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We have measured the thermal conductivity x and the thermal diffusivity a of a dense bulk ceramic
polycrystalline sample of YBa,Cu,Og (1:2:4) in the temperature range 30-300 K. We find k=10
Wm~!K™!at 100 K, significantly higher than in ceramic YBa,Cu;0,_j (1:2:3) and approaching the in-
plane value for single-crystal 1:2:3, and decreasing to 7.6 Wm ™! K ! at 300 K. The data for this sample
can be described by standard theories for phonon thermal conductivity of crystalline materials with
boundary, phonon, and electron scattering. The higher « in 1:2:4 as compared to 1:2:3 is, in this model,
due to the smaller point defect scattering in the former. The fitted parameters for the three scattering
mechanisms all agree with independent estimates based on simple models; inserting data for electric
resistivity, grain size, carrier density, and lattice properties we can predict k and its T dependence to
within about 20%. We also discuss models for the phonon and electron thermal conductivities in some
detail, including some second-order effects such as inelastic electron scattering and a 7-dependent car-

rier density.

I. INTRODUCTION

Studies of the thermal conductivity « give valuable in-
formation on the interaction between charge carriers and
phonons and on the scattering of both by defects and im-
purities. Since « is also unusual in having a nonzero
value in both normal and superconducting states there
has recently been a surge of interest in data for « in high
transition temperature superconductors (HTS). Abun-
dant data now exist for « in both ceramic, polycrystalline
material, and in single crystals of most HTS materials, in
particular for YBa,Cu;O,;_5 (1:2:3), as discussed in
several recent reviews."”> However, because YBa,Cu,Oy
(1:2:4) is difficult to produce as a high-density bulk ma-
terial or as large single crystals we know of no previous
data for this material. We have, therefore, recently
presented® data for « in dense, bulk, ceramic, polycrystal-
line 1:2:4 as a function of temperature T over the range
30-310 K. The data were briefly discussed in terms of
available theories, and we showed that «(7T) was surpris-
ingly different in 1:2:4 and 1:2:3 in spite of the very simi-
lar crystal structure. At all 7, phonon-phonon interac-
tions give rise to a much larger thermal resistivity in 1:2:4
than do electron-phonon interactions, while point-defect
scattering was found to be negligible, probably because of
the stable oxygen stoichiometry of 1:2:4. In contrast,
point-defect scattering dominates k completely*> in 1:2:3,
even for single crystals.

We give here a more complete analysis of our data.
Our most important conclusion is that, contrary to
several recent reports,%’ the BCS-based semiclassical
theory! used here is able to describe «(T) for our 1:2:4
sample very accurately; even the magnitudes of the three
dominating scattering terms agree with those given by
simple estimates. Although we show that the agreement
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between theory and experiment can be improved even
further by taking into account second-order effects such
as inelastic electron scattering, fluctuations, and a possi-
ble change in carrier density with T, we believe that the
basic thermal transport properties of our sample can be
well described by this theory, particularly if realistic pho-
non data are used.

The paper is structured as follows: In Sec. II we de-
scribe the sample and the experimental methods used.
This is followed by a brief account of our experimental
results in Sec. III. Section IV describes the theoretical
model used, in particular models for the phonon-phonon
interaction and Umklapp scattering, and we discuss the
interaction of point-defect scattering with other scatter-
ing mechanisms. In Sec. V we then discuss our experi-
mental results in terms of the theory just presented. The
results for each scattering mechanism are discussed sepa-
rately, and we compare the results with the simplest pos-
sible theoretical models for phonon and electron trans-
port. Finally, we present our conclusions in Sec. VI.

II. EXPERIMENTAL DETAILS

A. Material synthesis and characterization

Dense bulk polycrystalline ceramic material was pro-
duced by hot isostatic pressing (HIPing) a mixture of
CuO and 1:2:3 powders in Ar, using a glass container to
avoid losing oxygen as described previously.® The ma-
terial was characterized by x-ray diffraction and the
diffraction spectrum was in excellent agreement with
literature data.” No peaks attributable to unreacted
starting materials were found, but optical micrography
indicated the possible presence of small CuO inclusions
and showed the sample to be an aggregate of randomly
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oriented grains with typical dimensions 20X20X2 um?.
The porosity was less than 2%, in agreement with the
measured density d which was indistinguishable from the
theoretical value. Near the surface of the HIPed cylinder
macroscopic cracks opened during cooling because of the
difference in thermal expansivity between the glass and
the 1:2:4. For the measurements of «, a rod with dimen-
sions 0.7X0.9X13.8 mm?® was therefore cut along the
axis of the cylinder where the homogeneity was best. The
measured electrical resistivity p was 630 ) cm at 300 K,
in excellent agreement with our previous data for nomi-
nally identical material.!® The onset transition tempera-
ture T, was 79 K with a transition width of about 4 K.

B. Measurements of thermal conductivity
and thermal diffusivity

To obtain the best possible accuracy in k over the
range 30-310 K two different methods were used. Below
160 K we measured « by the standard longitudinal
steady-state method."!""'> However, in this method
thermal radiation can lead to serious overestimates of «
at high T (Refs. 1, 4, and 11-14), and above 70 K we
therefore used instead the standard version of
Angstrom’s temperature wave method, which, in princi-
ple, eliminates heat-loss effects. This method actually
measures the thermal diffusivity a, but x can be found
from k=adc,, where c, is the specific-heat capacity.

