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We have carried out strong-coupling calculations using the Eliashberg formalism for YBa2Cu307. We
consider the influence of potential impurity scattering on T, . We find that, as the strength of the impuri-

ty potential increases, the unitary limit is reached comparatively quickly. In this (unitary) limit, the
influence of isotropic impurity scattering on T, is relatively weak. We show, with the aid of a simple

model to describe the disruption of the local magnetic order brought about by the substitution of Zn,
that the latter has a strong influence on T, . We consider the competition between antiferromagnetic and

superconducting instabilities and find that, for our model parameters, the instability to a superconduct-

ing state always comes first. Next, we examine the sensitivity of our results for T, to the details of the
spin-fluctuation spectrum and hole concentration. When that spectrum is modified so that it is con-
sistent with both NMR T& and T2 measurements, a superconducting transition temperature of 90 K is

obtained with a dimensionless coupling contant, A, & —,. Strong-coupling calculations of the normal state,

using these latter parameters and including vertex corrections, yield an in-plane resistivity which varies

linearly with temperature, with a magnitude at 100 K of 20 pQ cm, and, with minor changes in parame-
ters, a frequency dependence of the optical conductivity in quantitative agreement with experiment for
energies & 50 meV. With an interlayer hopping t, of 8 meV, the c-axis resistivity is found to be linear in

temperature with a magnitude at 150 K of 2.5 mQ cm.

I. INTRODUCTION

In previous papers we have described the results of ex-
tensive numerical calculations on the normal state and
superconducting transition temperature for YBa2Cu307
using a model of planar quasiparticles, obeying a disper-
sion relation determined by ARPES experiments, which
are magnetically coupled to antiferromagnetic paramag-
nons, spin fluctuations whose spectrum is taken from fits
to NMR experiments. ' In Ref. 1, hereafter referred to
as MBP, we described the results of weak-coupling calcu-
lations which demonstrated that the resulting spin-
fluctuation-induced interaction between the quasiparticle
would lead uniquely to a transition to a superconducting
state with d 2 2 symmetry. We demonstrated the im-

portance, in any quantitative calculation, of taking the
full structure, in frequency and momentum space, of that
interaction into account, showing, by example, that cal-
culations in which that structure was ignored led to a
significant underestimate (by factors of 3—5) of T„a re-
sult we called a "no free lunch theorem. " In Ref. 2, here-
after referred to as MP I, we described the results of
strong-coupling calculations, using the Eliashberg equa-
tions, which provide a "proof of concept" for spin-
fluctuation-induced superconductivity and d 2 2 pairingx —y
in YBa2Cu307. Thus we showed that while the lifetime
effects neglected in a weak-coupling calculation reduce
T, dramatically, superconductivity at high temperatures
is still possible for comparatively modest values of the
quasiparticle —spin-fluctuation coupling constant and that

the strong-coupling corrections contained in the Eliash-
berg equations do not alter the d 2 2 character of thex —y
pairing state. We demonstrated for YBa2Cu307 a direct
link between its anomalous magnetic, transport, and opti-
cal properties in the normal state and its high supercon-
ducting transition temperature. Thus we showed that for
our model experiment-based Hamiltonian, the coupling
constant g, which yields a transition temperature
T, -90 K, is in the range required to provide a quantita-
tive explanation of the measured normal-state resistivity
and optical properties of the normal state. Put another
way, we showed that the magnetic scattering of planar
quasiparticles by the anomalous low-energy spin fluctua-
tions required to explain the NMR experiments on
YBazCu307 (Ref. 4) gives rise to measured anomalous
charge transport and optical properties, while their re-
sulting spin-fluctuation-induced interaction produces
high-temperature superconductivity. We found from our
numerical experiments that for a range of coupling con-
stants this transition temperature could be written in a
simple BCS-like strong-coupling form

1
T, =I exp

where I is a cutoff energy ( —30 meV) for the
effectiveness of the spin-fluctuation-induced interaction
and the dimensionless coupling constant A, -0.8 is pro-
portional to the product of g and the calculated tunneling
density of states per unit energy, N (0).
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In MP I we also presented the results of our strong-
coupling calculations of the corrections to the quasiparti-
cle self-energy which arise from their coupling to the spin
fluctuations. We found that the normal state is a Fermi
liquid in the sense that the single-particle Green s func-
tion has a set of well-defined poles at the quasiparticle ex-
citation energy co=E as T, co~0, and that for the pa-
rameters used to characterize YBa2Cu307 the residue of
these poles at T =90 K was quite substantial
(0.4~Z& ~0.6). However, the imaginary part of the

Py

quasiparticle self-energy, ImX(p&, co), turned out to be
quite different from that of an ordinary Landau Fermi
liquid. For frequencies smaller than the low-energy scale,
cos„, which characterizes the spin-fluctuation spectrum,
ImX(pl, co) goes like aT+yco, where a and y are con-
stants, while for frequencies large compared to cps„ it be-
comes linear in co for energies up to 0.25 eV. The magni-
tude of both the real and imaginary parts of the quasipar-
ticle self-energy depends sensitively on its location with
respect to the Fermi surface and its proximity to Van
Hove singularities. We found that the very strong
features of these quantities and of the tunneling density of
states associated with Van Hove singularities calculated
in first-order perturbation theory are largely washed out
in the self-consistent Eliashberg results.

The physical origin of the remarkable normal and su-
perconducting properties of this coupled system of quasi-
particles and spin fluctuations is the novel magnetic low-

energy scale cosF brought about by the strong commensu-
rate antiferromagnetic correlations between the quasipar-
ticles. Given the fact that apart from the presence of
well-defined quasiparticle poles essentially no other prop-
erty of the system is that of a normal Landau Fermi
liquid, it seemed appropriate to distinguish such a novel
state of matter from the usual Landau liquids found in
normal superconductors. We therefore call such a sys-
tem a nearly antiferromagnetic Fermi liquid (a term intro-
duced some time ago by one of us ), and argued, in MP I,
on the basis of the overall agreement between our
theoretical calculations with experiment, that
YBa2Cu307 is a nearly antiferromagnetic Fermi liquid.

As in a normal Fermi liquid, the spin and charge prop-
erties of a nearly antiferromagnetic Fermi liquid are not
separated; here, both are determined by the magnetically
coupled quasiparticles. In MP I we gave a progress re-
port on the extent to which a self-consistent description
of the spin-fluctuation excitation spectrum could be ob-
tained by combining the results of the Eliashberg calcula-
tions with a random-phase-approximation (RPA) calcula-
tion of the consequences of their spin-spin interaction.
We found that if we took the magnetic response function
to be y(q, co)=g(q, co)/[I —J(q)g(q, ~)], where g(q, co) is
the irreducible particle-hole susceptibility calculated (in
the Eliashberg formalism) for quasiparticles coupled to
the phenomenological spin excitation spectrum,
gMMp(q, co), which Millis, Monien, and Pines (MMP)
used to fit NMR experiments, we could find a J (q) such
that the output response function y(q, co) was close to the
input response function yMMp(q, co ).

At the conclusion of MP I, we emphasized that since

our nearly antiferromagnetic Fermi-liquid approach pre-
dicts unambiguously that the superconducting state of
YBa2Cu307 must possess d 2 2 symmetry, experimentalx —y
detection of that pairing state was a necessary condition
for the description of YBa2Cu307 as a nearly antiferro-
magnetic Fermi liquid to be correct. A number of recent
experiments now provide strong support for this pairing
state, including low-magnetic-field measurements of
NMR relaxation rates in the superconducting state for

Cu and ' 0 nuclei, penetration depth measurements on
a large pure single crystal, high-quality thermal conduc-
tivity, and microwave experiments. Moreover, ARPES
experiments' and the feature at 36O seen in tunneling ex-
periments" indicate that this pairing state may be found
quite generally in the cuprates. Quite recently, Wollman
et al. ' have reported on results of superconducting
quantum interference device (SQUID) experiments in-
volving YBa2Cu307 tunnel junctions which Leggett' and
Sigrist and Rice' have shown independently can provide
a direct test of the pairing state; they find that the evi-
dence to data, based on five separate tunnel junctions,
while favoring d-wave pairing (and tending to rule out s-
wave pairing), is not yet decisive.

Encouraged by these experimental results, we have car-
ried out a number of further strong-coupling calculations
based on our model Hamiltonian of magnetically coupled
quasiparticles and report on these here. Following a brief
review of our nearly antiferromagnetic Fermi-liquid ap-
proach in Sec. II, in Sec. III we consider the sensitivity of
our calculations of T, to the presence of impurities. It is
well known that Anderson's theorem' does not apply to
d-wave superconductors, in that nonmagnetic impurity
potential scattering is expected to reduce T, . It is found
experimentally that some impurities (notably Ni and Zn)
are likely to be located at a planar copper site [Cu(2)], yet
these influence the Cu spin-lattice relaxation time and
T, in quite different ways. Thus Ishida et al. ' find that
Ni substitution essentially does not change T, while re-
ducing T, in comparatively modest fashion. Zn, on the
other hand, goes in as a nonmagnetic impurity, ' ' yet
Zn substitution leads to a substantive reduction in both

T, for copper atoms close to a Zn impurity and in T, ~

We find in our strong-coupling Eliashberg calculations
that, for nonmagnetic impurity potential scattering, as
the strength of the impurity potential increases, the uni-

tary limit is reached comparatively quickly. In this uni-
tary limit, the influence of the impurity scattering on T,
is relatively weak. Rather surprisingly, a potential
scattering model appears to describe what happens when
Ni is substituted for the planar Cu sites. On the other
hand, we show, with the aid of a simple model, that the
substitution of Zn, a nonmagnetic closed-shell impurity,
for planar copper sites disrupts local magnetic order and
brings about a substantive reduction in T„with results in

good qualitative agreement with experiment. To the ex-
tent that Anderson's theorem is applicable to the cu-
prates, the fact that Zn goes in as a nonmagnetic impuri-
ty, yet influences T„would, in itself, seem a strong argu-
ment against s-wave pairing and in favor of d-wave pair-
ing.



