

(E,.+fico')(E +E~, )

(4)

The above Eq. (4} can be simplified using the energy conservation condition,
E;=E,+E;+nfico=Ef =E+E +(—n —1)%co, i.e., E +E,.=%co, and remembering that we are dealing with the
pair-excitation process, we restrict ourselves to the case where Ep &E, and E &E,., i.e., E~ )0 and E o. &0. We
define R:—ra —r„,and the following identity from complex-variable theory can be used to further simplify this result:

+ J'- p —~'5(x)5(y),xy x x+y yx+y
where p stands for a Cauchy principal value and x and y are mathematical expressions containing simple poles. The
second term in the first curly bracket in Eq. (4) becomes

1 —1 1

(E +%co')(E Rco+Ra)') —(E +%co')(E„, E~+fcco) —(E~ fuo+fico')—(E E~+Rco)—
+ir 5(E +W')5(E~ —i}ico+%co')

—1 1

(E~+fico'}(fuu E, ) (fico' E—;)(fuu Ez„—)—+

+m' 5(E~+fico')5(fuu' —E,.),
where the energy-conservation condition has been used in the last step. With this simplification, the expression in the
curly bracket is given by

(fico' E, ) „(%co E—) ~ (E +—fico')(Ace Ep„) (fico' —E, ) „(%co—E~„)—
ro r

+ 5(Ra)' —E;}g@~pe'5(fico'+E )+g E~+f'ico' E +E,



GYEONG-IL KWEON AND N. M. LAWANDY

Combining the second and fifth terms in Eq. (7}yields

1 1

E„,+E, Eau —Ep„

%co E—z, E— E—,, fm E—z,
—E, 0

(E +E,. )(fico E—~„) (E„+E,)(Ace E—~„) (E„,+E, )(fuu E—~„)
where the last step follows from the energy-conservation condition. With Eq. (8) and some rearrangement, Eq. (7) be-
comes

1 PJ Pa
(Ace' E—,.) „Ace E—fin) E—

pf
+X—s, I 'k"5E.. E. -

With the help of Eq. (5},the second term in the second curly bracket in Eq. (4) becomes

1 —1

(E, +~')(E~+E, Rc—@+%co') (E,.+Ace')( E—+&co) ( E„—E,.—+Ace fico' )(—E„+fu—u )

+~'5(E, +~')5( —E E,—+fuo @co')—

—1 1

(Ra)'+ E, )(Ace —E ) (iris)' —E, )(Ace E)— (10)

where the delta function vanishes because of the initial assumption E, & 0. Equation (10) transforms the second curly
bracket in Eq. (4) into

pf M
I Pi' Pk

(%co E)(—E~ E~ +—fico' )

Pi Pk
„(fuo'+E,.)(irido —E )

pP FQ ro r
Pi Ptc pi P

„(Aro'—E,„)(fi —E ) „(a'+E,.)(E +E,, )

After some algebra, the first term in Eq. (11)can be shown to be the exact negative of the third term, resulting in

Pf Po
1 Pi Pk

I J (~t+E )
g ~ E E„+E,.

(12)

iiic

2eoV

Assuming no resonance between the intermediate states of atom A and final state of atom B, i.e., 5z z =(), the total
f80 10

matrix element further siinplifies to the following expression:
' 3/2

(nk)' e "e'„~'(k)

pl pg

m eR ~(lt'}/+,~ ~(lt'

pr k', A,
' mo'

P PO

ro mo' mo

(13)

The property of the photon polarization is

ge'; '(lt')e"'(k')=(5; —k k,'), (14)

d k'
5;.—k k')e*'" = k' dk'i. , (k'R), -

(2n. )
' ' ' 2'

(16)

and the summation over the photon wave vectors can be
transformed into an integral in the limit of a large quan-
tizing volume.

Defining k, =—E, /Pic, this integral can be cast in the fol-
lowing form:

where

i; (k'R}=if;(k'R)
sin(k'R }

(k'R)

cos(k'R ) sin(k'R )

(k'R ) (k'R )

(17)



PAIR EXCITATIONS IN SOLIDS AAA9

Further basic manipulation along with the energy-

conservation equation results in
' 1/2

1 nkck
2E,O V

e ek

fico E—„,E +E, k'i —k,

(18)

rate per unit volume per unit time is given by

N„NnIMf,. I pf, (23)

where Nz and Nz are the number densities of atoms A
and 8, respectively, and pf is the density of final states.
This results in:

dI = N N e' '(k)e' '(k)
1

The integral appearing in Eq. (18) can be directly evalu-

ated and yields the following results:

k' r;J (k'R )fdk',", =—,V,J(k,R),k' —k,' 2R ' (19)

where V; is defined as

Vi(k, R )=—(5 1
—3P;PJ ) I cos(k, R }+(k,R )sin(k, R ) j

—(5; P;P )—(k,R) cos(k, R) . (20)