All measurements were carried out in a vacuum of
about 2X 107> mbar near 300 K and very much better
near 100 K. The sample was provided with a heater in
one end and was attached at the other to a copper heat
sink to which all wires were thermally anchored, and
which could be screwed to the inside of a Cu chamber in
the cryostat. In the steady-state method, k was measured
over a distance of 5.3 mm on the sample using calibrated
type-K thermocouples, 50 pm in diameter. The heater
power was calculated from measured currents and volt-
ages, and the data were corrected for Joule heating in,
and heat conduction along, connecting wires. A theoreti-
cal estimate showed radiation losses to be negligible
(<1%) below 100 K. To eliminate a small apparent
background in AT the heater was switched periodically
with a period of several minutes, much larger than the
observed time constant of the sample. Measurements
with different input powers gave practically identical re-
sults, and the data shown below were obtained with
AT =2 K between the thermocouples. Below 50 K, the
corrections were more than 20% of the measured values
and we believe the data in this region to be the least accu-
rate.

The thermal diffusivity @ was measured using
Angstrém’s method,!""!%15 j.e., calculating a from the at-
tenuation and phase shift of a temperature wave between
two points on the sample. In this experiment the two
points were separated by about 1 mm, the signal period
was in the range 4-30 s, and we used equipment and
methods described by Jacobsson and Sundqvist.'® Be-
cause of the high power used we could not reach 7' <70
K with this method, and the resulting large dT /dx might
also smear the sharp changes in d«k/dT often observed':?
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near T,.. With this method the experimental error in «
increases at low T, since dcp /dT increases with decreas-
ing T and small errors in T can then give large errors in
K. ¢, was measured between 250 and 350 K, in which
range our data differed by a factor of 1.040+0.002 from
literature data.!” Below 250 K we therefore used the data
of Ref. 17, multiplied by this constant to match ours. In
some experiments we found a to depend on signal fre-
quency and the surrounding medium (air or vacuum).
This problem was expected!® because of the small sample
and its low a, but the magnitude of the problem was
unexpectedly large which was traced to heat storage
effects in the adhesive holding the thermocouples in
place. Using the theory of Ref. 18 we could reproduce
qualitatively the errors and show them to be below 1%
under the conditions used in later runs. One set of mea-
surements was also made using a related two-frequency
method!® with the sample immersed in solidified castor
oil, and thus completely different boundary conditions;
both methods gave the same results. In the final runs,
heater periods of 4-20 s gave indistinguishable results,
and we believe that this method gives a significant im-
provement in experimental accuracy above 200 K com-
pared to the steady-state method.

For both methods the dominating source of systematic
experimental error was the uncertainty in sample dimen-
sions and thermocouple distances. We estimate max-
imum errors of =5 and +10 % from geometrical errors
for the steady-state method and Angstrom’s method, re-
spectively. To these figures should be added T-dependent
errors smaller than 3% for the steady-state method,
while for k obtained using Angstrém’s method we esti-
mate a maximum 7-dependent error of £2% at 300 K
and +4% near 150 K. As shown below, the rms statisti-
cal scatter in both methods is below 2% and the mea-
sured T dependence is therefore much more accurate
than the magnitudes of .

III. EXPERIMENTAL RESULTS

Figure 1 shows p as a function of T for our sample.
The data are very similar to previous data'® and, as be-
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FIG. 1. Electric resistivity p vs T. Solid curve is a Bloch-
Griineisen function fitted to the data.
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FIG. 2. Thermal diffusivity a as a function of T from one ex-
periment.

fore, a Bloch-Griineisen expression for phonon limited
resistivity could be fitted to the data with excellent re-
sults. With an effective Debye temperature 6, =276 K
and a residual resistivity py=99.3 uQ cm the rms devia-
tion between the data and the fitted function (shown in
the figure) was 2.5 uQ) cm. As before, the addition of a
parallel resistivity term!° Ppar=4.4 mQcm significantly
improved the fit. In the present case we attribute this
term to conduction through c-axis-oriented grains in the
polycrystalline sample, but an intrinsic saturation
behavior cannot be ruled out.?® With p,,  included, the
other fitted parameters become O, =389 K and p,=132
©Q cm, and the fit became visibly better with an rms de-
viation of 1.6 yQ cm. The measured p at 300 K corre-
sponds!® to an in-plane resistivity near 400 pQcm, in
reasonable agreement with single-crystal?! and thin-film??
data.

In Fig. 2 we show a as a function of T, while final data
for k were given in Fig. 1 of Ref. 3. Below 140 K we used
data obtained by the steady-state method, while above
140 K we calculated « from a. In the region 70-160 K,
where both methods were used, the magnitudes of «
agreed to within the combined errors while the average
dk/dT differed by about 10%. Data from the two sets
were multiplied with suitable constants to match at 140
K. We know of no other data for either a or « in 1:2:4
and we refer to Ref. 3 for a comparison with data for
1:2:3, in both single-crystal and sintered, polycrystalline
form. We note that the magnitude of k in our ceramic
1:2:4 sample is very similar to the in-plane x of 1:2:3 near
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100 K, while for sintered 1:2:3 « is significantly lower,
3-5 Wm™!K™!. Also, for 1:2:4 k decreases by 26% in
going from 100 to 300 K, while for single crystal 1:2:3 «
depends weakly on T for T>T,. (For melt-processed
1:2:3 a decrease in k similar to that found here has been
observed.’) The differences between the data for « in
1:2:3 and 1:2:4 are also reflected in similar differences be-
tween the data for @ in 1:2:4 (Fig. 2) and those for 1:2:3
(for example, from Refs. 23).