49 SPIN-FLUCTUATION-INDUCED SUPERCONDUCTIVITY AND. . . 4263

In Sec. IV we consider the competition between the an-
tiferromagnetic and superconducting instabilities. Be-
cause a nearly antiferromagnetic Fermi liquid is, by
definition, not far from an antiferromagnetic instabihty,
it is interesting to examine whether the spin-fluctuation-
induced interaction can give rise to this instability. We
find that for our input spin-fluctuation spectrum, even as
T~O, one cannot find an instability to a spin-density
wave in this model, and thus the instability to a supercon-
ducting state always comes first.

In Sec. V we examine the sensitivity of our results for
T, to the details of the hole concentration. We obtain a
family of T, (g) curves for a number of hole concentra-
tions and find that our results for each hole concentration
can be fit by an expression of the form of Eq. (1}. In Sec.
VI we examine the sensitivity of T, to details of the spin-
fluctuation excitation spectrum. We find that when that
spectrum is modified so that it is consistent with both the
NMR measurements of the spin-lattice relaxation time
and the recent NMR measurements of T2 by Imai
et al. , ' an expression of the form Eq. (1) still applies, but
the prefactor which measures the cutoff energy for the
effectiveness of the spin-fluctuation-induced interaction is
increased to -60 meV, while both the values of the cou-
pling constant g required to obtain T, =90 K and the di-
rnensionless coupling constant A, are considerably re-
duced, A, now being ~

—,'.
In Sec. VII we present the results of calculations of a

class of vertex corrections to our previous calculations of
the normal-state resistivity, the optical conductivity, and
the irreducible particle-hole magnetic susceptibility. We
find that while such corrections lead to modest quantita-
tive changes in these quantities, they do not produce any
qualitative changes in the system behavior. When these
results are combined with the modification in the spin-
fluctuation spectrum required by the recent NMR mea-
surements of T2 by Imai et al. ,

' we find, in a calculation
in which all relevant parameters are fixed by other experi-
ments (g being fixed by the requirement that T, =90 K),
quantitative agreement between theory and experiment
for both p,&( T) and cr(co, T}.

We present in Sec. VIII a brief discussion of quasiparti-
cle properties and the low-frequency magnetic response,
with particular attention to the difference between the re-
sults obtained using the nearly antiferromagnetic Fermi-
liquid approach and those obtained using the Hubbard
model. Section IX contains further discussion and our
conclusions.

II. MODEL AND COMPUTATIONAL APPROACH

Xq =X(P'"(g/a)', (Sa)

~SF
pl/2 (g/ )2

(sb)

The fits by MMP (Ref. 3} to NMR experiments on
YBazCu307 yield g( T, ) -2.3a, cos„(T, )-7.7 me V, and

y&(T, ) =44 states/eV, and, on taking y0=2. 6 states/eV,
P=tt, and I'Ap=0. 4 eV.

The two-dimensional (2D} Eliashberg equations ' for
the critical temperature of a single CuO plane in the
Matsubara representation reduce, in the case of a spin-
fluctuation-induced interaction between the quasiparti-
cles, to

k~T
X(p, ico„)=g g gy(p —q, ico„iQ„)G(q,iQ—„),

Pf 2

(6)

G(p, ico„}= .
1

i co„(ep p)—X(p—,i co„—)

2 k~T
4(p, ico„)=—g g g y(p q, ico„—iQ„)G(q,i—Q„)

q Q„q

(7)

XG( —q, iQ„)4(q, i—Q„),

is the quasiparticle dispersion relation, with t =0.25 eV,
t'= —0.45t, as suggested by Yu' and Si et al. from fits
to band theory and ARPES experiments, and a is the lat-
tice constant. S is taken to be a spin-fluctuation operator
whose properties are determined by the phenomenologi-
cal spin-spin correlation function introduced by Millis,
Monien, and Pines to describe the low-frequency com-
mensurate magnetic excitation spectrum,

g&J (q co) =5&J+MMp(q, co ), with

XMMp(q co) = Xg
1+g (q Q) —i co/—cosp

Here y& is the static spin susceptibility at wave vector
Q=(m /a, n /a) and g is a temperature-dependent antifer-
romagnetic correlation length. With this form of y(q, co),
there are no well-defined low-frequency magnetic excita-
tions; rather, one has a relaxational mode, the antiferro-
magnetic pararnagnon, whose energy cosF defines the
characteristic energy of the low-frequency magnetic
response. The quantities g& and cosF may be related in
turn to the experimentally measured long-wavelength
spin susceptibility y0 and a magnetic Fermi energy I AF
by introducing a scale factor P,

~= X &p4p~Ap. +
2 g 4~+qA'~~. P S( —q»

p, o q, k, aP

where

e = —2t [ cos(p„a)+ cos(p a)] 4t'cos(p„a) cos(p a}—
(2)

(3)

Our model Hamiltonian for the planar quasiparticles is
given by

where X(p, ico„) is the self-energy, G(p, ico„) is the one-
particle Green's function, 4(p, ico„) is the anomalous
self-energy and is proportional to the order parameter, E'p

is the bare quasiparticle spectrum [Eq. (3)], and p is the
chemical potential. Nq is the total number of rnomenta
in the Brillouin zone, and co„=(2n +1)kz T,
n = —~, . . . , = —1,0, 1, . . . , 00. For convenience, the
coupling constant g is chosen to be equal to g =

—,'g .
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y(q, i v„) is related to the imaginary part of the response
function, ImgMM&(q, ro) [Eq. (4)] via the spectral repre-
sentation

+ dco ™XMMF(qro)
y(q, iv„)=—

—oo 7T l V~ CO

To get y(q, i v„) to decay faster than 1/v„, we introduce a
cutoff coo and take Imp(q, co) =0 for co ~ coo. In the fol-
lowing we will adopt the value coo=0.4 eV. The value of
g required to obtain a certain critical temperature is
somewhat dependent on the cutoff [since g(q, iv„) is].
However, we will always choose the coupling constant so
that T, is the experimentally measured critical tempera-
ture. Under these conditions, provided cop&&NsF we
have checked by explicit calculations that the precise
value of the cutoff does not influence low-frequency
normal-state properties, such as the resistivity.

The equations are solved with a fast Fourier transform
(FFT) algorithm on a 64X64 lattice, with a Matsubara
frequency cutoff of -3 times the bandwidth. The criti-
cal temperature for the model is determined from Eq. (8),
which is an eigenvalue equation for the vector Cr(p, ice„).
A nonzero solution for the order parameter can be found
when the largest eigenvalue of the matrix

k~T
A(p, ice„:q,i Q„)= —g 2 y(p q, ice„—iQ„—)

q

X G (q, i Q„)G (
—q, i Q„)—

is equal to 1. For the present model, a nontrivial solution
can only be found for a d-wave gap
Cr(p, ice„)cc cos(p„a) —cos(p~a). In MP I we found that
for an assumed hole concentration of 0.25 and the above
values for the spin-fluctuation spectrum and quasiparticle
dispersion, with g =1.36 the superconducting transition
occurs at 90 K. One interesting feature of our results is
that we find the absolute value of the eigenvalue in the s-
wave channel (it is negative) is larger in module than that
in the d 2 2 channel. In other words, the spin-

X

fluctuation-induced interaction is more repulsive for s-
wave pairing than it is attractive for d-wave pairing. In
the pure material, when the eigenvalue is 1 for d-wave
pairing it is —1.54 for s-wave pairing.

III. INFLUENCE
OF IMPURITY SCATTERING ON T,

where X; (ice„), the self-energy due to potential impuri-
ty scattering, is

U2
X; ~(ice„)=n; g G(q, ice„)ImP n (13)

in the case of second-order Born scattering and

n;(U /Nq)gqG(q, iro„)
X; (ice„)=

1 —
( U/Nq )gqG (q, ice„)

(14)

when multiple scattering is taken into account. U is the
strength of the impurity potential and n, the impurity
concentration.

