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We report the study of magnetic properties of a molecular-based alternating-spin chain: metalloceni-
um electron-transfer salt decamethylchromocenium tetracyanoethanide, [CrCpy] [TCNE]. We give a
modified spin-wave theory for the Heisenberg alternating-spin chains. The low-field susceptibility and
magnetization data agree with the theoretical results indicating that one-dimensional linear magnon ex-
citations dominate the magnetic behavior above the three-dimensional ordering temperature. Strong fer-
romagnetic intrachain coupling, J~9 K, is found. Unusual critical phenomena associated with lattice

dimensional crossover are discussed.

Low-dimensional magnetism continues to be of in-
terest, especially with the possibility of studying phenom-
ena such as mixed-spin linear-chain systems.! The recent
availability of a new class of quasi-one-dimensional
(quasi-1D) magnetic systems based on donor and accep-
tor electron-transfer salts enables the preparation of new
magnetic systems.? In addition to determining the mag-
netic phenomena in these systems, it is currently chal-
lenging to determine the mechanism for magnetic ex-
change in molecular-based systems.** We present the re-
sults here of high- and low-field studies of the magnetiza-
tion (M) and susceptibility () of the metallocene
electron-transfer salt decamethylchromocenium tetra-
cyanoethanide, [CrCp%][TCNE].®~8 This material differs
from the earlier studied ferromagnetic decamethylferro-
cenium TCNE,’ [FeCp3] [TCNE], in that the donor
[CrCp3]™ has a spin of 4 with essentially isotropic
g =2.00, while [FeCp3]™ has a spin of 1 with an aniso-
tropic g,~4 and g, ~1.3. It also differs from a third
member of this class, decamethylmanganocenium TCNE,
[MnCp3][TCNE], in that [MnCp3]* has spin 1. We de-
velop a modified spin-wave theory for the Heisenberg fer-
romagnetic mixed-spin chains. Comparing with the ex-
perimental data, we found that the low-temperature mag-
netization and susceptibility of this system are mainly
determined by 1D linear magnons. A strong field depen-
dence of the critical isotherm (with a very small value of
the critical exponent § ~ 1.85) is found; this indicates that
the transition observed at T, is indeed composed of a lat-
tice dimensional crossover. Long-range order occurs for
T =T, due to the presence of a weak interchain ex-
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change, J'.

The crystal structure® of [CrCp3]T[TCNE] ™ is similar
to (but not isomorphic with) that of [FeCpj ]*[TCNE] ™.
The low-field magnetic field magnetic data of the former
compound indicates a ferromagnetic transition with 3D
mean-field-like critical exponents’ 8~0.5 and y ~1.21,
nearly identical to the values for the latter compound.’
The high-field magnetization and dc susceptibility of the
powdered samples reported here were measured using a
Faraday balance magnetometer.’ Figure 1 shows the dc
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FIG. 1. xTvs Tand 1/ vs T. Solid line is theoretical result
with J~9.0 K.
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susceptibility measured under an applied field of 5000 Oe.
To estimate the ferromagnetic exchange constant be-
tween [CrCp3]*(S=32) and [TCNE] (S =1) along the
chain, we adopt a classical treatment for a Heisenberg
linear chain with alternating spins, A =—2J3S{-S;*!,
where S, and S, denote the spin operators for [CrCp3]t
and TCNE™, respectively. The expression for the sus-
ceptibility may be written as'°

_ Nuh |, 1+FQBT) | , 1—F(B))
Xip~™ g+ ~-tg< pe
3kgT 1—F(BJ) 1+F(BJ)

where  F(BT)=coth(BT)—(BT)™!, g,.=Xg +%,),

g-=4& &) 812=812[512(51,+ D] T=2J[S,
(§,+1)S,(S,+1)]'% and g, and g, represent the values
of the isotropic g factor for spin site S and S,, respec-
tively. Fitting the data for 300 K > T >30 K, we find
J=9.0 K, g,=1.95, and g,=2.00."! This result is
shown as the solid line in Fig. 1. Due to the finite field
effect, the expression for y;p does not fit to the high-field
data (5000 Oe) below ~30 K. With a mean-field correc-
tion for the interchain exchange coupling J' the suscepti-
bility takes the form'? y;p, =x;p/[1—(22J'/C)x;p]. Us-
ing the same values of J, g, and g, obtained above, we fit
the low-field (0. 15 Oe) susceptibility data with zJ’'=~0.06

K.
|
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Since the ground state is ordered, one may expect that
low-energy properties are governed by ferromagnetic spin
waves (magnons). An isolated chain cannot have true
long-range order at any finite temperature, but the corre-
lation length diverges as &(T)«<T ™! in the low-
temperature regime.!® Spin waves are well defined for ex-
citations of length scales shorter than £(T). We show
that there indeed exists a temperature window above T,
where it is possible to describe the system with quantita-
tive accuracy in terms of 1D self-consistent magnons.
When 1D correlation length £(7T) becomes large enough,
small interchain coupling J’ drives the chains into a 3D
ordered state at a critical temperature which should ap-
proximately scale'* as T, « (J')!/2.