IV. THEORETICAL MODEL

A. Lattice thermal conductivity

Neglecting unusual mechanisms, such as vortex con-
vection or pair condensation-evaporation transport be-
lieved to exist! in the superconducting state, K can be
written as the sum of an electronic thermal conductivity
K,, discussed in the next section, and a phonon thermal
conductivity x,. In HTS materials « is dominated by «,,,
and we analyze our data for k, using a model based on
BCS theory,?* applied to HTS materials by Tewordt and
Wolkhausen?® and used in most works since.' > In this
model,

K—T3f

where x =#iw/kyT and 7(x,T) is a relaxation time. We
have included the usual prefactors’*?* in 7, which we
write

= e ]
=A+BT**+CTxg(x,T/T,)
+Df(x,T)+ET*? . )

T(x T)x*e*(e*—1)"%dx , (1)

The terms describe phonon scattering by boundaries,
point defects, electrons, phonons, and sheet defects, re-
spectively, and g (x,T/T,) is the ratio between the relax-
ation times in the normal and superconducting states.
We neglect the effects of sheetlike faults’>> since 1:2:4
does not contain twins, although it might contain stack-
ing faults. We tried several times to add such a term to
the fitted functions but always found a best fit with E =0.
We also exclude the anisotropy correction’* to the
electron-phonon term, since we study a polycrystalline
sample, and effects of unusual scattering centers such as

TABLE I. Limiting low- and high-T behavior of the lattice thermal conductivity A, for the different
scattering mechanisms and models discussed in the text.

Inverse relaxation

-1

Scattering agent time 7 Low-T limit High-T limit
Boundaries A A,=26T%/4 A,=6}/34
Electrons CTx A,=17.2T*/C A,=6%/2C
Phonons (standard model) DT3x? A,=3.3/D A,=©,/DT
Phonons (Peacor et al.?) DT*x? A,=3.3/DT A,=©,/DT?
Phonons (Umklapp freeze) DT3x2exp(—©p /aT) A,=3.3[exp(©p /aT)]/D A,=©p/DT
Sheet defects ET*x? A,=3.3T/E A,=Op/E

*Reference 4.
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tunneling states.! Fluctuation effects may be important
near T, since a decrease in carrier density decreases the
electron scattering rate and thus increases , above that
given by the model, but as discussed by Cohn et al.'* no
theory yet exists for such effects on «,,.

To illustrate the effects of various scattering terms we
define phonon thermal resistivities W, (i=b, d, e, p, and
s) as the resistivity W, =«, Yr=r,) found from (1) if
only a single scattering mechanism is active. We show in
Table I the low- and high-T behavior of four of these
terms, excluding the point-defect term which can only
dominate at intermediate 7. (We define W, as the total
phonon thermal resistivity W, =x, ')

For the phonon-phonon interaction term f(x,T) we
tried several models which we discuss in some detail,
since this mechanism dominates® « in 1:2:4. The stan-
dard model'126?7 £ =T3x2 gives k, <T~'at T>6p, but
below about ©, /4 it gives a constant «,, while experi-
ments show!! an exponential increase due to freezing out
of Umklapp processes. We have thus added a factor
exp(—Op /aT) as suggested in the literature;'""?® the
constant a varies the effective Umklapp cutoff tempera-
ture, and data for insulators'""?® suggest a~2.2. Instead
of an exponential term, Cohn et al.>!* and Peacor and
co-workers*28 use f = T*x? since this gave’ the best fit to
the low-T data. However, such a term gives k, < T ?at
high T which does not agree with experiments.
Florent'ev et al.? even use f=T"x?, giving K, < T 3%at
high 7.

We illustrate the differences between the terms in Fig.
3, showing calculated values for W,, vs T/© for the
“classical” term 7, '=DTx?, the modified term DT*x?
used by Peacor etal,* and two terms
DT3x%exp(—©p /aT), one with a=2.2 as for insula-
tors'26 and one with a=>5 to shift the Umklapp cutoff to
T <<©p, thus giving W,, < T down to very low T. Data
are shown for 0=<7 =20, and normalized such that
W,,=1at T=0p. The behavior observed experimental-
ly, pr a« T at high T and an exponential decrease below,
is only shown by the exponential terms, but Fig. 3 sug-
gests a reason why Peacor and co-workers“?® and Cohn
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FIG. 3. Calculated phonon-phonon thermal resistivity W,
vs T/O, for different models of the function f(T,x). Solid
curve: f=T3x?% long dashes: f=T"x? dotted and short
dashes: f=T>x2%xp(—O,/aT), dotted with a=2.2 and short
dashes with a=>5.
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and co-workers>'® could successfully use 7, '=DT*x*
Below 0.5, this term has a T dependence very similar
to that of the exponential term.

