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In8uence of strong electron correlations on the electron-phonon coupling in high-T, oxides
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Considering Hubbard models with infinite U, the leading terms of the electronic self-energy due to an
on-site electron-phonon interaction are calculated within a 1/X expansion. In particular, the
modifications of the Eliashberg function a'F(co) due to strong correlations are described and calculated
for a simple square lattice as a function of doping. We find that the on-site electron-phonon coupling is
in general slightly enhanced in forward scattering but dramatically suppressed for scattering with large
momentum transfers by correlations. This implies at least in the single-band case that the electron-
phonon coupling is greatly reduced in transport quantities and to a much smaller degree in a Fbecause
of electronic correlations.

H= g E, Xt'»+ XpOXop
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High-T, oxides are characterized by strong electronic
correlations and by, at least, a non-negligible electron-
phonon interaction. In the past many investigations on
the electron-phonon interaction in high-T, oxides used
the one-particle approximation for the holes and thus
neglected strong correlation effects. ' Considering elec-
tronic correlations Refs. 5 and 6 argue that the intersite
"covalent" electron-phonon coupling is heavily
suppressed by strong electronic correlations, especially,
near the metal-insulator transition. In the following we
study the influence of strong electronic correlations on
the on-site "ionic" electron-phonon coupling in a sys-
tematic way keeping all terms of the leading order of a
1/N expansion. We will concentrate on the on-site
electron-phonon interaction because it seems that this
coupling is important in high-T, oxides. At the same
time it allows a simpler treatment than a general
electron-phonon interaction.

The Hamiltonian reads

and we are interested m representations which fulfill the
generalized constraint Q; =g» OX'»»=N/2. The corre-
sponding Hilbert space is spanned by the eigenfunctions
of X~p. %e specify it by the slave boson conditions
(X»»)2=X»» for p =1,. . ,N plu.s the constraint. Though
the constraint is treated quite differently than in slave bo-
son calculations ' it seems probable that our 1/N expan-
sion is equivalent to the corresponding 1/N expansion of
slave boson theory as long as only gauge invariant quanti-
ties are considered in the latter. The first two terms in
Eq. (1) describe the electronic part of H; E; and t;, are
atomic energies and hopping amplitudes between neigh-
bors. The third term in Eq. (1) is the free phonon part
where a (kA, } creates a phonon with momentum k,
branch index A, , and frequency co(kA, ). The fourth term in
Eq. (1) represents the electron-phonon coupling with the
coupling function g. It describes the simplest form of
coupling where the phonons change just the local chemi-
cal potential at the lattice sites. (X/'») is the thermal
average of X~p and has to be introduced in the interaction
to have ( a t(kA, ) ) =0.

Following Ref. 10 we define nonequilibrium Green's
functions with the fermionic Hubbard operators by

++to(kA, )[a t(kA, )a (k&)+ —,
' ]

kA,

+ g g,.(
—kA, )[a (kA, )+a( —kk)]
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= —(T&X '(1)X ' (2))/(&),
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X~q is a Hubbard X operator for the atomic site i where

p, q=O refer to the empty and p, q =1, ,N to a singly
occupied state with spin directions p, q. The operators X
obey the usual commutation and anticommutation rules

I

1 stands for the site i1 and the imaginary time
q&, 1—= (i&, q&). fdl means g,. dq&. T is the time or-

1 O

dering operator, E an external source which couples to
bosonic X operators corresponding to p2=qz=O or
p2 &O, q2 &0. 6 satisfies the Dyson equation

g fd2 5(2—1)5 +(E; 0 E; q )—EM(1)5q
q

+K'1'—2(l)
av2
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which defines the self'-energy X. Q is defined by

g „. (1)=([&.' '(l),X ' (1)) ) . (5)

calculating these functional derivatives. In this way one
arrives at the following integral equation for I:

I (11';2)=5(1—1')5(1—2)

It is convenient to introduce also the normalized Green's
function

+N f d3d4d 5[5(1—1')t (1—3)

Oq) Oq) Oq( p'0

(6)

+t(1—1'}5(1—3}]

XG(34)I (45;2)G(51+) .