Further defining a quantity somewhat similar to the con-
ventional dynamic polarizability given by

Xp; 'P ('a Jka m„V J(k,R)V (m(k, R)pf . (24}

The transition rate derived can be evaluated for several
limits of transition-moment orientations. In the low-gas-
density regime, especially for nonpolar gases, the transi-
tion dipoles will be freely rotating. In the case of crys-
tals, the syminetry directions of the crystal can be used as
a quantization axis. First, the freely rotating model is
discussed, as it leads to a relatively simple expression for
the transition rate. In this limit, the dipole moments of
atoms A and 8 are independent, and the rotationally
averaged transition rate becomes

PJ Pa
fico E—I fu,

E +E (21)
(dl )= N N e' '(k)e"'(k}

X((M; '(M( ){ajkam„)Vi(k, R)Vm(k, R)pf,
the transition matrix assumes the compact form

'3/2 ' ' 1/2
i 1 nfick

M

Xe "ek '(k)p; 'a, k V;, (k,R) . (22)
mo' —mo') (5 I+mo I2 (26a)

(25}

where the ( ) stand for rotational averaging. Direct
evaluation of the averaging gives

Using the matrix element given in Eq. (22), the transition and

{a,ka „)=—„[5,k5 „(45'„5„—5i„5„—5i 5„,)+5, 5k„(—5i„5„+45',5„—5i 5„,)

+5,„5k ( —5i„5„—5i,5„+45'5„„}]ai„a„ (26b)

The photon occupation numbers can be expressed in terms of an intensity given by

ncfuo

Further assuming that the excitation source is linearly polarized and given as

e(&)(k)e (&)(k)—1 (28a)

and

e'„'(k)ek '(k) =e„'(k)ek'(k) =e'„'(k)ek '(k),

with these assumptions the transition rate is simplified to

(28b}

&dl'&=
N„N~I(~)lp ' I'

pf [j(1+3Iek & I )V(+(1—lek PI )(Vi —2V, V2}J(3a&ia»—2a&a++3a&a„i}(A,.) 2 2 (A. ) 2 2

1440m.sokcR

+(6V( —4V, V2+2Vz)( —aiba»+4ai. „ai.„—ai.„aIi.)], (29)
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where Vi ——cos(k, R)+(k,R)sin(k, R) and V2—:(k,R) cos(k, R). Choosing the photon polarization
direction as the Z axis and integrating this result over all
the possible orientations of atom B with respect to atom
A results in

max 1 1 cos(2x)
dx I

. .
I
= — ——+x—

X X X

2 sin(2x) cos(2x)
X

N„N&I)p '
)(dI")=

3 6 pfaz„aiz(6V, —4Vi V2+2V2) .
108@.DER

+ —,
' sin(2x )

max

min

(32)

(30)

maxr= f, ""R'dR (dr )
min

N„Nak,I(}u ' /2)a~„[2

108EOAC

X f '"dx
min

3 1+ + 1 +cos(2x )
— + 1

3 S

X X X X

6 2+sin(2x)
X

(31)

where x =k,R and R;„is the minimum equilibrium dis-

tance between the atoms A and 8, or, in the case of the
crystals, R;„canbe taken as the lattice constant, and
R is the bulk size of the gas cell or crystal. Perfecting
the integration yields

Further integrating the difi'erential transition rate over
the spatial distribution of B molecules yields a final pair-
absorption rate. Noting that only the R 6 term and the
(6V, —4V, V2+2Vz) term have R dependence, the tran-
sition rate becomes

This expression contains several terms, one of which is

linearly diverging with the bulk size of the system. This
expression predicts that, in the absence of any
coherence-destroying processes, the transition probability

per unit volume per unit time actually depends on the
size of the active volume. This linear term was not found

in previous calculations, since all of the previous theories
considered only near-Geld interaction, which depends on
the inverse cube of the distance and converges when in-

tegrated over the volume. The volume-dependent term

appears when the retardation is properly considered, and

is important when the separation is larger than the
characteristic wavelength. As an estimate of the relative

strengths of the various terms for a realistic experimental
environment, we take R;„=30A, R;„&R,„&1cm,

0
A.O=SS37 A. For these typical values, contribution from

all terms except x,„and2/x, „arenegligible.