For p we can assume that terms due to different
scattering mechanisms add to give p=p,, +p,
(Matthiessen’s rule). This is not true for W, except!! in
the rare case that normal phonon-phonon scattering
dominates k. We illustrate this in Figs. 4(a)—4(c) which
show calculated data for W, as defined above, vs T /0.

p
Figure 4(a) shows =w_"! and «k,,=W, !, both nor-

pe  Vpe Pp P

malized to 1 at T=0, by a suitable choice of the param-
eters C and D. If Matthiessen’s rule is valid we can cal-
culate «x, by adding thermal resistivities, such that
k,=(W,,+W,,)"" (dashed curve in the figure), ie.,

k,=0.5 at T=0©). Carrying out the calculation using

T T T
E 2 + a —
'S
3
£
St —
*
0 1 1 !
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T/BD
T T T
@ 2Ff b 4
o
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3
o
—
St -
¥ “i“§“‘—‘
0 —t—— . +
0.4 0.8 1.2
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10 T T

FIG. 4. Calculated data for relative x, vs T/6p. (a) Solid
curve: W,.!, dotted: W,,'. Dashed curve is (W, +W,,)"!
while dot-dashed is calculated from Eq. (1) using
r!=77"1+7,'. (See text for details.) (b) Same as (a), but with
point-defect scattering instead of electron scattering. (c) Full
curve: W,,'. The curves below show the effect of adding in-
creasing amounts of point-defect scattering, from the top down
corresponding to W,;=0.1, 1, and 10 % of W,, at 300 K. Note
logarithmic axes.
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(1) we find «,=0.45 at this T, and the result thus agrees
with Matthiessen’s rule to within about 10%. This is not
so if we replace W, by W, [Fig. 4(b)]. The dashed
curve shows the result expected from Matthiessen’s rule,
but adding point-defect scattering to phonon scattering
actually cuts «, down to 0.035 at ©p, hardly distinguish-
able from zero on the scale of the figure. Adding W, to
W, in the same way we find an even smaller x,=0.009.
The effect is not a simple scaling effect, in which case we
could still use an “effective” Matthiessen’s rule. From a
large number of calculations with W,;, < W, we find that
the addition of point-defect scattering can be approximat-
ed by functions of the type W, =W;[1+G(W,;)*/W}],
with G =109 and £€=0.66 for i =pe and G =28, £¢=0.53
for i=pp. The total W is strongly nonlinear in W,; and
when we combine defect scattering with a T-dependent
scattering mechanism not only the magnitude of W but
also the slope dW /dT are changed. This is illustrated by
Fig. 4(c) showing the effect of adding increasing amounts
of point defects to a sample initially dominated by
phonon-phonon scattering. We use a log-log plot to un-
derline that the initial 7' dependence of «, is
transformed into a T~ 7 dependence, with B<1. Small
amounts of impurities or defects can thus have very large
nonlinear effects on the total x and depress its value much
more than a naively expected, even modifying its expect-
ed functional dependence on T, as recently found for
solid Cg. We thus cannot write W=W,+W, +W,
when strong defect scattering is present, and the analyses
of k in 1:2:3 by Yu et al.® and others®! along these lines
are of doubtful value.

B. Electronic thermal conductivity

In the normal state, k, is 10-15 % of the total « for
our sample. Although we shall devote most of our
analysis to the dominant term «,,, it is necessary to have
an accurate model for «, in order to find the true magni-
tude of «,,.

Although other models have been suggested,®’ it is
usually assumed that «, can be calculated reasonably ac-
curately from p, using Wiedemann-Franz’ law. As a first
approximation we have thus used the expression'!
k,=TL,/p above T,. Since p extrapolates to p=0 at
T=0, k,~1 Wm~'K™!is then® almost independent of
T. Below T, k, is found by extrapolating p and using
correction factors from Geilikman, Dushenat, and
Chechetkin.’> However, as shown previously® this pro-
cedure gives an upper limit only, since we have not taken
inelastic electron scattering into account,!'! and we
showed® that the exclusion of such an effect leads to
significant errors. Depending on the model used, our cal-
culations showed that x, may be up to 40% lower at T,
than given by the standard model. We also predicted
that 1:2:4 samples with a very low p, may show a small
but detectable anomaly in k, near 30 K, whose existence
might be used as a tool to distinguish between different
theories for k in HTS’s. However, Jiang and Carbotte®
recently found a very similar anomaly in «, arising from
anisotropic scattering in layered materials, and if such an
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anomaly is found it might thus be difficult to identify the
mechanism responsible.

In principle we should also take into account supercon-
ducting fluctuations near T, but this is a small effect:
Cohn et al.'* find its magnitude to be < 1% of the total «
even for single crystal 1:2:3 with «, twice as large as that
of our sample. Finally, we note that the BCS-based mod-
el used here is not generally accepted, and that other
models exist. Geilikman, Dushenat, and Chechetkin??
predict that pair condensation decreases «,, but both ex-
perimental® and theoretical’ studies exist which claim
that the peak observed in k below T, is due, at least in
part, to an increase in k.

V. DISCUSSION

A. Fitting procedure and general results

We have fitted Eqgs. (1) and (2) to our data for «,, found
by subtracting «, from the total x. Several models were
used: We have used both models for «, discussed above,
all three models for 7, discussed in Sec. IV A (with a=1,
2.2, 5, and 10), and values for T, and the gap-scaling pa-
rameter'? y in the ranges 75-79 K and 0.5-1.74, re-
spectively. We have also used © as an adjustable pa-
rameter because, first, the effective © found from the fit
to p(T) was much lower than the average value 525 K
found from'” ¢, between 100 and 300 K, prompting us to
look for similar effects in Kp» and second, the standard
model for W,, could not describe k, vs T well with
©p =525 K. The latter effect was traced to the constant
low-T' W,, given by this model (see Table I and Fig. 3),
and to improve the fit we tried a lower ©p,.