G satisfies Eq. (4) where the right-hand side has been re-
placed by 5(1—1'). In the approach of Ref. 10 the source
j' is only used to obtain a formally closed equation for X.
After that, K is put to zero and, in the absence of spon-
taneously broken symmetries, the original SU(N) symme-
try of H is restored. As a result all quantities considered
in the following such as 6, X, . . ., become diagonal and
independent of the indices p, q so we will drop them.

The leading terms -0(1)of X read

The kernel in Eq. (11) consists of separable contributions
which allows an analytic solution. If the Fermi energy is
much larger than the phonon frequencies as will be as-
sumed in the following, the frequency dependence of I
can be neglected and Eq. (11) involves only spatial vari-
ables.

In the following we will consider a square lattice and
only nearest-neighbor hopping. Writing I'( l l', 3)
=y(1 —1', 1 —3)5(r& r'i)5(—r, —r&) and performing
Fourier transforms the following solution for y is found:

X(11')= —5( 1 —1')N f d2t(1 —2)G(2 1)

+t(1—1'){X~(1))+X,(11'),

X, (11')=fd2d3d4d5V(2 3)I—(14 2)6(45)f (51 .3)

1+b(q) —a(q)t(k)rkq=
[1+b (q) ] —a (q)c(q)

where

d'k f[Pk)]—f[Pk+q)]
(2m ) g(k+q) —g(k)

(12)

(13)

~(31, 2) ~ 56 '(31')
5Et'i'(2)

(10)

Equations (4)—(10) can be most easily derived by the
functional method of Ref. 10. The phonon variables have
been eliminated, a11 spin summations carried out, and
only terms of 0(1) have been kept. Assuming the
electron-phonon interaction to be small, minor band re-
normalizations due to the electron-phonon interaction
also have been omitted in Eq. (7).

The functional derivative in the definition of I is car-
ried out by means of the modified Dyson equation (4) for
G where the right-hand side contains the usual 5(l —1').
Since X depends on K only via G and (Xi'i') one obtains a
formally closed equation for 1 with a kernel containing
5X/56 and 5X/5{X~~). Keeping terms only of 0(1) it
is sufficient to consider the first two terms in Eq. (7) in

with t(1 —2)=t, , 5(ri 1z)/N. The first two terms in

Eq. (7) are independent of phonons and represent a renor-
malization for the atomic levels and a renormalized hop-
ping between different atoms. These terms can be shown
to be equivalent to the corresponding 0 (1) terms of slave
boson theory though there is no Bose condensation in the
present approach. The last term in Eq. (7) is due to pho-
nons and given explicitly by Eq. (8}. V is the phonon-
mediated interaction

V(1 —2)=g g; (
—kA, )D ~"(kA, , r, —rz)g; (kA, ),

kA,

where D "denotes the phonon Green's function. I is the
electron vertex function defined by

b q
d'k,

k f[kk)) —f[kk+q)]
(2m )' g(k+q) —g(k)

(14)

X y2(p, p —p') ) ) ~ .

g(p, qA, ) is related to g;(qA, ) by a Fourier transform with

respect to the site label i {) den. otes a Fermi surface
average with respect to the momentum p. In the one-
particle approximation (i.e., if U=O) a F(co) is also given

by Eq. (16) except for two important changes: N
&
(0) is

f[Nk)1 —f[6k+q)]
(2m. )' g(k+ q) —g(k )

(15)

The k integrations in Eqs. (13)—(15) are to be extended
over the first Brillouin zone. g(k) is equal to e(k) —p
where e(k) are the renormalized one-particle energies due
to X of Eq. (7). For a small electron-phonon coupling,
the phonon renormalization due to X, for e(k) can be
neglected so that e(k) is independent of frequency. Fur-
thermore, the first term in Eq. (7) can be absorbed into
the chemical potential. As a result e(k)