In practical situations, there exist several decay chan-

nels for the excited-state coherence that produce finite

linewidths in the interaction. This loss of coherence lim-

its the distance over which a virtual photon from the ex-

cited atom can travel before it is dephased as it relaxes to
a lower level. This effect can be included in the summa-

tion of the differentia transition rates over all other
atoms by a multiplication factor exp( —2yrR/c), where

1/yr is the excited-atom coherence time due to all pro-

cesses. This is very similar to the case studied by Craig
and co-workers for the frequency shift of a guest atom
embedded in a crystalline host.

Using this approach Eq. (45) can be replaced by

2
3

+X
min

=f -"dx +1 ~f dx
X min

+ 1
'gx

X4

2 g g 1+ — ———rl Ei( —gx)
X

max

min

(33)

where Ei is the exponential integral function and

g —=2yr/ck, . The curve labeled (a) in Fig. 3 shows a plot
of Eq. (32) (infinite coherence length) as a function of the
active volume size expressed in logarithmic units.

The curves 3(b) and 3(c) are plots of Eq. (33) for the
values of c/2yr (b) 0.5 cm, and (c) 0.1 mm. The in-
clusion of dephasing mechanisms removes the linear
divergence for a sample of infinite size. In systems where
the coherence time is limited by purely radiative decay
with ~=-10 sec, however, the coherence length is about
a meter, and Snite-size elects in the transition rate
should be expected. In most crystals, the dephasing time

of the active atoms decreases exponentially with tempera-
ture. For example, the linewidth in ruby exhibits a rapid
exponential increase with temperature, which reduces the
dephasing time to a few picoseconds at room tempera-
ture. Thus the observation of a sample-size-dependent37

rate will in general require the use of very low tempera-
tures to increase the coherence of the process.

In the limit that the dephasing time is short, the linear
x» term is negligible compared to the 2/x;„term, and
the main contribution comes from the Coulomb term.
Examination of Fig. 3 shows that, except for the x,

„

term, the contribution to the transition rate is confined to
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G6 15—

a$
10—

~ y

I

I I I I

I

I I I I

I

I I I

and

5v„/m

(v —
vp } +(5v„)

5vs /n'
gs(vr, v) =

(vL —v —v ) +(5vs)

(38)

0
~ M 5

Ch

c5

O
I I I I I I I I I I I I I I I I I

5 10 15

Log.(crystal size in Angstrom)

FIG. 3. Crystal-size dependence of the transition probability.

Curve (a) is for Eq. (32), which corresponds to the infinite coher-

ence length. The plot of the two dominant terms is indistin-

guishable from the plot of the full expression [Eq. (32}]. (b)

Equation (33) for the coherence length of 0.5 cm; (c) Eq. (33) for

the coherence length of 0.1 mm. The parameters used are

R;„=30A, R;„(R,„(1cm, A,0=5537 A.

a narrow region of separations. For example, for
R;„=30A, and Ac=5537 A, the main contribution to
the transition rate is due to a region of radius —= 100 A,
and the near-field Coulomb interaction is sufficient to
determine the transition rate. In this limit, we have

54cofieR
(34)

In the simplest case of a three-level system, the second
term in Eq. (24) can be neglected because of its large
denominator, yielding

Ip'"I'Ip I'
2p ip (g E )2

and

~ II+mo'I2I+prI2I+roI2

54soiricR m;„(E~—A'r0)
(36)

oo

pf—:— gz(v)gs(vL —v)dv .
h

(37)

The density of the 6nal states, pf, required to evaluate
the transition rate can be calculated in terms of the line-
shape functions describing homogeneous pressure
broadening in gases and phonon broadenings in crystals.
For an exciting laser whose frequency is vt =vL, +5,
where h vL, =E,+E, , only those pairs of atoms which
happen to have detuned energy levels that when added
equal vL should be available for transitions. This statisti-
ca1 treatment gives a final density of states which is a con-
volution of the line shapes of atoms A and 8:

5vs /n

(v —v —5) +(5vs)
(39)

where 5v„ is the half width at half maximum. The
Lorentzian form for g(v) yields an integral expression for
the density of final states given by

(5 ~}(5 a} - dx

Hh ~—~ (x +y }I(x—5)2+p I

(40)

This model predicts a peak density of states which is in-
versely proportional to the sum of the width of two line
shapes. As a special case, if one line shape is very narrow
so that we can effectively set p=0, then

r
irh 52+ ' '

y

which is another Lorentzian function centered at

vr, =v +vjr. If, on the other hand, the linewidths of
the two atoms are the same (y =P},then the final density
of states has the same form as the previous one, except
that y should be replaced by 2y. From Eq. (36},it is ap-
parent that the transition rate is inversely proportional to
the square of the energy difference between the inter-
mediate states of atom A and the exciting laser beam.