The procedure used to solve Eqs. (10)—(12) is a
straightforward extension of that used in the absence of
impurity scattering. The results of our calculations of the
effect of impurity scattering on T, are shown in Figs.
1 —3. Three features are immediately apparent. First, the
Born-approximation calculation of the influence of im-
purities on T, overestimates that influence. Second, one
reaches the unitary limit with comparatively modest
strength U of the impurity scattering. Third, the
influence of impurity scattering on T, is surprisingly
modest. At l%%uo impurity concentration, potential
scattering in the unitary limit reduces T, by only 5 K,
while a 10%%uo impurity concentration still leaves us with a

iJ = 0.50eV
B0- '. - Born scattering—T-matrix scattering
60

40

0.15

———- Born scattering

T-matrix scattering

, k, T
rp(p, ice„)=—g g gy(p —q, ice„iQ—„)G(qi Q„)

&q n„q
X G (

—q, —i Q„)rI&(q, i Q„),
(12)

0
0

I

0.2

X(p,i'„)=g g gy(p —q, itic„i Q) (6iqQ—)
&q n„

+X; (iro„),
1

G(p,i'„)= .
i co„—(e —

iM)
—X(p, i ro„)

(10)

The Eliashberg equations for the critical temperature,
Eqs. (6)—(8) in the presence of isotropic impurity scatter-
ing are

FIG. 1. Results of a strong-coupling calculation of the
change in T, brought about by potential impurity scattering U
of strength 0.25 eV, calculated in the Born approximation and
taking multiple scattering into account (T-matrix approxima-
tion); n; is the impurity density, and the calculations are carried
out for parameters which yield T, =90 K in the absence of im-

purities. The experimental result obtained by Ishida et al. (Ref.
16) for the suppression of T, by 5% Ni impurities is denoted by
a cross ( X ). As may be seen in the inset, for U =0.5 eV, the
Born-approximation result leads to a significant overestimate of
the influence of impurity potential scattering on T, .
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FIG. 2. Influence of impurity scattering on T„calculated in
the unitarity limit, as a function of impurity density and scatter-
ing strength, for a 90-K superconductor with parameters ap-
propriate to YBazCu307.

superconducting transition temperature of 45 K. Figure
3 shows that the larger the value of T,o, the transition
temperature in the absence of impurities, the smaller is
the reduction of T, by impurity scattering.

This comparatively modest effect of impurity scatter-
ing on T, for a d-wave superconductor is at first sight
surprising. Its physical origin lies in the fact that we are
considering a strong coupli-ng d-wave superconductor, in
which the scattering of quasiparticles against spin fluc-
tuations gives rise to a relatively large quasiparticle self-
energy', as we have shown, this reduces the transition
temperature T, considerably relative to the weak-
coupling limit. If, therefore, the influence of impurities
represents a comparatively modest add-on to this already
substantial quasiparticle self-energy, then impurity poten-
tial scattering would not be expected to reduce T, very
much. To see whether this is the case, we calculated the
influence of impurity scattering on the quasiparticle self-

IO

0.2

3

tC4

no impurity scattering

nI = 0.01; U=2.5 eV
T= 90K

0
-0.4

I

C.2 0
~(eV)

I

0.2

energy. ImX(p, ro) for real frequencies is obtained by an-
alytic continuation of X(p,iro„) using N-point Pade ap-
proximants. Figure 4 shows the imaginary part of the
quasiparticle self-energy in the presence of impurity
scattering at two points on the Fermi surface and com-
pares it with that of the pure material. We see that, as
expected, impurity scattering provides only a modest,
nearly isotropic, correction to the comparatively large
value of ImX(pz I, co) which results from spin-fluctuation
scattering. We note that because spin fluctuations are
comparatively ineffective in influencing the quasiparticle
energy at pF '=(0.371,0.371)1r/a, the percentage change
in ImX(pF', co) resulting from impurities is considerably
larger for pF' than it is for p~I"=(1,0.092)1r/a. Since,
however, the energy gap vanishes along the diagonal,
even a substantially altered quasiparticle spectrum at pF
will not be felt in the gap equation.

Another indication that nonmagnetic impurity scatter-
ing is a minor add-on to spin fluctuation comes from the
concentration dependence of ImX. For 1% nonmagnetic
impurities, ImX changes (almost isotropically) by some 7
meV on the Fermi surface, while for 5% the correspond-
ing change is only -21 meV.

We therefore conclude that in strong-coupling d-wave

co = 84K
co = 90K
co = 96K
co = 100K

~I = (o ~ .o. )-/. &bj-

3

tcL,

E

0.1

U 25eV T-matrix scattering

0
0

I

0.05
I

0.1 0
-0.4

n, = 0.01; U=2.5 eV

0
u(eV)

T= 90K

0.2

FIG. 3. Examination of the reduction in T, brought about by
impurity scattering at the unitary limit for various high-T, su-
perconductors, calculated with initial parameters similar to
those used in studies of the changes in T, with coupling con-
stant for YBa&Cu307.

FIG. 4. Influence of impurity scattering on the imaginary
part of the quasiparticle self-energy, calculated in the Eliash-
berg approximation with parameters appropriate to YBa&Cu307
for two points on the Fermi surface: (a) at pf" =(1,0.092)(m./a)
and (b) at pf '=(0.371,0.371)(m /a).
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superconductors impurity potential scattering will, in
general, lead to only a modest reduction in T, and that
for a given impurity concentration, the stronger the cou-
pling g between the quasiparticles and spin fluctuations,
the weaker will be the influence of the impurities on T, .
Since larger T,o*s are obtained with larger coupling con-
stants g, which in turn imply larger quasiparticle self-
energies, the results shown in Fig. 3 confirm the above ex-
planation.

The problem of the influence of nonmagnetic potential
impurity scattering on T, is interesting in its own right,
in that it nicely illustrates the effect on T, played by self-

energy corrections. However, it is found experimenta11y
that a number of substitutional impurities are likely to be
located at a planar copper site [Cu(2)] and thus have the
potential of influencing the magnetic correlations be-
tween the planar quasiparticles in a significant way. Here
it is useful to make a distinction between two kinds of
such substitutional impurities: those like Ni, which al-

though magnetic, do not alter the planar Cu spin-lattice
relaxation rate, and those like Zn, which do produce a
significant change in Ti (Ishida et al. ' ). We conjec-
ture that impurities which do not alter 3T, may reason-
ably be assumed not to interfere with the local short-
range magnetic order and hence do not expect any appre-
ciable influence on the spin-fluctuation-induced interac-
tion responsible for superconductivity; their influence is
then primarily to alter the single-quasiparticle self-energy
through potential scattering. Inspection of Fig. 1 thus
suggests that the influence of the planar Ni impurities on

T, (and other properties) can be modeled by treating each
impurity as giving rise to potential scattering of strength,
U=—0.25 eV.

On the other hand, since a Zn impurity acts to change
T~ for Cu sites which are near it, it is necessary to take

into account at the outset its influence on the local mag-
netic order. We model the introduction of Zn impurities
and their effect on the spin excitation spectrum as fol-
lows. When a nonmagnetic atom is substituted for Cu +,
we assume that it destroys magnetic correlations over a
distance of the order of the correlation length g. We thus
assume that in the presence of Ez„ impurities the spin-
(luctuation operator in Eq. (1) is modulated by some func-
tion h (x) that vanishes at the location of the Zn impuri-
ties:

G(p, ice„)= lcd„( e p) X(p, lcd„)

k~T
Ci( p, i co„)= —g g g yz„(p q, i—co„—i Q„)

q Q„q

XG(q, iQ„)G( —q, iQ—„)

with

XN(q, iQ„), (19)

gz„(x—x', iv„)=y(x —x', iv„)h (x)h (x'), (20)

after the average over the Zn configurations has been tak-
en.

The results of our calculations are given in Fig. 5.
There we see that the influence of the Zn impurities on

nonmagnetic. impurity scattering 0=

where y(x, iv„) is the spin-fluctuation propagator of the
pure material and the overbar implies an average over the
positions of the Zn atoms.

The computational approach is similar to that used so
far. Ez„Zn atoms are located at random on the 64X64
lattice, and the average h (x)h (x') is performed over 100
configurations of the Zn atoms. To ensure the numerical
stability of the calculation of the largest eigenvalue of the
kernel of Eq. (19) which determines the critical tempera-
ture, it is essential that E(x—x')=h(x)h(x') have the
symmetry of the square lattice with high accuracy.
Since, as noted earlier, the spin-fluctuation-induced in-
teraction acts in both the s- and d-wave channels (and is
in fact larger in module for the s-wave channel), the itera-
tions have to preserve the orthogonality of the d- and s-

wave gaps to a very high precision: Otherwise, a small
admixture of s waves would tend to dominate after only a
few iterations. Therefore, to ensure numerical stability,
the function E(x) is totally symmetrized

(E(x,y)~[E(x,y)+E( —x,y)+E(x, —y)

+E (
—x, —y)+ (x~y) ]/8)

S(x)~S(x)h(x) .

A function h (x) that describes the destruction of the spin
correlations over a range -g is given by

h(x)= g 1 —exp
(x—x;)

2g
(16)

where x,-, i =1, . . . , Xz„denote the positions of the Zn
atoms. The Eliashberg equations for the critical tempera-
ture [Eqs. (6)—(8)] in the presence of Zn substitution are

k~T
X(p ice~)=g z g gyz~(p q ice~ iQ )G(q iQ~)

tco/ )

FIG. 5. Calculated influence of Zn impurities on T, is com-

pared with the experimental results of Ishida et al. (Ref. 16)
[crosses ( X )] and with nonmagnetic impurity potential scatter-

ing, calculated in the unitary limit for an impurity potential of
2.5 eV.
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T, is considerably greater than that of nonmagnetic im-

purities, which act as simple potential scatterers. Be-
cause of computer memory constraints on the number of
Matsubara frequencies, we are not able to carry out cal-
culations below T-33 K. Ho~ever, a straightforward
extrapolation of our results to lower temperatures sug-
gests that T, ~O for a Zn concentration in excess of
-5%. Our results are somewhat sensitive to the width
of the Gaussian expression [Eq. (16)] assumed for h (x);
for example, if the width is reduced from g to 0.8$, cor-
responding to assuming that Zn impurities cause less dis-
ruption of the planar magnetic correlations, we find it
takes 0.4% Zn impurities to reduce T, by 5 K, compared
to the 0.34% Zn concentration which brings this about
for g . This result also implies that the extent to which
Zn impurities influence T, depends on g'(T, ); quite gen-
erally, the larger the value of g (T, ), the more disruptive
(to T, ) will be the Zn impurities.