2tqo[cos(k„—a)+cos(k a)] where t is the nearest-
neighbor hopping amplitude, a the square lattice con-
stant, and qo =5/2 where 5 is the doping defined at T =0
by 1 5=2f—N t (E)de and N

T
(e) is the density of re-

normalized one-particle states.
From X, the following expression for the Eliashberg

function a F(co) is obtained if the density of renormal-
ized states varies slowly over typical phonon energies"

a F(ai) =Nt (0) g «Ig(p, p p'&)~ 5(c—o co(p p',—A))—
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y(kF, O) = 1

1 2pNt (p)—
with the density of states

(17)

Nt (e)= e(2—I&l)&
1

2&gp
—1/2 (18)

0 and P are the theta and Legendre functions, respective-
ly, and p and Z are defined by p=p/q Fo=e/qo, respec-
tively.

The dashed lines in Figs. 1 and 2 describing the case of
a rather large doping depend only weakly on the momen-
tum. If the doping is further increased the curves shrink
more and more and become Hatter until they collapse to
one point in the limit 5~1. In this limit pp~ 2 p ~

replaced by the density of noninteracting particle states
Nt{0) whereas N& (0) in Eq. (16) denotes the density of
renormalized states. Both densities are connected by

Nt (0)=Nt(0)/qo. The second change concerns y: in

the free particle approximation y =1 whereas in our case
with U= ~,y is the momentum-dependent function Eq.
(12). This means that in the simplest possible approxi-
mation which takes electronic correlations into account,
both self-energy and vertex corrections appear: The self-

energy efFect is frequency independent and can be inter-
preted as a changed prefactor describing a density of
quasiparticle instead of free states. At the same time a
momentum-dependent vertex has to be taken into ac-
count which, as we will see below, competes with the
self-energy correction. In most previous calculations' '
using X operators only the self-energy efFect has been
considered.

Performing a similar calculation as above for the
phonon-limited resistivity one finds that the resistivity is
related to the function a,+{co) as usual" and that
a,g(r0) is given by Eq. (16) if the additional factor
[v(p) —v(p')] /[2(v(p) )&] is inserted before the Fermi
surface averages are carried out. Correlations thus could
change the ratio a,+la I' if y depends strongly on

p —p'. Usually differences between a Ii and a~a have
been attributed to the anisotropy of the electronic or pho-
nonic spectra or their couplings. '

The vertex function y(k, q) depends on k only via t(k),
i.e., only via the Fermi energy. The first argument is
therefore constant for a given doping, denoted symboli-
cally by kF in the following. y as a function of q is only
restricted by the point group of the square lattice i.e., it
depends in general on the direction of q. Figure 1 shows

y as a function of q=(q, q) with q varying between 0 and
the maximal momentum transfer occurring in a F. The
three curves correspond to the dopings 5=0.04 (dotted
curve), 5=0.127 (solid curve), and 5=0.539 (dashed
curve). The curves in Fig. 2 represent y(k~, q)2/qo for
the same dopings and the same direction of q. Figure
2(a) gives a complete picture, Fig. 2(b) an enlargement of
Fig. 2(a) for small values of the functions. They describe
the total, momentum-dependent enhancement of a F due
to correlations relative to the uncorrelated case. Taking
the limit q~0 in Eqs. (12)-(15) one finds the following
expression for the vertex

0.4- z =(q.q)

~ 0.3

Q 2

0.1

=0.539

0.0
0 2 3

momentum aq

FIG. 1. Vertex function y(kF, q) as a function of aq between
0 and the maximal momentum transfer for three dopings 5 and
q=[q q].