In the case where Doppler broadening or phonon
broadening dominates in gases and crystals respectively,
a Gaussian line shape should be used. Then the line

shape is given as

1g„(v)= — exp-&'(5v„)
v vP

5v„ (42)

where 5vz =[FWHM/(41n2)' ], FWHM being the full

width at half maximum, and similarly for gs(v). The
final density of states according to Eq. (37) is then given

by

where v —v =x, 5v„=y, and 5' =P. This integral can

be evaluated using contour integration and yields

5 (p+y)+(p y—)(p y)—
~h 5 +P'+y +25 P +25 y 2P y—2

This density of states function has a peak value at 5=0
given by

&f(5=0)=
h +
1 1

In the case where pressure broadening dominates, the
single-atomic line shape will be given by the Lorentzian
function:

$2
P =

v'~h(y'+P')'" y'+P'exp— (43)
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III. COMPARISON OF THE MODEL
TO THE EXPERIMENTAL DATA

I pp V—M I
pi"

I

6soR c
(45)

The ratio of these integrated transition rates is given by

f I opdv 72m so% Rmi (v, —vL, ) Ip~l
(46)

The unit cell of PrC13 has a volume of 2. 122X10 2s m,
and each unit cell contains two praseodymium ions, re-

sulting in a number density of %=9.427X10 m, and
a nearest-neighbor distance 8;„=4.375 A. This small
nearest-neighbor distance results in a negligible retarda-
tion e8'ect to the pair-absorption rate. For the experi-
ments in Ref. 9, the relevant states are labeled

lo ) = lo ) =3H4, lm )=3Fz(@=2), Ip) =3P„and
lr) =4fSd. The transition within the 4f manifold in
the gaseous state is forbidden by selection rules, but, in

the case of a crystalline environment, the crystal field

breaks the inversion symmetry at the ionic site and the
transition is allowed. The estimated oscillator
strengths for these intrashell transitions are expected to
be about 10 . Because of the strong transition probabil-

ity, we believe that most likely the intermediate virtual
state I

r ) lies in the 4fSd manifold. Unfortunately, spec-
tral lines for these transitions are very broad, and as a
consequence the 4fSd manifold appears as a broad band.
Because of the fact that transitions to the 4fSd manifold

in this section we will apply the theory developed to a
specific case of pair absorption in solids. The first mea-

surement of pair absorption in a solid was due to Var-
sanyi and Dieke. Following this work, Dieke and Dor-
man measured the relative intensities of 90 pair-
absorption lines in PrC13, and found no noticeable polar-
ization dependence. ' Later, Dorman measured the in-

tegrated line intensity for the pair-absorption transition
3H4+ 3H4+25 397 cm '~ 3Po+ 3F2(@=2) and found
it to be 1.3 X 10 times that of the transition
384+20475 cm '~3PO. The pair-absorption transi-
tion probability integrated over the absorption band, un-

der the assumption that the absorption line profile is
Gaussian and has a width much smaller than the detun-

ing, is given by our model as

334 (44)
432m' so% cR;„(v„—vt, )

while the one-photon absorption probability integrated
over the absorption band is given by

are in the ultraviolet, not enough data are available to
calculate a very reliable value for the matrix element. If
in fact the unknown virtual-state energy is the same as
the energy of the lower edge of the 4fSd band (61 170
cm '), v, =4922 cm ', v~=20475 cm ', and the de-
tuning is large, the exact location of the lr ) state is not
likely to change the order of magnitude of the transition.
The oscillator strength of the 3PO —3H4 transition has
been measured to be 5.8 X 10 for 0.26 at. % Pr:LaC13,
however, the oscillator strength for the 3I'2-384 transi-
tion has not been determined, probably because of its
very small absorption intensity.