We have also indicated in Fig. 5 reports by several ex-
perimental groups concerning the inhuence of Zn impuri-
ties on T, . The results shown there assume that all Zn
impurities replace an atom on planar sites. The agree-
ment between our theoretical results and experiment
would seem satisfactory; as is perhaps evident, the solid
line depicted there represents an upper limit on the
influence of Zn impurities on T„' to the extent that either
the Zn atoms are less disruptive of planar quasiparticle
magnetic correlations, or go, in part, to chain Cu sites,
their influence on T, may be expected to be less.

In the above calculations, we have not taken into ac-
count the fact that the planar Zn atoms, in addition to
disrupting magnetic correlations, may also act as poten-
tial scatterers; to the extent the two effects are additive,
one could add the two contributions shown, for example,
in Fig. 5. In practice, we do not expect the effects to be
additive; we hope to return to this topic at a later date.

While we have not yet carried out explicit calculations
for the influence of Zn impurities on T, for
YBa2Cu306 63 it appears likely from Fig. 5 that a concen-
tration of Zn & 3% will be sufficient to destroy supercon-
ductivity. In making this estimate, we have first assumed
that the shape of the T, vs Zn concentration curve for
this T, =60 K material will be similar to that of the
T, =90 K sample; that would yield a "fatal" concentra-
tion of Zn of some 3.5%. Second, since it is known from
fits to NMR experiments that g( T, ) -=4a for
YBa2Cu306 63 it is quite likely that a somewhat smaller
concentration of Zn impurities would destroy supercon-
ductivity for an 06 63 sample.

«/
p-P. '~n- I'~~

n

p) l4dn, y P +Q, I(oct,y

I

0yltxl
I

~ay
F

p, ~o „,y p', ~c „& P+~.~~ .~ P+Q {~„y'

FIG. 6. Linearized equation for the anomalous propagator
used to study spin-density-wave formation.

consider the time-ordered anomalous propagator which
describes SDW formation,

Frr. (p, r}=—( T, ter(p, r)gr (p+Q, O)I ), (2l)

where y and y' are spin indices. For a SDW the
particle-hole pair must be in a triplet state for which the
matrix of the components F~z in spin space takes the
form

F(p, ico„)=(d cr)F'(p, ico„) . (22)

X g y(p —p', ico„ico'„)F'(—p', ico'„) .
PN

(23)

As was the case for the gap equation for the transition
to the superconducting state, a nontrivial solution for
F'(p, ico„}can be obtained when the largest eigenvalue of
the kernel

g k~T

3X2 G(p, ico„)G(p, +Q, ico„)y(p p', ico—„ico'„)—

(24)

is equal to 1. Figure 7 shows the largest eigenvalue of the

It is then straightforward to show that the linearized
equation for the anomalous propagator, depicted in Fig.
6, is given by

g
2 kI, T

F'(p, i co„)= — 6 (p, icon }6(p+Q, ico„)
3 g2

IV. SUPERCONDUCTIVITY
vs ANTIFERROMAGNETISM

It is natural to inquire how close one has come to a
spin-density-wave (SDW) instability at the commensurate
wave vector (rr/a, rc/a) when our system becomes super-
conducting. For example, is it likely that with some
small change in the parameters describing the spin-
fluctuation spectrum, or the coupling constant g, that the
system would, at a given hole density, rather become an-
tiferromagnetic than superconducting? To study this, we

0
0 100

(K)

I

150

FIG. 7. Comparison of the temperature dependence of the
largest eigenvalue A,sD~ for antiferromagnetic spin-density-wave
formation with the corresponding eigenvalue A,sc for the forma-
tion of the superconducting state.
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kernel [Eq. (23)] and compares it with the largest eigen-
value of the superconducting kernel in Eq. (7). There one
sees that the eigenvalue for SDW formation lies we11

below that for the superconducting transition and is con-
siderably less than unity for all temperatures of interest.

120

100 I

L

I

80
I

I T

V. SENSITIVITY OF T,
TO HOLE CONCENTRATION

IAF
1IN (0)g

~WF—:a exp
——,(25)

where N(0), the tunneling density of states for both spins
at T„ is the imaginary part of the full Green's function
summed over all mornenta. It was calculated from the
single-particle Green's function, and we introduced a di-
mensionless coupling constant A,

= rlN(0)g —We find t.hat
at each hole concentration a fit of the form of Eq. (25)
can be obtained for the present case t'%0 for values of g
such that 80 K ~ T, ~ 108 K; our results are given in
Table I. We also find that N(0) is reduced from its
band-structure value by self-energy effects. [This trend is
reflected in Tables I and II, where the smaller coupling
constants yield a larger N(0). ]

A number of features of these results deserve comment.
First, we note that the form of the strong-coupling ex-

In MP I we reported on our results for T, of
YBazCu307 as a function of g for a hole concentration
of 0.25 using a particular choice of a spin-Auctuation
spectrum which was consistent with both Knight-shift
and T, measurements. It is instructive to explore the
sensitivity of those results to the hole concentration nI, .
Doing so requires the self-consistent determination of the
chemical potential and single-particle Green s function in
the normal state for each value of nz under considera-
tion. The resulting family of T, (g ) curves for a number
of hole concentrations is shown in Fig. 8. There one sees
that as the hole concentration varies from 0.16 to 0.31,
the coupling constant g required to get T, =90 K varies
from 1.29 to 1.48 eV. The similarity in shape of the
T, (g ) curves for varying hole concentration leads us to
inquire whether our results can be fit with an algebraic
expression of the form obtained in MP I [for calculations
of T, (g ) for nh=0. 25 and a quasiparticle spectrum
specified by t'=0],

BQ 'p

'
i/, I

gij

c
20 l-

n =069
n = 0 72

n=075
n =0,78

n = 081
n =084

0 I

2

g' I'eV )

pression does not appear to be sensitive to either nz or t',
although the particular values of n, g, and A, may vary.
In fact, inspection of Table I shows that g is very nearly
constant, while a scales very nearly with the electron
concentration, n, = 1 —

nl, . Somewhat unexpectedly, the
overall dirnensionless coupling strength A, , required to
bring about a 90-K transition, decreases as the hole con-
centration decreases.

As we have noted earlier, the form of our strong-
coupling expression [Eq. (25)] agrees with that found by
Hirsch and Scalapino, who explored the role played by
Van Hove singularities in enhancing T, for low-
dimensional systems; that led us to speculate, in MP I,
that it might be a consequency of strong coupling plus a
Van Hove singularity, since for t'=0 and n~ =0.25, one
is not near a Van Hove singularity. Since, however,
changing nz by a factor of 2 seems to have no e8'ect on

FIG. 8. Transition temperature T, calculated in the strong-
coupling Eliashberg approximation is shown as a function of
coupling constant g for electron concentrations n ranging from
0.69 to 0.84. In these calculations, the MMP spin-fluctuation
spectrum is specified by the parameters cosF(T, )=7.7 meV,
g(T, )la =2.3, and y&(T, )=44 states/eV; the quasiparticle
spectrum of the tight-binding form, with the nearest-neighbor
hopping parameter t =0.25 eV, and the next-nearest-neighbor
hopping parameter t' = —0.45t. The algebraic expression
T, =(aI AF/m )exp( —1/qN(0)g), with 0.70 a(n, ) ~0.92 and
0.326 ~ g(n, ) ~ 0.315, provides a quantitative fit to each curve.

TABLE I. Fit parameters and other quantities of interest which enter into the calculation of T, as a
function of hole concentration for spin-fluctuation parameters co&F( T, ) =7.7 me V, y&( T, ) =44
statesleV, and g(T, )la =2.3, corresponding to t &F=0.4 eV.

ne

~ (eV)
X(0) (states/eV)

g (eV)
71

a
(meV)

Z(p"), ~k, T;)
Z(p' ),~k T, }

0.69
—0.41

1.83
1.29
0.326
0.772
0.696

28

5.58
2.54

0.72
—0.39

1.73
1.32
0.326
0.746
0.729

30

5.63
2.60

0.75
—0.37

1.63
1.36
0.325
0.719
0.767

31

5.68
2.66

0.78
—0.34

1.53
1.40
0.323
0.691
0.812

33

5.73
2.74

0.80
—0.32

1.44
1.44
0.319
0.663
0.864

35

5.78
2.82

0.84
—0.29

1.36
1.48
0.315
0.634
0.925

37

5.83
2.91
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the form of our result for T„we now conclude that it is
more likely an intrinsic property of any strong-coupling
calculation based on the present model Hamiltonian.

VI. SENSITIVITY OF T, TO DETAILS
OF THE SPIN-FLUCTUATION SPECTRUM

We now consider, for a fixed value of coupling constant
g and electron concentration n„ the extent to which T, is
sensitive to the choice of spin-fluctuation parameters g,
cosF, and g& or, what is equivalent, I'zF, g, and P [see Eq.
(5}]. In Fig. 9 we plot the results of numerical experi-
ments in which I ~„,g, and P are changed by a scale fac-
tor. We see in Fig. 9(a) that T, increases as I AF in-
creases. The physical origin of that increase may be
traced to the corresponding increase in cosF, which deter-
mines the range of energies over which the spin-
Auctuation-induced interaction is effective. T, is, in fact,
very nearly linear in I ~F, as might have been anticipated
from the form of our expression [Eq. (25)]; the compara-
tively small departure from linearity may be attributed to
the relatively weak temperature dependence of N(0). In
Fig. 9(b) we present the results of keeping cos„and y&

fixed while changing the width in momentum space of the
spin-fluctuation-induced interaction; thus, we let

g ~a(, but vary both I ~„and go in such a way that
both sos„and y& are not changed. We see that the result-

ing variation of T, with ~ is quite similar to that found,
namely, by changing the width in frequency space of the
effective interaction, by varying I ~F (or rosF) alone. This
demonstrates the importance of the momentum depen-
dence of the interaction in determining T, . In sharp con-
trast to the problem of phonon-induced superconductivi-
ty, in which only the frequency dependence of the pho-
non spectrum has to be taken into account, for spin-
Auctuation-induced superconductivity the frequency and
momentum dependence of the interaction have to be
treated on an equal footing. This point was first made in
MBP.