We rewrite the isotropic 1D Heisenberg Hamiltonian
as H=—2J3,;[S?S7,, +1/2(S7S5,+S7S%,)]. Spins
on even sites (sublattice 1) have magnitude S, =3, while
those on odd sites (sublattice 2) have S, =1: We then ap-
ply Dyson-Maleev (DM) transformation'’ for spin opera-
tors (r is a site label and a=1,2 is a sublattice
label:  S}(n=(28)"%al(r), S;(r)=(25,)"[1
—(28,)"2al(r)a (r)]a,(r), and  Si(r)=-S5,
+afl(r)aa(r), to obtain an equivalent boson Hamiltonian:
Hpy=H,+H,+H,, with

H,=2J 3 {SzaI(r)al(rH-Sla;(r+8)a2(r+8)—\/(SlSz)[aI(r)az(r+8)+a;(r+8)al(r)]},

r,d==1

H,=— 3 [/,tla];(r)al(r)+,uzag(r+8)a2(r+8)],
rnd==1

H,=J 3 [V(5,/5)al(r)al(r+8)ay(r+8ay(r+8)+1/(S,/8)al(r)al(r+8a (ra,(r].

r,d=x1

Here H, describes noninteracting magnons, while H, de-
scribes magnon interactions. We have also introduced
the chemical potential H w to control the average number
of magnons.

We ignore the kinematic interactions and solve this
Hamiltonian within the Hartree-Fock (HF) approxima-
tion.!®!7 This amounts to a decoupling of the interaction
terms and after transforming to the Fourier variables, we
obtain a quadratic effective HF Hamiltonian in momen-
tum space:

HHF= 2 aa(k)Aaﬁ(k)aﬁ(k) ) (1)
k,a,B

with
Au(k)=2JZSz[l—,ul/JZSZ—Nz/Sz+(Slsz)—1/2n] ,
Ap(k)=2JZS,[1—u,/JZS,—N,/S;+(5,8,) "],
Ap(k)=—2JZ(S,5,)2(1=N, /S +q)y (k) ,

Ay (k)=—2J(8,5,)""M1—N, /S, +n)y(k),

D
(k) Z%e ,

f

N1=(aI(r)a1(r))=72\,—2(aI(k)al(k)>
k

=%En1(k), @)
k

Ny=(al(r)ay (1) =23 (a}(K)ay(k)) =2 Sn, (k) ,
N k N k
@3)

n=n‘=(a¥(r)az(r+8))=%z(al(k)az(k» , (4)
P

where the averages N, N,, and  must be determined
self-consistently. The HF Hamiltonian is diagonalized,
by the Bogoliubov transformation: Hyr=3,,
b (k)E,(k)b,(k) where b,(k) are rotated magnon
operators b,(k)=3g U,gag(k). The rotation matrices
are U”(k)= Uzz(k)=cos(e(k)) and UlZ(k)= - UZI(k)
= —sin(0(k)), and the rotation angle is
tan(20(k)) = —[A,(k) + A, (k)] /[ Ap(k) — Ay, (k)]
E (k) are the excitation energies of the two magnon
branches: Elyz(k)z%(A“(k)'i'Azz(k)j:[[Azz(k)
— A (k) P+44,(k) Ay (k)}172).
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Within the HF approximation, sublattice magnetiza-
tions are given by

M1=Sl~—% S Lu (o, (k) +o (ony(K)] 5)
k

M2=Sz—%z[v(k)nl(k)+u(k)n2(k)] , (6)
k

where u(k)=cos*(0(k)), v(k)=sin*(8(k)) and ny(k)
. BE(k) - .
=(e ¢ —1)"' are magnon occupation numbers. We
will enforce rotational symmetry above T, by tuning the
chemical potentials so that the average sublattice magne-
tizations M, and M, vanish.!* Equations (1)-(6) then
constitute a set of coupled integral equations, which are
solved numerically to obtain u(T).

Following Ref. 18, the uniform magnetic susceptibility
is computed as a rotationally invariant average:

W(nr _ 2

- = 845,(riggSs(r’)

Wy N2 ZESAr8aSy
-2

N > Zna(k)ng(k)GaB(kH-g%S, +g38, ,

k ap
where G, (k)=[g,u(k)+g,v(k)]?, G,(k)=[gv(k)
+g,u(k)]?, G, (k)=G, (k)=u(k)v(k)(g,—g;)*

