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Degeneracy efFects on the relaxation and recombination of adsorbed doubly polarized
atomic hydrogen
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We determine the influence of the Kosterlitz-Thouless transition on the stability of doubly spin-
polarized atomic hydrogen adsorbed on a superfluid helium film and find that the lifetime of the gas is
enhanced dramatically in the superfluid phase. Moreover, the relevant rate constants have a discontinu-
ous behavior at the critical point. The observation of these effects is an unambiguous way to establish
the achievement of the phase transition experimentally.

I. INTRODUCTION

Since the observation by Kosterlitz and Thouless' that
in two-dimensional systems a phase transition can be
brought about by the unbinding of topological excita-
tions, it has been possible to apply their ideas not only to
such seemingly unrelated phenomena as melting and
surface roughening but also to the critical behavior of
granular superconductor s, Josephson-junction arrays,
neutral anyonic gases and superfluid He films. In par-
ticular, in the latter case various experiments ' have
clearly confirmed the predictions of the Kosterlitz-
Thouless theory and, most notably, the universal jump in
the superfluid density at the transition temperature which
was stressed by Nelson and Kosterlitz.

Being in the same universality class as liquid helium, a
gas of doubly spin-polarized atomic hydrogen (HJ, $) ad-
sorbed on a superfluid helium film is believed to have a
Kosterlitz-Thouless transition as well. Although this no-
tion is not new, there has not been any experimental
effort until recently to actually observe the transition.
The main reason for this is that at the high densities re-
quired, the atomic gas decays rapidly due to inelastic
three-body processes leading to the formation of hydro-
gen molecules. However, Svistunov, Hijmans, Shylapni-
kov, and Walraven' have suggested that the adsorbed
gas has effectively a much longer lifetime if it is in con-
tact with a large buffer volume. Moreover, they note that
in such a configuration the realization of the Kosterlitz-
Thouless transition can most easily be established by ob-
serving the discontinuity in the adsorbtion isotherm or its
influence on the decay of the density in the buffer volume.

Motivated by these promising ideas, we developed in a
previous paper" a microscopic theory for doubly spin-
polarized atomic hydrogen, which is valid at essentially
all temperatures for the densities of interest (n = 1 X 10'
cm ) because it includes the contribution of all two-
body or ladder diagrams. It, therefore, greatly improves
upon the one-loop theory of Popov, ' which turns out to
be unable to give an accurate description of the gas at the
experimentally relevant temperatures (T= 100 mK). "'
Furthermore, we calculated various important equilibri-
um properties of an atomic hydrogen gas adsorbed on
superfluid helium, such as the superfluid density, the crit-

ical temperature, and the adsorption isotherm.
However, we did not consider the effect of the

Kosterlitz-Thouless transition on the decay of the gas.
This topic was first discussed by Kagan, Svistunov, and
Shylapnikov, ' who found (but see Sec. III) that the
three-body recombination-rate constant near zero tem-
perature is about a factor of 6 smaller than slightly above
the critical temperature. They also conjectured that the
rate constant shows a discontinuous drop at the critical
temperature but their discussion makes use of the Popov
theory and can, therefore, only be trusted at temperatures
very far below the critical one. This is not the case for
our theory of the dilute Bose gas, which can be used to
settle this interesting issue of the discontinuity and even
estimate the magnitude of the effect if it exists. How this
works out is explained below.

The remaining part of the paper is organized as fol-
lows. In Sec. II we discuss the two- and three-body pro-
cesses that lead to the decay of doubly spin-polarized
atomic hydrogen and derive the density and temperature
dependence of the relevant rate constants. In Sec. IIA
we consider the normal phase of the gas just above the
critical temperature, whereas in Sec. II B we turn to the
required modifications if the gas is superfluid and we
have to deal with the presence of a quasicondensate. Our
final results are presented in Sec. III and the conclusions
of this work are summarized in Sec. IV.