We next consider what happens when we change g,
but keep both I and yo fixed. Figure 9(c}shows that the
influence of changes in g alone is a comparatively subtle
affair, with relatively small changes in T, coming about
for l ~ /la ~ 5 [recall that g(T, ) =-2.3a for the canonical
choice of MMP parameters], but a dramatic decrease in
T occurs once g(a. There are two competing effects.

C

I I
I

I 1
I

I I I I 120

0
0

I

0.5

r - ~r
n ~ 0.75
gs — l Q5

0
0 0.5

Yo ' Xc.'&
(' -~ &el

n=075
pa= )H50V'

(c)

60

(2 ~ ~(2

n = 0.75

gs = I 8$

60
0

0
0

FIG. 9. Results of numerical experiments on the sensitivity of T, to changes in the spin-fluctuation parameters I ~„, g, P, and yo,
based on the quasiparticle and spin-fluctuation parameters given in the text and the caption for Fig. 8, and calculated for an electron
density n, =0.75: (a) T, as a function of «=I „„/0.4 eV; (b) T, when g, yo, and I „F are assumed changed in such a way that
Ir~vt ~„, while co (Ts, ) and y&(T, ) remain constant; (c) T, as a function of the scaling parameter s for g —+vg, with other spin-
fluctuation parameters unchanged; and (d) T, as a function of a =Pin, with other spin-fluctuation parameters unchanged.
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yo(T, ) '(T, )/a'
=(3.0+0.3) X 10 GV

sF( T. )
(26)

while Imai et al. ' and Thelen and Pines find from the
measurements of T2 by Irnai et al. ' that

yq(T)cosF( T)= -=l. 1+0.1
XO~AF

(27)

for all T) T, . For go—=2.6 states/eV, the latter con-
straint requires that we increase I A„by somewhat more
than a factor of 3 to I"AF= 1.3 eV from the "canonical"
MMP value 1~F=0.4 eV. On combining Eq. (26) with

Eqs. (5) and (2), we arrive at the equivalent constraints

@' ( T, ) /a = 170+20 .

y&(T, )[g(T, )/a]=(173+20) states/eV .

(28a)

(28b)

We incorporate these constraints in our calculations in

By increasing g, one increases the projection of the in-
teraction onto the d & 2 state; this acts to increase T, .x
However, one also lowers the spin-fluctuation energy cus„
[see Eq. (5b)]; this gives rise to larger quasiparticle self-
energies, and these in turn reduce T, . By lowering g,
one gets an increase in cps„, a decrease in the quasiparticle
self-energies, and a potential increase in T„' however, for

g & a, this effect is dwarfed by the loss of the projection of
the interaction onto the d 2 2 state. Taken together,x —y
these remarks explain the highly asymmetric nature of
our results.

In Fig. 9(b) we see that increasing p reduces T, sub-

stantially, essentially because the reduction in ms„has a
greater negative consequence (through the altered fre-
quency dependence of the effective interaction) than the
positive consequence of the corresponding increase in y&.

In practice, one cannot vary the MMP parameters in-

dependently, since for YBa2Cu307, these are constrained
by experimental measurements of both T, and T2 for

Cu nuclei. These constraints take a simple form in the
limit of long correlation lengths, g/a ~2. From the
MMP fit to the measured values of T, for an external

magnetic field perpendicular to the Cu-0 plane, one finds

that, at T, (-90 K),

the following way. We begin by assuming that g(T, ) is
unchanged from the MMP value; thus, we choose
(=2.3a, obtaining cosF( T, )=14 meV and y&(T, )=75
states/eV as the new parameters which characterize the
MMP spectrum [Eq. (5)]. We then ask how well do we
know g(T, )'? A lower limit on ((T, ) is provided by the
ratio of the Cu and ' 0 relaxation rates near T„which
Barrett et al. find to be -20. As Millis and Monien
have shown, unless (g/a)~2, there will be too much
leakage of the antiferromagnetically enhanced y"(q, ~)
onto the oxygen sites, producing a too small ratio of the
nuclear relaxation rates. On the other hand, if one takes
a markedly larger value of g(T, ~, one likely runs into
conflict with the neutron-scattering experiments which
suggest that at the energies at which experiments are car-
ried out (co ~ 20 meV), g~ a. We therefore conclude that
the key spin-fluctuation parameters which determine T,
are given by

(( T, ) = ( 2.3+0.3 )a,

cosF(T, )=14+2 meV,

g&( T, ) = (75+ 10) states/eV .

(29a)

(29b)

(29c)

We now use the results [Eq. (29)] for the spin-
fluctuation parameters to determine T, (g ) for a range of
electron concentrations, 0.69~n, ~0.84. Our results,
shown in Fig. 10, again suggest that a simple expression
for T, of the form of Eq. (25) likely exists; we find that it
does, with the results shown in Table II. We see that
compared to our previous choice of parameters, with the
new set, the prefactor (the cutoff energy) is increased,
while the values of g required to obtain T, =90 K are
considerably reduced. As a result, we find that the di-
mensionless parameter which measures the overall
effectiveness of the spin-fluctuation-induced interaction is
now X~0.5. Thus we have gone from a hypothesized
strong-coupling regime (A, -l) to what is, in effect, an
intermediate-coupling regime (A, & 0.5).

We have also explored, for our new parameters, the
consequences of varying p and g such that their product
pg is unchanged; our results are shown in Fig. 11. As
the scaling parameter ~ =p/32 is increased, the spin-
fluctuation frequency cps„ increases, which has a positive

TABLE II. Fit parameters and other quantities of interest which enter into the calculation of T, as a
function of hole concentration, for spin-fluctuation parameters cosF( T, ) =14 meV, g&(T, ) =75 meV,
and g( T, ) /a =2.3, corresponding to 1 ~F= 1.3 eV.

ne

p {eV)
X(0) (states/eV)

g (eV)
7I

0.69
—0.40

2.19
0.61
0.360
0.481
0.470
0.838

62

3.14
1.54

0.72
—0.39

2.07
0.62
0.364
0.470
0.494
0.875

65

3.14
1.57

0.75
—0.37

1.95
0.64
0.367
0.457
0.524
0.92

69

3.14
1.59

0.78
—0.35

1.84
0.66
0.369
0.445
0.558
0.97

3.13
1.62

0.80
—0.33

1.73
0.68
0.370
0.432
0.594
1.04

3.13
1.66

0.84
—0.31

1.62
0.70
0.368
0.418
0.644
1.11

3.12
1.70
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proximation, the prefactor, which reflects the cutoff ener-

gy for the effectiveness of the spin-fluctuation-induced in-

teraction in bringing about superconductivity, scales with

cps„. To see this, note that since in calculating Table I we

have assumed that P=n. , we may write the prefactor as

= hsF( T, )[g ( T, ) /a ], (30)

n -0.69
n 0.72

n -0.75
n 0.78
n 0.81

n - 0.84

0
0 0.2 0.4

g' (ev')

FIG. 10. Transition temperature T, calculated in the strong-
coupling Eliashberg approximation is shown as a function of the
quasiparticle-spin-fluctuation coupling constant g for electron
concentrations ranging from 0.69 to 0.84. In these calculations,
the MMP spin-fluctuation spectrum is specified by the parame-
ters cosF(T, )=14 meV, ((T, )/a =2.3, and y&( T)= 57

states/eV.

effect on T, . However, since the correlation length
g/a =2.3/a'/ decreases, the projection of the effective
interaction onto the d 2 2 pairing state diminishes. Ax —y
further negative effect on T, is brought about by the de-
crease of the spin susceptibility at the commensurate
wave vector y&. When a ) 1, these latter effects dominate
and T, goes down. On the other hand, when ~&1, the
roles are reversed. The change in cosF (it decreases) has a
negative effect on T„while the corresponding increase in

g and y& has a positive effect on the transition tempera-
ture. The negative effects dominate again, and T, goes
down. One sees from the plot the value P=32 is nearly
the optimum one for this choice of coupling constant and
hole doping.

Inspection of Tables I and II shows that, to first ap-

1

0.37N (0)g
(31)

provides a good starting point for understanding the re-
sults of our numerical calculations. From this point of
view, the cutoff in frequency space is increased by a fac-
tor -g from cosF. Since, according to Eq. (5), cos„g is
independent of g, the prefactor possesses only a weak
dependence on n„arising perhaps from the fact that as

n, increases, more quasiparticles can take advantage of
the spin-fluctuation-induced interaction.

The approximate expression [Eq. (31)] also enables us
to interpret the changes in T, associated with the changes
in spin-fluctuation parameters presented in Fig. 9(a)—9(d)
and Fig. 11 in a simple way. In all five cases the primary
cause in the changes in T, is the change in the prefactor;
the reader can easily verify that Eq. (31), under the as-
sumption that the effective interaction A, is little
influenced by changes in the spin-fluctuation parameters,
provides a qualitative and, in some cases, quantitative
measure of the influence of these quantities on T, .