Since the number of data points per unit temperature
varies with T (Fig. 1 of Ref. 3), a fit to all points overesti-
mates the importance of the high-T data and forces the
fitted function to agree with these at the expense of the
data near and below T,. We have thus fitted Eq. (1) to a
data set where most of the high-T data have been deleted.
The fitting routine was based on a nonlinear gradient
search method, forcing all parameters to remain non-
negative. When the best fit was found with one parame-
ter equal to zero we deleted the corresponding term in (2)
to speed up the final fitting procedure. To ensure that
our results would be directly comparable with those of
Peacor et al.* for 1:2:3 we used in our program subrou-
tines for g(x,T/T,) written by Cohn of this group and
communicated by Uher at the University of Michigan.

The results from this procedure are shown in Table II
and in Fig. 5. Table II lists the values for ©,, and param-
eters A -D found to give the best fit to the data for each
model. (Data for the exponential 7, with =10 were al-
most identical to those for a=35.) The quality of the fit is
indicated by the relative rms differences Ak between our
data and the fitted functions. Since we used a reduced
data set, Ax does not relate directly to the data shown in
Ref. 3, but Ak=1 as given for the best fit corresponds to
a difference of 0.23 Wm™ 'K ™! rms between the experi-
mental data and the fitted function. We made several at-
tempts to include a sheet-defect term but always found
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the best fit for E=0. Also, the best fits were always
found with 7,=79 K and y=1, i.e., a BCS gap, and ex-
cept for one case all data in the table were found using
these parameters in the fit. Since we used ©) as a free
parameter, we also show for several of the models corre-
sponding results for ©, =525 K (as found from c,) for
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FIG. 5. Lattice thermal conductivity «, of
YBa,Cu O3 vs T. Dots are experimental data
and curves show fitted functions: Dashed
curve — best fit with f=T"*x? (6, =156 K),
solid curve — best fit with
f=Tx%xp(—©,/5T) Op=176 K). As a
comparison, dotted curve shows result with
same f as solid curve but with 6,=525 K.
Inset shows an alternative fit over a smaller
range in T (see text).

300

comparison.

For comparison we have also fitted single-crystal 1:2:3
data given by Peacor and co-workers*?® (sample 1, data
read from figures) to our model, i.e., excluding the anisot-
ropy correction, but including sheet-defect scattering.
Table II shows both the parameters given by Peacor

TABLE II. Parameters ©, and 4 -E in Egs. (1) and (2) for different models and data sets, as ob-
tained from the fitting procedure. Ac is the relative rms difference between data and the fitted function;
as discussed in the text, for 1:2:4 Ax=1 corresponds to about 0.23 Wm ' K~! rms. Except stated oth-
erwise, all data for 1:2:4 were found using 7, =79 K and y=1. Data given here differ slightly from the
preliminary results in Ref. 3, since different sets of data points were used.

e, (K) 4 B c D E Ax Model for f(x,T)
YBa,Cu,Og, our sample, with k, =TL,/p:

156 7.7x10* 0 33X10°  9.9%10°° 176 T’

187 7.7% 10* 0 3.4X10°  50X1072 1.06  T3x?

156 7.9%10* 0 3.0X10°  47X1072 135  Tix% 2T g=1
163 8.2X 10 0 27X10°  42X1072 109 Tix2 27 a=22
176 8.7X 10* 0 3IX10°  4.5X1072 102 Tix2 27 a=s
525¢ L7X10° 81X10~* 3.5%X10*° 4.1x107* 256  T'x?

525¢ 8.1X10° 3.3X107* 59 0.18 276  T%?

525¢ 3.8X10° 40X10~*  5.1X10° 0.23 175 Tix2 2’7 a=5
230° 1.1X10° 0 3.9% 10 0.12 Tix2e 27 g=5
145¢ 6.7X 10* 0 27X10*  2.3%1072 091 TixZ 27 4=5
YBa,Cu,05, our sample, with inelastic corrections in k,:

150 6.9 10* 0 25%102  1.0X107* 1.80 T2

193 7.4X10* 0 3.0X10°  5.6X1072 1.05 T2

—60,/aT

182 8.8 10° 0 28X10°  50%10°2 100 Tixz 27 g=s
525 41X10°  33X10°¢  4.6X102 0.25 173 T3x2 27T a=5
YBa,Cu;0,_5 (Sample 1 of Ref. 4):

38024 159 12X1073 57X10® 26X107* 0.54 T4x?

370 26 1LIX10™  42X10° 25X10~* 126 (1.15) T’

220 50 93X107%  49X10° 22X10°2 095 (1.77) T’x?

285 31 1.6X10~°  23x10° 83x1072 106 (1.0) Tx% 27 a=22

2Constant Op, not optimized for best fit.
®Curve shown in the inset of Fig. 5; fitted with Y =0.95.

“Model with a T-dependent carrier density as shown in Fig. 7.

9Data taken from Ref. 4 and rescaled with the corresponding prefactor in Eq. (1).
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et al.* and those obtained here. Excluding the anisotro-
py term does not significantly change the results for the
point-defect and phonon scattering, while the electron-
phonon term changes by about 30%.