II. DECAY PROCESSES IN ADSORBED H 10

A gas of doubly spin-polarized hydrogen atoms ad-
sorbed on superfluid helium with a binding energy of
about one kelvin would be absolute stable and an almost
ideal realization of a two-dimensional weakly interacting
Bose gas without the dipole interaction between the mng-
netic moments of the electrons and protons constituting
the hydrogen atoms. The magnetic dipole interaction,
however, leads to depolarization and the formation of hy-
drogen molecules, which diminish the density of atoms in
the doubly polarized state

~
l$). The rate equation for

the gas is thus

df1, = —Gn —Ln
dt
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where we have introduced the two-body relaxation- and
three-body recombination-rate constants 6 and L, respec-
tively.

For the strong magnetic fields that are used to increase
the stability, the relaxation is dominated by collisions
that flip one proton spin, whereas in recombination
events one and two electron spin-flip processes are rough-
ly equally important. Besides the magnetic-field strength,
the rate constants depend also on the temperature and, in
the degenerate regime, on the density of the gas. As we
shall see shortly, the determination of these dependencies
is greatly simplified by the fact that at subkelvin ternpera-
tures, the thermal de Broglie wavelength
A=(2M /mksT)'~ of the hydrogen atoms is much
larger than the range of the interaction and only s-wave
scattering is of importance. Hence, the momentum
dependence of various collisional quantities can be
neglected and we can use effective-range theory to ex-
press our results solely in terms of the scattering length.

Furthermore, in the three-body process a large amount
of energy is released, which makes it highly improbable
for the particles involved to remain adsorbed on the sur-
face. As a result, the rate constant is nearly independent
of the angle 8 between the magnetic-field direction and
the surface normal. ' For two-body relaxation this is not
true and we have the strongly anisotropic result, '

G(8}=Gosin (28)+Gzsin (8)[1+cos (8)],
with the term proportional to Gz corresponding to a
transition that changes the angular momentum by +km.
Thus, for a magnetic field perpendicular to the surface,
the relaxation rate vanishes. Unfortunately, this ideal sit-
uation cannot be realized everywhere on the superfluid
helium film for the experimental configuration under con-
struction' and relaxation processes are allowed.

Despite this fact, it is well known that three-body dipo-
lar recombination is the dominant decay mechanism at
the high densities needed for the establishment of the
Kosterlitz- Thouless transition at moderate ternpera-
tures. Nevertheless, we discuss here also the decay of
the gas due to two-body collisions, because in the
superfluid phase the recombination rate is reduced con-
siderably and it is a priori not clear that relaxation does
not contribute significantly to the decay of the system.

this simply implies that pf =p,. +mh„&. The initial and

final states of the transition matrix element are continu-
um eigenstates of the zeroth-order Harniltonian, includ-

ing the central (singlet-triplet) interaction between the
hydrogen atoms, and obey ingoing and outgoing asymp-
totic boundary conditions, respectively. Notice also that
we have suppressed the spin indices to simplify the nota-
tion.

At sufficiently low temperatures (ks T ((b, „&), the tem-
perature dependence of the relaxation rate is determined
by the low-energy behavior of the initial state, which fac-
torizes as'

4'+'(r) T (0,0;2e )P(r),
pro

(4)

and we find

introducing the kinetic energy e =p /2m and the (off-

shell} two-body T matrix T (0, 0; E} at energy E. In
two dimensions, the T matrix develops a logarithmic
singularity and we must use

2
T2s( 0 0 )

477fl /
i —ln(p .a /SA' ) —2y

with y=0. 5772 Euler's constant and a=2.40 ao the
two-dimensional scattering length for a collision of two
doubly polarized atoms.