VII. RESISTIVITY AND OPTICAL CONDUCTIVITY

where, for this example, a=a. If we adopt the form on
the right-hand side of Eq. (30) for the cutoff, then the re-

sulting values of a, also given in Table II, are seen to be
increased by some 21%%uo over the corresponding results
for a given in Table I. We conclude that in terms of the
spin-fluctuation parameters and hole-density parameters
used to obtain Table II, the expression

T, —= [ [( ( T, ) /a ]cosF( T, )( n, /0 79).]

P ~P
('/~

80

g2 = Q4Q eVa ~ n = Q 75

60
0

FIG. 11. Results of numerical experiments on the sensitivity
of T, to changes in the spin-iluctuation parameters P and g such
that the product Pg is constant. In these calculations, a =P/32,
corresponding to spin-fluctuation parameters I AF

= 1.3 eV,
Il=32, and g =0.40 eV; hence, T, =90 K for a'= l.

The measured transport and optical properties of
YBa2Cu307 provide a stringent quantitative test of
theories of the normal state of this system. Early weak-
coupling calculations of p(T) for a model Hamiltonian
similar to that of Eq. (2) were carried out by Moriya,
Takahashi, and Ueda, who, independent of MMP, used
a self-consistent renormalization (SCR) approach to ob-
tain a spin-fluctuation spectrum similar to that proposed
by MMP, and by Monien, Monthoux, and Pines, while
Arfi carried out calculations of the frequency-dependent
optical conductivity o(co, T) using the MMP spectral
density and the memory function formalism. These re-
sults all led to qualitative agreement with experiment. As
Moriya, Takahashi, and Ueda have emphasized, an im-

portant test of the spin-fluctuation approach to the cu-
prates is to obtain a quantitative account of both the
anomalous electrical resistivity and the high supercon-
ducting transition temperature using the same model
Hamiltonian, i.e., using the same spin-fluctuation spec-
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trum and coupling constant for both calculations. This
criterion was met in the weak-coupling calculations of
Moriya, Takahashi, and Ueda and in our previous
strong-coupling calculation, reported in MP I, where we
found it possible to obtain good qualitative, but not quan-
titative, agreement with experiment for our calculation
based on the original MMP spin-fluctuation parameters.

One possible reason for the failure of previous calcula-
tions to obtain quantitative agreement with experiment
was the use of an incorrect spin-fluctuation spectrum; a
second was the use of an incorrect quasiparticle spec-
trum, while a third was the neglect of vertex corrections
in calculating the current-current correlation function
which determines the in-plane resistivity and optical con-
ductivity. In this section we remedy all these defects.
Thus we use a spin-fiuctuation spectrum [Eq. (29)] which
is consistent with NMR measurements of both T, and

T2, a quasiparticle spectrum [Eq. (3)], and hole density

n& =0.25 which is consistent with AR.PES experiments,
and choose the coupling constant g =0.64 eV, since, as
may be seen in Table II, this yields an "Eliashberg" tran-
sition temperature of 90 K. All parameters now being
fixed, we proceed to calculate the resistivity.

The in-plane normal-state resistivity and optical con-
ductivity are calculated from the current-current correla-
tion function at zero momentum transfer, R (i v„), which
is given by

2k T Be
R (iv„)=— g g G(p, iso„)G(p, ice„+iv„)

~p.o

Bep
X +A(p, iso„;iv„)

Bp a

(32)

where the vertex function A(p, ice„;iv„) satisfies the
Bethe-Salpeter equation

A( p, i co„;iv„)

gk, T
2 g g y( p p', i co„ico—„' )—
P P co

where c is the lattice constant along the z axis and the
factor of 2 comes from the two CuO planes per unit cell.

The solution of Eq. (33) for the vertex is obtained as
follows. For each value of v„, the term on the right-hand
side of the equation is again a convolution and the itera-
tive solution of Eq. (33) for each Matsubara frequency v„
(with starting point A=O) can be obtained once again
with the help of the fast Fourier transform. One first has
to obtain the one-particle Green's function from Eqs. (6)
and (7) and then solve the linear integral equation for the
vertex function. To calculate R (iv„) for a system size of
64X64X256 for about 50 Matsubara frequencies v„re-
quires about 15 min of Cray Y-MP time.

As can be seen from Eq. (34), the real part of the opti-
cal conductivity is given by

( )
ImR (co)

(35)

At low frequencies, for a metal, one has

ImR (co)= Aa
CO

CO~0 COg
(36)

where Az is the amplitude and ~z the characteristic fre-
quency for the current-current correlation function. Ver-
tex corrections contribute to both Az and co&. It turns
out that the ladder diagrams only modestly enhance the
amplitude Aa (by a few percent) and, hence, the optical
conductivity. However, their dominant effect is an in-
crease in co~; namely, the function R (iv„) decays less
rapidly as v„ increases, leading to an overall decrease of
the optical conductivity and a corresponding increase in
the electrical resistivity by some 20%%uo —25%.

Our results, which include the effect of vertex correc-
tions on the in-plane normal-state resistivity, are shown
in Fig. 12. As noted above, the coupling constant

g =0.64 eV is chosen such that the Eliashberg transition
temperature is 90 K. As may be seen, the agreement be-
tween our theoretical calculation and the experimental
results of Ginsberg, Lee, and Stupp ' is quite reasonable,
since we do not distinguish between the a and b direc-
tions and thus ignore the possibility of a difFerent Fermi

X G (p', ice'„)G (p', ice'„+i v„)

Bep +A( p', i co'„;iv„)
Bp„'a

(33)

and N~ is the total number of points in the Brillouin
zone. At the one-loop level, the vertex corrections con-
sist of all ladder diagrams. The RPA-like diagrams do
not contribute to the current-current correlation function
when the interaction is spin dependent for the same
reason that the Hartree diagram for the self-energy van-
ishes. The optical conductivity o(co) and electrical resis-
tivity p= 1/o(0) can be obtained from R (iv„) by analyt-
ic continuation to real frequencies using the method of
Pade approximants. One has

100 i

c1

A

Ll

iJ

C

gk

gkk

gkgk
3 ~kL&

k.
, gJ'

o(co) = [R (co)—R (0)],
lfl CCO

(34)

FIG. 12. Comparison of our calculated results for the "aver-
age" planar resistivity p(T) with the experimental results of
Ginsberg, Lee, and Stupp (Ref. 31).
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velocity along these two directions. Since the resistivity
must eventually, at low enough temperatures, cross over
to a T behavior characteristic of a Fermi liquid, we ex-
pect the negative intercept to be a generic feature of
spin-fluctuation models. We have not yet established
which parameters of the spin spectrum determine the
magnitude of this intercept. It is worth mentioning that
the slope and magnitude of p( T) are relatively sensitive to
the value of the spin-fluctuation frequency ~sF. We
found that, typically, a 10%%uo change in sos„results in a
20go change in the slope of p(T). Since we know cos„
only to about 10%%uo from NMR experiments, there is some
uncertainty in the calculation of p(T). Also, the small
scatter in the calculated values of the resistivity reflects
the diSculty in the analytic continuation problem since
ro„ in Eq. (36) is rather low.

Our result for the frequency dependence of the optical
conductivity (calculated with vertex corrections and for
the same coupling constant) is shown in Fig. 13 where it
is compared with that calculated with a slightly different
choice of spin-fluctuation parameters, coupling constant,
and hole doping, and is also compared with the experi-
mental results of Orenstein et al. It turns out to be
difficult to fit both the optical-conductivity results of
Orenstein et al. and the resistivity results of Ginsberg,
Lee, and Stupp. The reason is that the electrical resistivi-
ty for the sample in the experiment of Ref. 31 is larger
than that measured by Ginsberg, Lee, and Stupp. As can
be seen from Fig. 13, the frequency dependence of the op-
tical conductivity is very sensitive, as is the electrical
resistivity, to the spin-fluctuation spectrum parameters,
especially to the spin-fluctuation frequency ~s„. Thus,
until one has measurements of both the electrical resis-

tivity and optical conductivity on the same high-quality
sample, it is very difficult to pin down the correct spin-
fluctuation parameters for YBa2Cu&07. It is gratifying
that the agreement between theory and experiment for
the resistivity has been considerably improved by incor-
porating vertex corrections and the "new" spin-
fluctuation spectrum required by T2 experiments. We
also note that despite the fact that the temperature-
dependent spin-fluctuation energy

rosF(T)= [9.5—+4.75[T (K)/100]j meV (37)

4t' cos—(p„a) cos(p a) 2t~ co—s(p, c), (38)

where c is the lattice constant in the z direction. We still
take the two plane bands to be degenerate and assume
that the hopping in the z direction is independent of p„
and p . When calculating the zz component of the
current-current correlation function, the virtual particle-
hole pair is such that the particle and hole are in different
layers. Since the spin fluctuations are confined to the
CuO layers, it follows that the virtual particle and hole
cannot exchange a spin fluctuation. Therefore there are
no vertex corrections to the c-axis resistivity, since as in
the case of the in-plane resistivity, the RPA-like diagrams
do not contribute to the current-current correlation func-
tion when the interaction is spin dependent. Thus the op-
tical conductivity along the c axis is given by

is somewhat greater than T for T ~ 200 K, the resistivity
remains linear in T.