To extend the applicability of the theory to lower tem-
peratures, again we treated interchain correlations in a
mean-field-like fashion. The agreement between theory
and experiment is quite good even close to T,. The un-
known exchange couplings J and J' and g factors were
treated as variational parameters and are adjusted to give
the best agreement with experimental results, y and M.
The values obtained within spin-wave theory (J ~9.0 K,
zJ'=~0.03 J) agree very well with the estimates derived
from the classical treatment. The results for susceptibili-
ty are shown in Fig. 2. The agreement between two op-
posite temperature regimes confirms that the essential
physics is captured by the Heisenberg model. The appli-
cation of a uniform external magnetic field H amounts to
a shift in the self-consistently determined chemical poten-
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FIG. 2. Low-field susceptibility data at H=150X10"? Qe.
The solid line is a result from the spin-wave theory with J ~9.0
K and zJ'~0.03 J.
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tials: pu,—p,+g,upgH. This shifted chemical potential
is then used in (5) and (6) to compute the magnetization
M(H)=gugM,+g,uzM,. In Fig. 3(a) we compare the
experimental results with spin-wave theory prediction.

In a pure 1D system, in addition to the thermally ac-
tivated spin-diffusion processes, nonlinear excitations,
like bound magnons,'*?° solitons,?! and large-size mobile
clusters? may become important at low magnetic fields.
However, given that the measured magnetization at low
fields is higher than that expected from spin-wave theory
alone, and that the agreement is better further above T,
this is highly unlikely here. This discrepancy between 1D
theory and experiment is easily explained by a larger
effective magnetic field and spin stiffness (which is impor-
tant at low external fields), due to development of inter-
chain correlations near T, resulting in a smaller number
of thermally excited spin waves. Figure 3(a) shows the
isothermal magnetization data at low temperatures, but
above T,. Even at T=2.5T,=9 K the 1D spin-wave
model describes well the magnetic data. It is noted, how-
ever, that for [FeCps][TCNE] with large effective spin
stiffness due to significant Ising character, the 1D model
only fits down to 3.37T,.°
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FIG. 3. (a) Isothermal data above T,. The solid lines are the
calculated results from the spin-wave theory with the same
values of the parameters (J'=0). (b) A scaling plot of M vs
H/T.
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In the regime governed by 1D correlations, the suscep-
tibility is expected'? to diverge as y(T) &>« T2, This
suggests that for small fields, the magnetization should be
a universal function of H/T?. In Fig. 3(b) we replot the
isothermal data [Fig. 3(a)] in terms of M vs H/T?, and
found that at low fields the data are scaled fairly well as a
linear function of H /T? except for the isotherm at 4.27
K splaying away, which signifies crossover to the regime
governed by the exponents of the 3D transition. Within
the crossover regime (near T, ), low-field isothermal mag-
netization behaves’ as a universal function of H /T2 in-
stead of H/T?. We found that the data seem to
fit a “quasicritical isotherm” M= A(H/ T32)1/8  with
8=1.85 and 4 =1500 (emu/mole) (K*2/0e)'/!-#. For
the usual 3D ferromagnets, the critical isotherm is de-
scribed as M =CH /% with a constant critical amplitude.
Here we may introduce a concept of effective critical am-
plitude, C(T), i.e., that C is slightly dependent on the
temperature near 7,. We then have C(T)=A4/
T32/5=1500/T"" emu/(mole Oe!/'3%). As an interest-
ing result, we found that critical exponent §~1.85 is sub-
stantially smaller than that of usual 3D ferromagnets
(6>5) even though we obtained’” 3D-like exponent
B=0.51 and y=1.21. Again, these contrast with the
more usual value of 8=4.4 obtained for
[FeCp3][TCNE].° This implies that Widom’s scaling re-
lation ¥y =B(6—1) does not hold for the [CrCp; ][TCNE]
system. Thus, our data may permit an interpretation in
terms of a magnetic transition composed of a lattice di-
mensional crossover (from 1D to 3D ordering). Above and
near T, the spins along the chains are strongly coupled.
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Within this regime, although there is no long-range or-
der, the system is not described as a usual paramagnetic
phase because the thermal excited energy does not yet
overcome the exchange energy along the chain. The 1D
linear magnon excitations dominate the magnetization
and give rise to a strong field dependence of isotherms
(small value of 8). The quasicritical isotherm described
here pronounces the crossover from 1D to 3D magnetic
ordering in contrast to the usual transition in a uniform
3D system.

In summary, we have described the low-temperature
susceptibility and magnetization of ferromagnetic
alternating-spin chain in terms of spin-wave excitations.
There is indeed a temperature window above T, where
the magnetic correlation length still obeys £« T ! and
spin waves are well defined for excitations of length scales
within £(T). We have shown that the magnetization and
low-field susceptibility of [CrCp;][TCNE] are well de-
scribed by 1D self-consistent magnons above T,. Al-
though some qualitative arguments need to be further
justified, we have tried to provide a consistent picture for
an understanding of excitations in a spin alternating
chain. A sophisticated theory describing critical
behavior of quasi-1D systems indeed is needed to give a
quantitatively comprehensive view of a lattice-
dimensional crossover.
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