Substituting these results in Eq. (3) and performing the
thermal average, we expect the relaxation-rate constant
to have the asymptotic behavior,

G(T) C (2~)
»o " 1n'(a/A)

and, in particular, to vanish at zero temperature. How-
ever, this last feature is an artifact caused by the neglect
of the influence of the surrounding gas, which is only
justified if the degeneracy parameter n A is small. In the
degenerate regime where n A =8(1), the average kinetic
energy is comparable to the average interaction energy
and we must add the self-energy RX to E'p to obtain the
dispersion of the atoms. Consequently Eq. (4) is modified
into

4'+'(r) —T (0, 0;2e —2A'X)$(r)

A. Normal phase

Treating the weak magnetic dipole interaction V as a
perturbation and neglecting the influence of the sur-
rounding gas on the collision, the relaxation-rate constant
is given by

G(T) —C„i T (0,0; —2fiX)
rlo

which does not vanish at zero temperature because the
self-energy obeys"

A'X —2nT (0, 0; —RX)
r$o

Here CG is a proportionality constant, 4 is an unnormal-
ized symmetrization operator, and &

. . ),h denotes a
thermal average over the initial relative momentum p; of
the colliding particles. The integral is only over the
direction of the final relative momentum pf, since the
magnitude is determined by energy conservation. Denot-
ing the energy released in the relaxation process by 4„&,

and is nonzero in this limit.
A similar discussion is possible for the recombination

process. In the first instance, the decay rate is written as

(10)
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with r the distance between the particles of pair j, and

p their relative momentum. ' As a result we find that

6

L (T) —C„,
ln (a/A}

(12)

which is incorrect in the degenerate regime where we

must take into account that the particles do not collide in

a vacuum. The correct behavior is then

L (T) —C.„T (0,0; —2%X)
v.go

(13)

At this point it is important to realize that the dom-
inant corrections to Eqs. (8), (9), and (13) can be neglected
if the average kinetic energy is small compared to the
self-energy fiX. For atomic hydrogen this implies rough-

where p,. and q; are the Jacobi momenta' of the three in-

coming atoms and qf is the relative momentum of the
outgoing atom with respect to the center of mass of the
hydrogen molecule, having the rovibrational quantum
numbers (U, l, m). In addition, V now represents the sum
of the dipole interactions between the three pairs.

If k~T &&5„„the temperature dependence is again

solely determined by the low-energy behavior of the ini-

tial state. However, an effective-range theory for a
three-body collision in two dimensions is not available at
present. Nevertheless, we can make progress by realizing
that in three dimensions, a Jastrow-type wave function is

an excellent approximation for the initial state. Applying
the same idea to two dimensions we are led to

)P'+'([r, I) —P T (0,0;2m~ )(}I)(r,),

ly that n A & 2, which is sufficient for our purposes be-
cause at the critical temperature we have n A, =6 and the
above asymptotic expressions can, therefore, be used in

the temperature interval T, ~ T & 3T, . Clearly, below the
critical temperature modifications are needed to also take
the effect of the quasicondensate into account. This is
our next objective.

B. Super8uid phase

The decay rates derived above are in their region of va-

lidity independent of temperature and depend only on the
density of the gas. Due to this feature we can incorporate
the inhuence of the quasicondensate by means of the
correlator method devised by Kagan, Svistunov, and Shy-
lapnikov. '" Here we present their approach in a some-
what different language, which is more convenient for a
discussion of the wave-function renormalization that is

required to cancel certain ultraviolet divergences and
that was performed incorrectly in Ref. 14. Furthermore,
we use the simpler two-body process as an example.

%e describe the relaxation of the gas by means of the
contact interaction,

V"'= —fdxVgt(x)1( (x)g(x)1()(x),1

2
(14)

and the usual field operators p (x} and 1((x), creating or
annihilating a particle at position x. Here V is an

effective potential amplitude, which must be adjusted at
the end of the calculation to reproduce the results of Sec.
IIA above the critical temperature. Bearing this in

mind, the decay rate out of an initial state lt & with ener-

gy E; is found from Fermi's Golden Rule and equal to

(', = jd fdx xX(i d (x)d 'tx)d(x)ddx) f (f —d (x )d (x )d(x )'ddx )'()5(E'~ E') . —
f I

I 0= f dx fdx'g (011()(x)g(x)lp",—p" &

P

X (p", —p" lP (x')f (x')lO&

X5(2e "—b,d), (16)

denoting the vacuum by l0& and the volume of the sys-

tem by V. The energy 5„& released in the relaxation pro-
cess is, of course, due to the spin degrees of freedom,
which we have again suppressed for clarity reasons.