Using the data discussed, the ratio of the pair-
absorption rate to the single transition rate in mks units
is determined to be

PAQ v
=5.0X 10'" -"

Ipp v p

Xp, 'Pi 'a,,a, V,,(k,R)V&~(k, R)pf . (47)

Using the same approximation for Eq. (21) as before, we
can express the differential pair-absorption rate as

Assuming that p, =p, , then we expect

p~, =p,~ =10 C m for this calculation to be in agree-
ment with the experimental measurement. Furthermore,
if we assume that the oscillator strength for the 3F2-3H~
transition is smaller than for the transition 3P, -3H~ by a
factor of 3, then p, =p,z =10 ' C m. ' Based on this
estimate and the sparse data available, the theory gives
reasonable agreement with experimental data for station-
ary ions in solids. More conclusive tests of the rates, and
in particular the sample-size dependence predicted, will
require more refined measurements for a simpler system
where all the parameters are known.

Interestingly, Yen et al. have found that the pair ab-
sorption in PrF3 (3PO+3F2) shows a fairly strong polar-
ization dependence, in contrast to the previously dis-
cussed results in Ref. 9. The explanation of such an effect
implies that the rotating-atom approximation is not use-
ful in crystalline systems. The case of fixed-ion pair ab-
sorption is calculated in what follows and is compared to
the results of Yen et ol.

Assuming that the photon propagation direction is
along the I' axis (k=ky) and the polarization direction
of the linearly polarized incident laser beam is along the
Z axis, [ek '(k)=5k „e'„'(k)=5„,], Eq. (24) assumes the
form

dI= &~&a nmk
16+4'a,'R

I = ii hack IP,"'I'

16+RE,R V (fico E„)—
Xp II@~'.pi"I (V —V ) +2(p '

p, ")(P ' k)(P "..~)(Vi —Vp)( —3Vi+Vp)

+I@™o~.kl I@i'"4I ( —3v, + v2) I .
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As might be expected, for a given pair of atoms, the transition rate is a function of the Z component of the dipole mo-
ment of the intermediate transition and of the vector products of the two transition dipole moments with the directional
vector. Noting that the orientational dependence is only through the vector products with the dipole vectors, it is con-
venient to define a new coordinate system for P where the z' axis is parallel to p ', i.e.,

g
-'=lg -'lz =g,-. z,

and

P =x 'sin8'cosP'+ y'sin8'sing'+z'cos8',

Izt" P = It„'sin8'cosP' +pi'".sin8'sing'+ p, ' cos8',

(49)

(lz~'P }(pt'" P)=p, .'pt„'".sin8'cost'cosp'+p, .'p~sin8'cos8'sing'+y, , 'pPcos 8' .

Integrating over the orientation of atom B relative to atom A, the difFerential absorption rate becomes

(50)

neck
16+As+~ 6 V (%co E—)

XPf 4nIIs ' Pt'"Iz(v, —Vz} + (lz
' Izt'")(P, ,

' P~,'}(V,—Vi}(—3V, +V&)

+(-3V+v }'I "I'
I

&"I'+
I

~"I'+
~ P' 158- 15'' '5 P' (51}

«memb«&ng that p, ' p', "=p ' p'" and lp. 'I'= ly 'I', the quantity inside the outermost square bracket is given
by

]=, lp
' p'"I'(3vf —2V, V, +7V', )+ Ip, 'I'Ip'I'(9v' —6v, v +v') (52)

Using similar steps as in Eqs. (27)—(32), the overall pair-transition rate is found to be

&~Nak' nirick lp, I'I=
120f2s V (irico —E )

Pf

I lp I

—— sin2x+ —— cos2x-mo'2 r2 3 3

X X

3 3——+X
X

+I@ ' pt"I —— sin2x+ —— cos2x-mo' r 2

X X X

1——+7X .
X

max

min

(53)

Retaining only the dominant terms in the presence of a
dephasing mechanism, we have

Ip,"I'I3lp ''I'lp'"I'+ lp '.It"I'I
60fice+ (fico E)—

(54)

The result is slightly different from the case of the
rotating-atom approach. This expression ( I ~

Ip, I

icos 8=1—sin 8) should be compared to the experi-
mentally determined polarization dependence
(I ~ 1 —0.45 sin 8) found by Yen et al. Clearly these
two dependences are difFerent. However, the model em-
ployed has assumed no crystalline-symmetry dependence
or matrix-element orientations. Although numerous ex-

periments have been done on gas mixtures, this polariza-
tion dependence has not been found, due to the fact that
atomic dipoles can point in any direction and are aver-
aged in the contribution to the transition probability. In
the crystal case, the C axis provides a unique axis for the
dipole moment. Further experiments will shed light on
this dependence and will again provide more of the re-
quired data to include crystalline anisotropy into the
fixed-ion theory presented.
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