From Table II we find several interesting results: (i)
For 1:2:4, the best fits are found with O, significantly
lower than 525 K; a similar, but smaller © reduction is
found for 1:2:3; (i) the best fits were found using
f=Tx%xp(—O,/5T), but with a variable O,
f=T3x? gives very similar results; (iii) with a variable
O) the best fits were always found without point-defect
scattering (B =0); (iv) taking inelastic scattering into ac-
count in k, improves the fit very little and does not
change the fitted parameters much, and (vi) with a vari-
able ©p the parameters obtained in different models are
surprisingly similar, with variations rarely larger than
*15% from the average values. These results are dis-
cussed in detail below. However, none of the best fits
reproduced the data well close to T, as shown in Fig. §.
That a global “best” fit deviates rather strongly from the
data close to T, is observed in many studies, and devia-
tions similar to those shown are found in other recent
works.*3* However, we found that very good fits could
be found over smaller ranges in T with the same model by
choosing different parameter values, as shown in the inset
in Fig. 5. Here, a lower x and a higher ©, than those
giving the global best fit were used, and Ax was large be-
cause of large high-T deviations (Table II). However, the
fitted function is in excellent agreement with the data
near and below T..

The fitted parameters are very stable with respect to
the choice of model, and different selections of data
points in the set gave very similar results. That the re-
sults for the two models for k, agree so well is surprising,
considering that the magnitudes of «, differ by up to 40%
in the sensitive range near T, and give rather different
dk, /dT s in this range. The large number of free param-
eters give shallow minima in Ak, particularly for the five-
parameter fit for 1:2:3, and it was possible to co-vary two

0.2

0.0 L™ L '
0 100 200 300
T (K)

FIG. 6. Phonon thermal resistivity W, vs T (full curve).
Lower three curves show results obtained by removing one
scattering mechanism at a time: 1—no electron scattering, 2—
no phonon scattering, 3—no boundary scattering.

or more parameters by fairly large amounts without a
large increase in the residual. For the three-parameter
fits for 1:2:4 at low O, however, the minima were well
defined. The uncertainties in the fitted 4 —E might be as
large as 10-50 % depending on parameter and the func-
tions used, but the repeatability was excellent and repeat-
ing a fit the same final parameters were obtained. In the
sections below, we discuss results for each parameter sep-
arately.

B. Phonon-phonon scattering

The relative importance of the different scattering
terms can be found from Fig. 6. Inspired by Fig. 3 of
Ref. 4 we show the total thermal resistivity W, plus the
results obtained when removing one scattering mecha-
nism at a time from the fitted function. Boundary
scattering clearly dominates «, up to 200 K, above which
phonon scattering becomes more important, while elec-
tron scattering has only a small effect except near 100 K,
where it is comparable with phonon scattering in impor-
tance. Different models for T give very similar results,
with the exception of the term f=T*x?, which always
gives the worst fit (Table II). With low values for ©), all
functions except T*x? give the same T ' dependence for
k, above the peak and the exponential Umklapp cutoff at
low T cannot be observed. However, with ©, =525 K as
originally used, the Umklapp cutoff starts above T, and
in this case the addition of an exponential term does give
a significant improvement (Table II). The high optimum
value for a(=>5) might indicate that Umklapp scattering
is important to very low T in the complicated lattice of
1:2:4, as recently suggested by de Wette and Kulkarni®
for 1:2:3.

The fact that the fitted values for O, (150-195 K) are
significantly lower than data from ¢, (Ref. 17) was dis-
cussed in Ref. 3, and we concluded that since most of the
heat is carried by acoustical phonons,"!!:3¢ the effective
O, for heat conduction should be lower than that ob-
tained from ¢, which includes high-energy optical modes.
This is partly verified by de Wette and Kulkarni,*> who
calculated ©p for the acoustical branches for 1:2:3 and
found values in the range 140-185 K, significantly lower
than those (330-460 K) found taking all modes into ac-
count. ©p, varies strongly with 7, since the actual pho-
non spectrum®’ of 1:2:4 is anything but Debye-like, and
we note again that we can obtain an excellent fit to our
data over limited ranges in T by an appropriate choice of
©Op (see inset in Fig. 5). For comparison, we show in
Table II results for © =525 K; the fitted A —D are still
physically acceptable, but the rms deviation from the ex-
perimental data is more than 50% higher than that ob-
tained with a low 6.

One should be very cautious trying to deduce physical
results from statistical fits with several independent pa-
rameters, and we must ask whether the present results
are significant. First-principles calculations of k, using
realistic models are possible for simple materials?’ but not
for such complicate structures as those for HTS’s.
Slack® gives a simple expression for W, in crystals with
a complicated lattice,
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W,,=A,7’nT(Ma,03)7", (3)

where M is an average atomic weight, a, is the cube root
of the atomic volume, n, is the number of atoms per unit
cell, 4, is a constant, and y the Grineisen parameter.
Here, y is usually approximated by ¥y =BVK /c,, where B
is the volume thermal expansivity, ¥V is the atomic
volume, and KX is the bulk modulus, while for O, we take
the high-T limit. The model takes only longitudinal
acoustic phonons into account, and for n, >3 calculated
values may differ by a factor of 5—8 from experimental
data even for cubic materials.*® For 1:2:4 at 300 K we
have*® B=35X107% K~! and** K=112 GPa, and ap-
proximating ¢, by ¢, we find y=1.43. From the fitted
value for D and Egs. (1)-(2) we find an “experimental”
value for W,, of approximately 2.7X107* TmK W™/,
while inserting the high-T limit!” ©,, =545 K into Eq. (3)
we find 3.4X10™* T. Alternatively, we should perhaps
use © =200 K for acoustic phonons at high 7, giving an
order-of-magnitude change in W,,, but we must then also
use the correct y for these phonons, which we have not
found in the literature. Considering the simplicity of the
theory, the fitted value for D is physically reasonable and
actually in surprisingly good agreement with theory.