Returning to the relaxation rate in a gas we must take
for li & and lf & N-body states. However, if the energy
released is large compared to the thermal energy kz T we

can approximate EI E; by e~. +@~-—b,„—
&

and lf & by

In particular, we can obtain the intrinsic two-body rate
without degeneracy effects by using l i &

=
l p, p' & and tak-

ing the limit p,p'J, O for pAp'. The final state
lf & then

equals lp", —p" & and we have

and after a thermal average over the initial states, that

NI (T)=I (Pt(x)g (x)g(x)1t)(x) &,„
2n

th

N—=r~"'(T)
2

(18)

Above the Kosterlitz-Thouless transition temperature
the correlator E' '( T) is one and we have the obvious re-

sult that the decay rate in the gas is equa1 to the intrinsic
two-body rate I o times the number of pairs. Below the

transition temperature we have to deal with a quasicon-

lf'& lp', p" &, where the state l
f'& contains only parti-

cles with small momenta compared to p' and p" because
the relevant initial states have the same property. As a
result we find first of all that

V2
r, =r, (ill('(x)q'(x}y(x)y(x)li &,
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(19)

densate, which implies that (g(x)),h is nonzero and

equal to the square root of the quasicondensate density
no. We then use f(x)=+no+/'(x) to calculate the
correlator. This gives

2I
1K' '(T)= n 1+ +4n n'+2(n')

np
0

(24)

collision of two atoms in the quasicondensate, is exactly
cancelled by a wave-function renormalization. Conse-
quently the two-body Tmatrix in I 0 [cf. Eq. (8)] is renor-
malized to the many-body T matrix and we obtain

2

G(T)=C„i T (0 0 0 0') Kg '(T),

in terms of the normal and anomalous averages
n'=(f' (x)f'(x}),h=n no—and n,'=(g'(x}g'(x)),„, re-
spectively.

As mentioned previously, we use the T-matrix approxi-
mation to evaluate these expectation values. Within this
framework, the quasicondensate density is obtained from
no= —p'/T (0,0,0;0) and the many-body T matrix:

where the renormalized correlator is

Kz '(T)= no+4non'+2(n')21

271

1
2n —n2 — 2 .

o (25}

T (0 0 0;0)= T (0,0;2p') 1+T (0,0;2p')

N(fico&)

V fuu&

(20)

and finite.
In exact analogy with the above treatment of the two-

body case, we find for the recombination-rate constant,
the result

6

I.( T) = C„, T (0,0,0;0} K„' '( T),

E'p 6p P f1COp+—g' N(%co&)+ (21)

and the prime denotes that the summation is only over
such momenta that E'p P cop' since the quasicondensate
density np accounts for the occupation of momentum
states below this cutoff. " Moreover, the anomalous ex-
pectation value is found to be

I
Pl a

no

2N(A'cop)+ 1
P TMB(0 0 0.0)

V 2fico~
(22)

and diverges in the ultraviolet, which makes Eq. (19)
meaningless as it stands.

However, it is clear from the structure of the correlator
what the physics of this divergence is. From the use of a
contact interaction we expect the decay rate to be pro-
portional to the probability for two atoms to be at the
same position and in the T-matrix approximation this
probability is

'2
2N(Ace )+1

le&+~(0)I'= 1 ——y' ' T"'(0 0 0 0)
V 2%a)

I 2

1+ (23)
Plo

Therefore, the divergence of the term in the correlator
that is proportional to no, and thus corresponds to the

which incorporates the inhuence of the surrounding gas
on the collision of two hydrogen atoms. Here N(iiico~) is
the Bose distribution for quasiparticles with the Bogo-
liubov dispersion relation fico& = (e& 2p'e )',—p,

' is
determined by the equation of state,

r

N(fico@)
n =

z~ 1+2T (0,0;2p') —g'
T (0,0;2p') V fin)p

r

with

KrI '( T) = 6n —9n n +4n 0
1

6n
(27)

the correlator ( g (x)p (x)1(t (x)p(x)p(x)p(x) ),h/6n
after the cancellation of the divergences due to the anom-
alous expectation value n,'.