y(kz, O)~ 1/(1+4/n )-0.440, and y (k+, 0)/qo
~2/(1+4/m) -0.387. Physically speaking, this limit
describes a system of holes near the largest filling factor
compatible with the constraint. Alternatively, this case
can also be viewed as describing a few electrons in a re-
normalized band structure and interacting via renormal-
ized vertices. The free electron value for the enhance-
ment factor y /qo is one, i.e., quite different from the
above value due to the constraint. Figure 2 also shows
that the momentum-averaged enhancement y /qo de-
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FIG. 2. Total enhancement y (k+,q)/qo as a function of aq
for three different dopings 5 and q= [q,q). (a) Overview; (b) En
larged lower part.
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creases by about 30% passing from 5=1 to 5=0.539.
The solid curve in Fig. 2 for the moderate doping

5=0. 127 exhibits two important features: (a) Its
momentum-averaged value is around —,

' and thus has not

changed much compared with its value for 5=0.539.
This means that correlation effects only moderately de-
crease the electron-phonon coupling in quantities which
can be expressed by a F. Though the vertex functions
suppress a F by roughly one order of magnitude (see the
solid line in Fig. 1) the band renormalization 2/5
counterbalances this decrease to a large extent; (b) y in-

creases strongly at small momentum transfers as can be
seen from the solid curve in Fig. 1. As a result, the
enhancement curve becomes strongly peaked in the for-
ward direction and decays rapidly at large momenta.
The solid line in Fig. 2(a) illustrates this decay in more
detail. For momentum transfers k~ & q & 2kF the
effective electron-phonon interaction is only one per cent
or less of the value of the uncorrelated case. According
to Eq. (16) a F is sensitive both to the strong increase of
y /qo at small momentum transfers and its huge suppres-
sion at large momenta. Both effects cancel each other to
a large extent leading to an overall reduction of a F of
about a factor 3—4 due to correlations. Due to the extra
factor [v(p) —v(p')] only the large momentum behavior
of y /qo enters a,g which leads to a dramatic
correlation-induced suppression of this function. For in-

stance, for 5=0.127 and for momentum-independent
bare coupling functions and phonons a F is suppressed

by about a factor 100 compared to the uncorrelated case.
Similar reductions should occur in transport quantities
also for other scattering mechanisms such as impurity
scattering. The strong momentum dependence of y /qo
is already present if the susceptibilities Eqs. (12)—(15) are
evaluated in the continuum approximation where y de-

pends only on
~ q ~

and the anisotropy does not enter. The
strong enhancement of a F compared to a,P and the
difference between these two functions is therefore not as-

sociated with anisotropy but due to correlation effects.
For the very small doping 5=0.04 the strong q depen-

dence of y and y /qo is even more pronounced. The

large band renormalization factor of 50 is nearly perfectly
cancelled by vertex corrections yielding a momentum-

averaged enhancement of similar magnitude as in the
case 5=0.127. In contrast to that, a,g is quenched to
very small values by correlation effects due to the ex-

tremely intense forward scattering and the extremely
small scattering for larger momentum transfers [see the
dotted line in Fig. 2(b)]. This means that electronic trans-

port quantities are no longer determined by the scattering
from phonons. Similar results as in Figs. 1 and 2 have

been obtained for the direction q= [q, q/2]. For
q=[q, 0] the curves in Figs. 1 and 2 are symmetric with

respect to aq=a. As a result the enhancement of for-
ward scattering is less pronounced in this case.

In conclusion, we have studied systematically the
inhuence of strong electronic correlations on a simple but
relevant model for the electron-phonon interaction in

high-T, oxides. We have shown that the leading terms in

a I/N expansion involve band renormalization and ver-

tex corrections and that both compete with each other.
We find for a one-band Hubbard model on a square lat-
tice and an infinite U a strongly q-dependent vertex func-

tion for small and intermediate dopings with large values

for small momentum transfers and small values for large
momentum transfers. As a result, the transport function

a,P is heavily and the Eliashberg function a~F slightly
suppressed by correlations. Our findings are consistent
with the observability of an isotopic effect in nonoptim-
ized high-T, oxides and the view that the electron-
phonon interaction is not dominant for electronic trans-
port coeScients.
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