C. Defect and boundary scattering

The main difference between 1:2:3 and 1:2:4 in terms of
the fitted parameters is the size of the defect-scattering
term. In 1:2:3, this term*’ dominates k, and determines
its magnitude at practically all 7. Such strong defect
scattering will also depress the slope d«k,/dT below that
expected when phonon-phonon scattering is present [see
Fig. 4(c)], as observed for dk, /dT in 1:2:3. For our 1:2:4
sample we always found a best fit for B =0, except when
using high, fixed values of ©, giving a low-quality fit. As
discussed before,® we believe that the stable oxygen level
in 1:2:4 gives a weaker point-defect scattering in sintered
1:2:4 than even in single-crystal 1:2:3, in agreement with
the fact'“* that k, decreases with increasing § in 1:2:3.
Since point-defect scattering interacts with electron or
phonon scattering to reduce strongly the magnitude of «,,
(Sec. IV A), the virtual absence of oxygen defects thus ex-
plains both why «, in our sintered 1:2:4 sample is larger
than in sintered 1:2:3 and, near T., even larger than the
in-plane k, for many single crystal 1:2:3 samples,"'* and
why dk, /dT is different in the two materials.

Because of the small grains, boundary scattering dom-
inates k, over a large range in 7. In Fig. 6 we see that
the importance of boundary scattering equals or exceeds
that of phonon-phonon scattering at 7 <200 K, and that
it is always more important than the electron-phonon
term. No large increase can thus occur in k, below T..
To check our model we have calculated an average grain
size L from the fitted value for 4 in Eq. (2). A compar-
ison with expressions given by Tewordt and

Wolkhausen? shows that
A=2m(41/3)" %X (Op /kg L ",

where a is an average lattice constant. Inserting a typical

value 4 =7X10* we find an effective grain diameter of 6
pm, in agreement with the experimental value (Sec. IT A).
Because of the small point-defect term, x should be very
high in single crystal 1:2:4 below T,. This should be im-
portant in technical applications where the high-T stabili-
ty of 1:2:4 would be an added bonus.

D. Phonon-electron scattering

Our results for C differ from those given by Peacor
et al. for 1:2:3, but the difference is mainly due to the
different models. Cohn et al.’® state that neglecting the
anisotropy term in (1) leads to values for C 40% lower
than when this is included, in good agreement with our
result. C is similar in magnitude in 1:2:4 (250-340) and
in single crystal 1:2:3 (230-490), and the difference in
k(T) is thus not due to a weaker electron-phonon interac-
tion in 1:2:4, as might be naively inferred from the data.
In theory, D should be independent of sample processing,
while C should vary with carrier density (or 8). In terms
of W,, the free-electron model predicts''

W, T/p=m*n2/3L, . @)

W,. /p should thus increase with the number n, of free
carriers per atom (i.e., with increasing carrier density n
or decreasing 8), but data’ for single-crystal and melt-
processed 1:2:3 tend to show the inverse behavior, with
W, /p increasing with increasing §. We might argue that
free-electron theory cannot describe 1:2:4 or 1:2:3, but
even in better models we expect p < n ~land Wpe «< pn, and
the deviations from the proportionality W, /p<n? are
thus difficult to explain. Possibly, the use of a better ap-
proximation than T, I=7T%x2 as used by Cohn et al.,
might give C values that agree better with theory. We
expected the high p of our sample (compared to single
crystal 1:2:3) and the higher carrier density*! in 1:2:4 to
give a higher W, for 1:2:4, but this is not found, prob-
ably because the free-electron model is too crude to allow
comparisons between materials. However, applying (4) to
our data gives n, =0.081 holes per atom or n=6X10%!
cm 3, in excellent agreement with n=0.27 (CuO,
unit) " '=5.4x10?! cm 3 found from band-structure cal-
culations.*! The fitted magnitude of D is thus quite
reasonable.

Hall-effect measurements show a strong T depen-
dence*? of the Hall coefficient Ry below 150 K in 1:2:4,
sometimes interpreted as an increased in n by a factor of
2-3 from T, to 150 K. This would imply a similar in-
crease in Wpe which, if true, should cause a more rapid
decrease in «, with T than predicted by (1) and a smaller
d Kp /dT above 150 K. Such an effect is, in fact, observed
(Fig. 5). To test this we added an ‘“‘adjustment factor”
F(T) to the electron-phonon term such that
Te_l=CFTxg(x, T/T,); F simulated n(T) as given by
R,(T) by taking F=1 for T>150 K, then decreasing
linearly from 1 to 0.2 between 150 and 70 K. As shown
in Fig. 7 and Table II this modification gave an improve-
ment in Ak by about 11% and, in fact, gave the best fit
observed to the data. Surprisingly, it thus seems that the
T dependence of n is real and has a measurable effect on
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FIG. 7. Same as Fig. 5, except that a model with a T-
dependent carrier density was used in the fit (see text for de-
tails).