Notice that, although Eqs. (24} and (26) are derived
here in a somewhat formal manner, they are easy to inter-
pret. Starting from the expressions for the decay rates in
the normal phase, the presence of the quasicondensate
brings about two modifications. First, we have to take
into account that if two or three particles in the quasicon-
densate collide, the correct normalization of the initial
wave function requires a decrease of the rate by a factor
of 2f or 3!, respectively. This is taken care of by the re-
normalized correlator. Second, the scattering of two
atoms is influenced by the surrounding gas, which renor-
malizes the two-body T matrix to the many-body T ma-
trix. As shown in Sec. III the latter brings about a
dramatic reduction of the decay rate just below the criti-
cal temperature.

III. RELAXATION AND RECOMBINATION RATES

Before we discuss the experimentally more interesting
situation of an adsorbed atomic hydrogen gas at constant
chemical potential, we first consider a gas at fixed density
to bring out more clearly the intrinsic magnitude of the
degeneracy effects. In Fig. 1 we present the decrease af
the recombination and relaxation rates as a function of
temperature for a density of 1 X 10' cm and compare
it to the decrease due to the renormalized correlator
alone. At low temperatures the many-body T matrix is
approximately equal to T (0,0; —A'X) and independent
of temperature. Under these conditions the temperature
dependence of the effect is primarily determined by the



H. T. C. STOOP AND M. BIJLSMA

10
4

(a)

10 =

1O
10 10

T (K)

-1
10

correlator but the magnitude is considerably larger, since
the ratio T (0,0; —2%X)/T (0,0; —fiX) is about 1.16 at
this density. The recombination rate is, therefore, at zero
temperature, reduced by more than a factor of 14 instead
of by a factor of 6. It is important to note that this addi-
tional reduction follows also from the Popov theory.
Nevertheless, it was not found by Kagan, Svistunov, and
Shylapnikov, who neglected the change in the two-body
scattering probability due to the presence of the
quasicondensate.

At higher temperatures and, in particular, near the
critical temperature (T, =56 mK) the influence of the in-

creasing number of quasiparticles on the collision of two
atoms is greatly enhanced, leading to a sharp decrease of
the decay rate in contrast with the prediction from the
cor relator alone. Clearly, there is a discontinuous
behavior at the critical temperature. Although there is no

doubt about this discontinuity itself, which is a result of a
similar behavior of the quasicondensate density, its mag-
nitude might be overestimated in the ladder approxima-
tion. As we have argued before, higher-order fluctuations
are of importance near the critical temperature but can,
in the equation of state, be approximatelp accounted for
by adjusting the infrared cutoff. " Unfortunately, the
same does not have to be true for the decay rates. How-
ever, it is not difficult to see from the inequality
T (0,0,0;0) T (0,0;2p') that the results presented in
Fig. 1 are qualitatively correct and, in particular, that the
magnitude of the discontinuity is much larger than ex-
pected on the basis of the correlator alone.

Bearing these considerations in mind we now turn to
an adsorbed atomic hydrogen gas at a fixed chemical po-
tential, which in practice is determined by the density of
the three-dimensional buffer volume. An important
quantity in these circumstances is the adsorption iso-
therm, which also shows a discontinuity at the critical
point of the Kosterlitz-Thouless transition. ' The reason
for this is that in the superfluid phase the chemical poten-
tial obeys p=(2n —no)T (0,0,0;0), whereas for the
normal phase we find p=A'X=2nT (0,0; —2A'X) in the
degenerate regime. As a result the chemical potential is
continuous at the transition if the density in the
superfluid phase is about a factor of 3 larger than in the
normal phase. MoIe precise values for the density ratio
are shown in Fig. 2.