Since the spin fluctuations are two dimensional and
confined to the CuO layers and since we are assuming
they are the dominant source of scattering for the quasi-
particles, one may calculate the c-axis resistivity from the
planar Green's function. When a hopping t~ between the
layers is included, the quasiparticle dispersion [Eq. (3)] is
modified and becomes

e = —2t[cos(p„a)+cos(p~a)]

o,(co)= [R,(ro) —R,(0)],
/AQ N

(39)

a
0.5

3
where a and c are the lattice constants along the x and z
directions, respectively, and the factor of 2 comes from
the two CuO planes per unit cell. R, (ro) is the analytic
continuation of

0
0

I

0.05
I

0.15 R,(iv„)=—
2k T Be

G(p, ice„)
Bp,c

FIG. 13. Comparison of our calculated results for the nor-
malized frequency-dependent optical conductivity
[cr(co, T)lo (0, T)] at 200 K for two choices of parameters with
the experimental results of Orenstein et al. (Ref. 32). A small
change in the spin-fluctuation parameters produces a significant
change in the width of the peak of cr(co). For the parameters
that produce a good fit to the experiment, the resistivity turns
out to be about 130 pQ cm at T =200 K, which is larger than
the experimental results of Ginsberg, Lee, and Stupp (Ref. 31),
but rather close to the resistivity measured by Orenstein et al.
(Ref. 32).

X G ( p, i co„+iv„), (40)

where G(p, ice„) is the quasiparticle propagator, N is
the number of points in the Brillouin zone, and the
momentum sum is over p, p„, and p, . It turns out that
t j is much smaller than the nearest-neighbor hopping t,
and thus the p, dependence of the Green's function
G(p, ico„) can be ignored. The p, integral can then be
done analytically, and one has
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FIG. 14. Comparison of our calculated results for the c-axis
resistivity p, (T) with the experimental results of Ginsberg, Lee,
and Stupp (Ref. 31).

FIG. 15. Irreducible particle-hole susceptibility y(q, 0), cal-
culated using bare propagators (dot-dashed line) and in the
Eliashberg approximation at T =90 K (solid line) and at
T =200 K (dashed line).

4k~ '1
R, (iv„)=—

2 tj g g G(p, ice„)G(p,iso„+iv„) .
N2

(41)

The momentum sums are now two dimensional, and the
quasiparticle propagators can be calculated from Eqs. (6)
and (7). Our results for the c-axis resistivity are shown in
Fig. 14, with a hopping between layers, t~=8 meV. The
coupling constant g =0.64 eV is chosen such that the
Eliashberg transition temperature is 90 K. As may be
seen, the agreement between our theoretical calculation
and the experimental results of Ginsberg, Lee, and
Stupp ' is again quite reasonable, given our simplifying
assumptions. One notes that the calculation overesti-
mates the slope ofp( T).

I, that quasiparticle lifetime effects resulting from the
coupling of the quasiparticles to the spin fluctuations act
both to reduce the magnitude of fo(q, O) and to smear out
the Kohn anomaly peaks.

The experimentally measurable static spin susceptibili-
ty y(q, O) differs considerably from f(q, O) since, as we
have seen, it is sharply peaked at the commensurate wave
vector Q [recall that y& —=75 states/eV, while

f(Q, O)=—1.8 states/eV]. To understand the difference,
which is produced by the magnetic coupling between the
particles, let us parametrize the effects of the coupling us-
ing a RPA-like expression. We thus assume

(43)

VIII. LOW-FREQUENCY
MAGNETIC EXCITATION SPECTRUM

We turn now to a consideration of the low-frequency
magnetic properties of the system of coupled quasiparti-
cles and spin fluctuations. In the Matsubara frequency
representation, the irreducible particle-hole spin suscepti-
bility f(q, co) is given by

X(q O)= ( , O)

1+F'
q

(44)

where J(q), the effective magnetic coupling between the
quasiparticles, includes the effect of exchange and vertex
corrections and may be temperature dependent. In the
limit of low frequencies of interest to us here, we then ob-
tain

2k~ Tf (q, iv„)= — g G(p, ice„)G(p+q, iso„+iv„),
N p

(42) where

x"(q ~) x"(q ~)/~
o co ~ o ( I ++' )2

(45)

where N is the number of points in the Brillouin zone.
We obtain g(q, O) by the same procedure used in MP I.
Our results at T =90 K are given in Fig. 15, where they
are compared with the irreducible free-quasiparticle stat-
ic spin susceptibility go(q, O) obtained by neglecting the
coupling of the quasiparticles to spin fluctuations [i.e.,
setting g =0 in Eq. (2)]. The considerable structure
present in yo(q, O) reflects the Kohn anomalies produced
by transitions that span the Fermi surface. We find, as
was the case for a comparable calculation (using the ear-
lier MMP spin-fluctuation parameters) carried out in MP

F' =J (q)g(q, O) (46)

measures the enhancement of g(q, O) by spin-spin interac-
tions. If we further write

'iTCO+q
lim f"(q,co) =
co~0 r

ip

(47)

we can then make a direct connection, for q=Q, between
the spin-fluctuation parameters y&=—y(Q, O) and tosF, the
irreducible quasiparticle-quasihole spin spectrum charac-
terized by f(Q, O) and I &..
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X(Q 0)
1+F'

Q

(48)

(49)

From Eq. (47) we obtain a significant constraint on the
quasiparticle Fermi surface:

(50}

e(p+Q) —~(p) =0; (51)

the Fermi surface must be such that, for values of p
within kz T of the Fermi surface,

the output calculated quasiparticle spin-fluctuation spec-
trum would then agree with the assumed input spectrum
[Eq. (4)] for values of q in the vicinity of Q. This output
quasiparticle spectrum possesses the further advantage
that it provides a microscopic basis for the quasiparticle-
like portion of the low-frequency magnetic excitation
spectrum, i.e., that obtaining for wave vectors well away
from Q. It is this part of y"(q, co) which is responsible
for the spin-lattice relaxation rate of the ' 0 and ' Y nu-
clei. Our preliminary calculations, reported in MP I,
suggest that this part of y"(q, co) is also enhanced. Thus
a comparison of our calculated values of go= 1.6
states/eV with that measured experimentally leads us to
conclude that

F'—= —04 ' (54)
otherwise, enhancement would be ineffective. This con-
straint is satisfied by the open Fermi surface one obtains
with t'= —0.45t; it is not satisfied for the Fermi surface
which obtains, for all values of hole doping (apart from
half-filling), with t'=0, unless one has both very low dop-
ing and very high temperatures, 2k+ T-p, the chemical
potential with respect to that of the half-filled system.

It is instructive to consider the behavior of J(q) in the
vicinity of Q. At Q, on making use of our calculated
value g(Q, O)~z 9o~-=1.8 states/eV and the fit to the
NMR experiments, y&(T=90 K) = 75 states/eV, we
find

J(Q, T =90 K)=0.54 eV,

FQ(T=90 K)= —0.976 .

(52)

(53)

Rather similar values, based on the earlier MMP fit to
the spin excitation spectrum, were obtained in MP I.
Thus, even though [g (90 K)/a] is not large, one is, in
fact, very close to an antiferromagnetic instability
(F& = —1) even for YBaiCu307. The fact that in Sec. IV
we found that the assumed spin-fluctuation spectrum is
rather far from causing an instability in the quasiparticle
response, while the F& [Eq. (53}] found here is close to
—1, indicates that we do not yet have a fully self-
consistent account of spin and quasiparticle properties.

We next note that since f(q, O) exhibits comparatively
little structure in the vicinity of Q (and in fact possesses a
local minimum there) and if, as shown in MP I, I also
possesses comparatively little structure in the vicinity of
Q, then J(q) must fall off quite rapidly as one goes away
from Q. This follows from the NMR constraint that the
ratio of the Cu relaxation rate [which is determined byF' in the vicinity of Q, according to Eq. (45)] to the ' 0
relaxation rate [the latter is determined primarily by the
values of g"(q, co) at wave vectors for which the antifer-
romagnetic enhancement is not substantial] is quite large
at low temperatures (-20 near T, ). Hence F' must be
sharply peaked, and J(q) even more so, to bring this
about.

As noted in MP I, for a given calculation of f"(q,co),
at a given temperature, one can easily find a J(q) which
is sufficiently peaked at Q to yield a spectral density of
the MMP form [Eq. (4)]. To the extent that one succeeds
in doing this, one arrives at a self-consistent picture, since

in other words, the effective spin-spin interaction must be
such that at long wavelength the measured static spin
susceptibility is ferromagnetically enhanced compared to
the calculated value yo. The exact amount of this
enhancement will depend on the details of the hole con-
centration and coupling constant required to yield
T, =90 K. Inspection of Eq. (45) shows that the quasi-
particlelike portion of y"(q, co) takes the approximate
form

lim ' =—lim ', ~q
—Q~~+ .

o co a) o (1+F~~ )~
(55)

A preliminary study of the fit to experiment for the ' 0
relaxation rates shows that an enhancement of the or-
der of that found from Eq. (55) is required to explain the
measured experimental results.

We further note that Eq. (49) may be used to test the
extent to which the present calculation of the normal-
state magnetic properties is self-consistent for spin fluc-
tuations in the vicinity of Q. On making use of the result
g(Q, O) —= 1.8 states/eV and the NMR-constrained fit icosi;
(90 K)=14 meV, we see that to be fully consistent one
must have

r~=m. [y~/f(Q, O)]cos„—-—1.7 eV, (56)

which is close to the value I
Q
= 1.3 eV, calculated in MP

I. This suggests that a self-consistent calculation of J(q)
which includes exchange and vertex corrections may lead
to quite reasonable results.