k,. However, there are strong arguments against this in-
terpretation: (i) The carrier density (1-4)X10*2 cm™3
given*? by Ry is much larger than that found from
theory.*! Since there are several bands at Ej in 1:2:4
there is no simple relation between n, Ry (T), and dn /dT.
(ii) Even without this modification Ak is similar in magni-
tude to the experimental uncertainty, and, as for the
effect of inelastic scattering on k,, it is questionable
whether we can take the result at face value, and (iii), a
T-dependent n should also modify p, which is fitted very
accurately by a (constant-n) Bloch-Griineisen model. On
the other hand, anomalies in p are observed?! in this
range of T, there is recent optical®® evidence for a T-
dependent n in 1:2:3 and Bi 2:2:1:2, a combination of
hole-hole scattering and a linear increase in n with T
might give p < T, and if band-structure effects give a T-
dependent Ry, such effects might also modify W, (T).
Weighing the evidence, however, we prefer to view this
interesting result as a probable coincidence.

Near T, finally, fluctuation effects might give impor-
tant effects on the electron-phonon term since the forma-
tion of hole pairs would reduce the scattering rate and
thus decrease W,,. As shown by Fig. 5, the model gives
too low values for k, near T, and a fluctuation correction
would improve the fit. However, we have not pursued
this question for lack of theoretical models for the effect

of fluctuations on Kp-

E. Thermal conductivity under high pressure

Very recently, we have also measured* « as a function
of p for the same sample. Our measurements show that «
increases slowly with p above 150 K, but decreases below.
We estimated the p dependence of the three scattering
terms in «, from simple theories, finding that the bound-
ary scattering term should vary slowly with p and that
the phonon-phonon scattering term W,, should decrease
by about 6% per GPa (i.e., k, should increase). For the
electron-phonon term the situation is more complicated:
For a “normal-metal”-type model, C should decrease

4197

with increasing p, but if the rapid drop in p is due to an
increase in n with p due to charge transfer, C should in-
crease. dk,/dp was calculated from dp/dp through the
Wiedemann-Franz law, as before. These estimates turned
out to predict the p dependence of k very accurately in
the high-T range, where phonon and boundary scattering
dominate, and if we assumed a strong charge transfer
with p we could also explain qualitatively the negative
dk /dp found below 150 K.

VI. CONCLUSIONS

We have shown that x in a sample of dense, bulk
YBa,Cu,O; is surprisingly different from that found in
the very similar material YBa,Cu;0,_5. Analyzing the
data in a semiclassical model, we attribute this difference
mainly to the fact that oxygen vacancies are much less
common in 1:2:4 than in 1:2:3 because of the well-defined
oxygen stoichiometry of the former.

Fitting the data for k, to our model we obtain a very
good fit from 30 to 300 K, with rms differences between
data and the fitted function of 2-3 %, similar to the es-
timated maximum 7-dependent measurement errors.
The parameters obtained in the fit are very stable with
different choices of terms in the model and with different
selections of data points. Even more important, all pa-
rameter values obtained are in surprisingly good agree-
ment with the results of simple estimates: From the fitted
values, we calculate a theoretical grain size which is
within 20% of the observed value and a carrier density
within 10% of the band-structure value, and the
phonon-phonon thermal resistivity obtained from the fit
agrees with Slack’s theoretical model to within 20%.
Stating this in another way, the results show that we
could have predicted k and its T dependence to within
better than 20%, using this model and known parameters
such as n, ©p, v, grain size, etc. The model is also able
to predict* the correct p dependence of , and to explain
the change in sign of d«/dp near 150 K.

However, the difference between the data and the fitted
function shows a systematic trend with 7, and the fitted
function predicts a sharper anomaly at T, than seen ex-
perimentally. Originally we attributed this to the model,
and assumed that a better fit could only be obtained using
a more advanced model, by including the effect of super-
conducting fluctuations near T, or perhaps even using
models based on other types of excitations. However, the
fit in this region could be significantly improved by small
modifications of the fitting parameters (see inset in Fig.
5); in fact, an excellent fit could be obtained in this way
over any “small” range in T with AT=50-150 K. We
now believe that the problem lies on a more basic level:
The Debye lattice model used is not a good approxima-
tion for either 1:2:3 or 1:2:4, as evident from the real
problem spectrum®’ and from the strong T dependence of
©), given by data'’ for c,. We believe that an even better
agreement with theory would be obtained if we either
used the real phonon spectrum or allowed ©, to vary
with 7. A small fluctuation term might also be present
very close to T, and, as shown above, an improved fit
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could also be obtained by assuming that the carrier densi-
ty varied with T below 150 K, or by improving the treat-
ment of k, by including inelastic scattering. However, we
believe that the main source for the deviations observed is
the simplified treatment of the lattice properties of 1:2:4.
Our most important conclusion is thus that our data
for k as a function of T and p can be explained by semi-
classical theory, with no need for alternative models.%’
This may be due to the fact that «, in our sample is limit-
ed mainly by boundary and phonon scattering, for both
of which a good theory exists. A more severe test of the
theory would be measurements on a single crystal, in
which case electron-phonon scattering would be much
more important. Such a study would give interesting in-
formation on the carrier-phonon interaction in HTS’s,
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especially since the effects of point defects on «, should
be much smaller than in 1:2:3. Also, as shown in Ref. 3,
such a study might also help solve other basic questions
regarding transport in high transition temperature super-

conductors.
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