Hence, increasing the density of the buffer volume
beyond its critical value leads to a discontinuity in the
rate constants that is different from the one depicted in

Fig. 1. Qualitatively it diminishes the effect, because in

the normal phase the density and consequently also the
rate constant is reduced. In Fig. 3 we present our results
for the reduction of the recombination- and relaxation-
rate constants under these conditions. Although there is
some temperature dependence we see that in the
superfluid phase the recombination-rate constant is de-

(b)
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I I I I I I
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FIG. 1. Factor by which (a) the recombination- and (b) the
relaxation-rate constant decreases in the superAuid phase of
atomic hydrogen at a fixed density of 1X10' cm . In both
cases the full result is given in curve 1, whereas curve 2 shows

the decrease due to the renormalized correlator only.

FIG. 2. Factor by which the two-dimensional density in-

creases at the critical point of an adsorbed hydrogen gas in
thermal contact with a three-dimensional buffer volume.
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FIG. 3. Factor by which (1) the recombination- and (2) the
relaxation-rate constant decreases at the critical point of an ad-
sorbed hydrogen gas in thermal contact with a three-
dimensional buffer volume.

creased by a factor of around 400, whereas the
relaxation-rate constant is decreased by a factor of about
8. Notice also that if we are interested in the decay rates
we must take the discontinuity in the two-dimensional
density into account again and roughly divide the results
for the recombination-rate constant by nine and the re-
sults for the relaxation-rate constant by three, respective-
ly.

Finally, we discuss the relative importance of the
recombination and relaxation processes. Using the ex-
perimental values L =1.4X10 cm /s for the three-
body ' and 6=2.5X10 ' cm /s for the two-body rate
constant, we estimate with the help of Fig. 1, that at a
density of I X 10' cm and near the critical tempera-
ture, a typical time scale for the decay due to recombina-
tion is r„,=10 s and due to relaxation r„i—-40 s. The
dominant decay channel, therefore, remains the three-
body dipolar recombination even though the rate con-
stant is reduced considerably. From an experimental
point of view this is an interesting result, because it
simplifies the analysis of the decay kinetics. In particu-
lar, it thus seems that no corrections are needed to in-

corporate the fact that the magnetic-field direction is not
everywhere perpendicular to the helium surface. An
average over the density profile may be necessary, howev-
er, to account for the inhomogeneity of the system. This
situation is not considered here, because it depends too
much on the details of the experimental setup.

IV. CONCLUSIONS

In summary, we have shown that the Kosterlitz-
Thouless transition has a profound effect on the stability
of adsorbed doubly polarized atomic hydrogen. Not only
are the relaxation- and recombination-rate constants re-
duced substantially, but the phase transition also leads to
a discontinuity in these rate constants at the critical
point. This is true in the case of adsorbed atomic hydro-
gen at a fixed density but also in the experimentally more
important case of an adsorbed gas in thermal equilibrium
with a large bufFer volume. Considering both two-body
relaxation as well as the three-body recombination, we
have found that the three-body process primarily deter-
mines the lifetime of the system even if we take the reduc-
tion of the decay rates into account.

With respect to the latter, it should be remembered
that our results are valid in lowest order of k~T/b„
where b, is the energy released in the inelastic collision.
For the recombination process this is an excellent ap-
proximation, because the energy released is several tens
of a kelvin. However, for the relaxation this is not the
case and the first-order corrections are of importance in
principle. They can be evaluated by a more advanced
theory, which is similar in spirit to the one used to dis-
cuss the influence of Bose-Einstein condensation on the
decay of a three-dimensional gas, and are expected to fur-
ther reduce the rate constant. Therefore, our con-
clusion that recombination is the most important decay
mechanism remains valid for the conditions envisaged in
future experiments and it does not seem necessary at
present to develop also the theory for the calculation of
the first-order corrections.
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