We expect the general character of the results based on
the model Hamiltonian [Eq. (4)] to be comparatively in-
sensitive to the choice of the nearest-neighbor and next-
nearest-neighbor hopping parameters t and t', the choice
of n„ the coupling constant g which yields T, =90 K, or
the exact form of the assumed spin-fluctuation spectral
density, provided the shape of the Fermi surface is such
that Eq. (51) is satisfied. It is natural to inquire how the
physical properties calculated using the model Hamil-
tonian [Eq. (4)] compare with those obtained using the
Hubbard model.

Nearly all of the pioneering calculations of the proper-
ties of strongly correlated planar quasiparticles have been
carried out using the Hubbard and the closely related t-J
model. Detailed calculations have been carried out by
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Scalapino for the case of nearest-neighbor hopping only,
i.e., t'=0. These show that qualitative and, sometimes,
quantitative agreement with NMR experiments can be
obtained if one fine-tunes the choice of n, and uses the
equivalence of the exact Monte Carlo calculations (valid
for T~ 300 K) with a RPA expression at high tempera-
tures to extrapolate the RPA-equivalent result to the
lower temperatures of primary experimental interest for
the YBa2Cu307 system. For example, Bulut, Scalapino,
and White find that an expression of the form

(57)

where U=2t and yo(q, co) is the noninteracting particle-
hole susceptibility calculated for n, =0.85 and t' =0, pro-
vides an excellent fit to the q, ice„, and T dependence of
the Monte Carlo results for y(q, ice„) obtained on a 8 X 8

lattice with U=4t and (n ) =0.85. Bulut and Scalapi-
no have then used Eq. (57) and a suitable choice of gap
parameters [b,(0)/kT, —= 3 —4] to compute spin-lattice re-
laxation and T2 for Cu nuclei in the superconducting
state.

One might therefore have reason to hope that the cor-
responding calculation of the superconducting transition
would yield good agreement with experiment. This, how-
ever, appears not to be the case. For values of doping for
which the proposed susceptibility yields a fit to experi-
ment, the corresponding values of the largest eigenvalue
of the superconducting kernel A,sc (see Sec. II) obtained
with that susceptibility are much less than 1 for tempera-
tures in the vicinity of 90 K.

We believe there are two reasons why one does not
seem to obtain high T, with a Hubbard-like expression of
the form of Eq. (57). First, and probably most important,
until one carries out the calculations with a t' which is
sufficiently large to yield a Fermi surface which meets the
criterion of Eq. (49) at low temperatures and low frequen-
cies, one will not find a peak at (m/a, n ja) no matter
what the value of U. Second, even if one then adopts a
tight-binding spectrum which yields a Fermi surface
which meets the criterion of Eq. (49), one will not obtain
a commensurate peak in y"(q, ai)/co at low frequencies
and low temperatures with a featureless restoring force
U; rather, one would find two incommensurate peaks at
wave vectors determined by the Kohn anomaly. Thus,
with a featureless U, the maximum values of F' occur at
the Kohn anomaly, rather than at Q, and the resulting
low-temperature low-frequency y"(q, co) cannot provide a
quantitative explanation of the Cu and ' 0 NMR relax-
ation rates. We speculate that these difficulties are inter-
related, that unless one uses a sharply peaked commensu-
rate spin-fluctuation spectrum with sufficient antiferro-
magnetic enhancement to explain the NMR experiments,
one will not be able to obtain a high T, .

IX. DISCUSSION AND CONCLUSIONS

The Hamiltonian [Eq. (2)] we have considered in this
paper has been chosen to take into account at the outset
two key experimental aspects of the metallic supercon-

ducting cuprates: the existence of a planar quasiparticle
Fermi surface and the presence of strong short-range an-
tiferromagnetic correlations between these planar quasi-
particles. It makes possible a detailed examination of the
physical consequences of the magnetic interaction be-
tween the quasiparticles, since one is at liberty to explore
what happens when one changes the shape of the quasi-
particle Fermi surface, the hole concentration, the
effective coupling g between the quasiparticles and the
low-frequency spin excitations, and the spectral density
of those spin excitations. Thus one can calculate the way
in which changes in these quantities influence the resis-
tivity, optical and other transport properties, and super-
conducting transition temperature, as well as determining
the changes in the normal state of the quasiparticle spec-
tral density and magnetic response functions which are
produced by their magnetic interaction.

The results we have obtained for the resistivity- and
frequency-dependent optical conductivity provide a
quantitative bridge between measurements of the
normal-state properties and the high superconducting
transition temperature. They illustrate clearly the impor-
tance of using an accurate quantitative description of the
spin-fluctuation excitation spectrum in calculating both
T, and normal-state properties. We find that when we do
so, the effective coupling between quasiparticles and spin
fluctuations required to get T, -90 K is substantially re-
duced, so much so that the corresponding dimensionless
coupling constant A, ~

—,'. We find that the simple form for

T, obtained in MP I persists when one goes to different
hole concentration and different spin-fluctuation parame-
ters and that a particularly useful expression for T, is

T, —= [ [g ( T, ) /a ]cosF( T, )( n, /0. 79 ) ]

1
X exp 0.37K (0)g

(31')

We also find that changes in the spin-fluctuation parame-
ters lead primarily to changes in the prefactor, the cutoff
energy for the effectiveness of the spin-fluctuation-
induced interaction, (cosg )z z. . To a first approxima-

C

tion this quantity is independent of g, while
A, =0.37K(0)g appears to be nearly independent of the
details of the spin excitation spectrum.

We have also demonstrated, by explicit calculations,
that when a substitutional impurity is located at a planar
copper site [Cu(2)], its infiuence on T, depends sensitively

on whether or not it influences the Cu spin-lattice relax-
ation time. Thus we found that Ni impurities, which
Ishida et al. ' have shown do not influence T, , can be
treated, in their influence on T„as though they are po-
tential scatterers of strength U =0.25 eV. Substitutional
Zn impurities, on the other hand, although nonmagnetic,
act to disrupt local magnetic order and also change the
effective spin-fluctuation-induced interaction responsible
for superconductivity; these thereby exert a much larger
influence on T, than their Ni counterparts. The good
agreement between our theoretical calculation and exper-
iment provides rather direct experimental evidence for
the spin-fluctuation origin of the high-temperature super-
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conductivity in YBa2Cu307.
The model Hamiltonian used in this, and our preceding

papers, has not been derived from first principles; indeed,
it may be argued that it is only because we have chosen to
adopt a more phenomenological experiment-based ap-
proach (introducing "experimental" quasiparticles and
"experimental" spin fluctuations) that we have been able
to make so much progress. Still it would be highly desir-
able to derive, from first principles, an effective low-
energy Hamiltonian of the form of Eq. (2) and to calcu-
late the effective spin coupling J(q) required to bring
about a self-consistent description. Also of great interest
is the extension of our approach to the "underdoped" 1-
2-3 and 2-1-4 systems, to see whether it can provide in-
sight into the magnetic origin of the measured
temperature-dependent g&( T) and modified esF( T) re-
quired to explain the NMR experiments, as well as re-
lating the reduced values of T, to changes in the low-

energy spin spectrum.
Other quite desirable extensions of the work described

here include a detailed examination of the accuracy of the
Eliashberg-Migdal approximation used here (preliminary
estimates suggest that, depending on the property, it is
valid to between S%%uo and 25%) and carrying out a con-
serving approximation of the kind used by Bickers, Scala-
pino, and White in their pioneering calculations of T,
and other properties (in which they used a r'=0 Hubbard
model and a value of nz not far from half-filling).

Calculations which at first sight appear similar to our
own have been carried out by Radtke et al. ~ 4' Howev-
er, both the resistivity and superconducting transition
temperature calculations reported in Ref. 40 are seriously
flawed. As we have shown in MP I and the present pa-
per, it is essential, in calculating the resistivity, to solve
for the self-energy self-consistently; thus, the Boltzmann
equation, relaxation time approximation, adopted by
Radtke et al. , can lead to serious errors. Second, in com-
puting T„ these authors limit the wave vectors of the
electron self-energy and pairing potential to the Fermi
surface. As we have shown by explicit example in MP I,
doing so leads, for a given choice of coupling constant, to
a serious underestimate of T, . Thus it is perhaps not
surprising that Radtke et al. obtain a too large planar
resistivity for the normal state of YBa2Cu307 and find
that constraints on the quasiparticle spin-fluctuation cou-
pling constant imposed by the conductivity require that

T, =7.2 K instead of the 90 K found here. In their more
recent work, Radtke et al. ' report on their predictions
for the suppression of T, by nonmagnetic impurities,
based on the model employed in Ref. 40. They find, con-
trary to the results presented here, what appears to be a
significant suppression of T, ; it is likely that this consid-
erable overestimate is a consequence of an inadequate
description of the way in which the self-energy of a quasi-
particle is modified by its coupling to spin fluctuations, as
well as their use of the Born approximation to treat im-

purity scattering.
The approach to strong-coupling spin-fluctuation-

induced superconductivity which may be closest in spirit
to that presented here is that developed independently by
Moriya, Takahashi, and Ueda, which has recently been
reviewed by Ueda, Moriya, and Takahashi. They have
reported, at both the Kanazawa conference and a subse-
quent conference in Tsukuba, on the results of strong-
coupling calculations for a Hamiltonian based on the
self-consistent renormalization approach of Moriya,
Takahashi, and Ueda. However, one cannot at present
carry out a comparison between the strong-coupling cal-
culations reported here and those of Ueda, Moriya, and
Takahashi, because the details of their computational
approach and the sensitivity of their results to the choice
of quasiparticle spectrum, spin-fluctuation spectrum, and
coupling constant have yet to be published.
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