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Spectral signature of quantum spin diffusion in dimensions d = 1, 2, and 3
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The spectral densities of dynamical spin autocorrelation functions at in6nite temperature are
studied for the S = —XXZ model (with exchange couplings J = J„:—J, J,) on the linear chain, the
square lattice, and the simple cubic lattice. The low-frequency behavior of a given spectral density
is inferred from certain characteristic properties of its continued-fraction coefficients as determined
from computed frequency moments. The analysis yields estimates for the J,/J dependence of the
infrared-singularity exponent. In the d = 1 case, the exponent for spin Buctuations perpendicular
to the O(2) symmetry axis responds sensitively as the anisotropy parameter sweeps across the O(3)
symmetry point J / J = 1, while the exponent for the parallel iiuctuations shows little variation. In
the cases d = 2 and d = 3 the same observations are made for autocorrelation functions of aggregate
spins in chains and lattice planes, respectively.

I. INTRODUCTION

The phenomenological concept of diffusion of a con-
served xnagnetization component was introduced more
than four decades ago. It has been very useful for the
interpretation of experiments that probe the transport
of spin fluctuations at high temperature. However, a
genuinely microscopic theory of spin diffusion has re-
mained a challenge for theorists to this day. For classical
spin models, the most detailed results on spin diffusion
are being produced by simulation studies. But in spite
of considerable computational investments, no consensus
has emerged yet, for example, on the exact nature of
the long-time behavior of spin autocorrelation functions
at infinite temperature for the Heisenberg model. ' In
quantum spin systems, the characteristic signatures of
spin diffusion have for the most part eluded detection be-
yond ambiguity until recently, when new techniques for
the analysis of kequency moments ' or the correspond-
ing continued-fraction coeKcients ' were introduced.

Here we study T = oo autocorrelation functions of spin
operators for the S =

2 XXZ model

H = —) (J(S, S,. + S,"S,") + J,S;S'},
(i,j)

with nearest-neighbor coupling on a linear chain (d = I),
a square lattice (d = 2), or a simple cubic lattice (d = 3).
The z component S& of the total spin is conserved for ar-
bitrary values of J,/ J, but ST, only for the isotropic case
J,/J = 1 (Heisenberg model). The variation of the con-
tinuous parameter J,/ J switches one conservation law on
and off at the symmetry point while the other one stays

on all the way. Diffusive behavior of a given spin com-
ponent, for which the conservation law is a prerequisite,
manifests itself as a characteristic long-time tail, (x t
in the local spin autocorrelation function. This corre-
sponds to a characteristic infrared (i.e., low-frequency)
singularity in the spectral density.

The continued-fraction analysis of spectral densities as
previously developed and used in the context of the re-
cursion method offers some very sensitive instruments
for the determination of precisely that infrared singular-
ity.

II. METHOD

We consider a norxnalized spin autocorrelation function
at T = oo for a site on an infinite lattice,

/g p (t)
(So (t)So )

(S)t',SP) 'I '! 'I

and the corresponding spectral density

O""(~) = f dte' 'C""(t)

The correlation function can be expanded into a power
series of the form

where the expansion coeKcients are the &equency mo-
xnents of the spectral density,
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c""(z)= f dte *'c~~(t) =
z+

1
~PA

1

gal@z+ z+
In a typical application, the sequence of continued-
fraction coefficients A~&" displays patterns which reflect
characteristic properties of the spectral density (3). One
of these recognizable patterns is directly related to the ex-
ponent of the infrared singularity in C)""(ur), as we shall
see.

An important characteristic of a sequence of continued-
fraction coefficients is its growth rate. It is defined as the
power of k with which a given Ap sequence grows on
average (asymptotically):

The growth rate determines the decay law of the spectral
density (3) at high &equencies:is is

and can be expressed as expectation values of iterated
commutators involving the Hamiltonian Hx~z and the
spin operator So. The evaluation of the moments is

straightforward in principle but exceedingly tedious in
practice an ideal task for computers. ' '

The short-time expansion (4) is obviously not suited to
study a long-time phenomenon such as diffusion. How-

ever, the information contained in the first K frequency
moments (5) may be put to work by converting them into
the first K continued-fraction coefficients 6&" of the re-
laxation function

Here the singularity exponent o. can be determined from
the vertical displacement of the A2I, q from the hne A2y.
For A g 1, a singularity of growing strength in (9) still
causes an alternating pattern of growing amplitude in

A~, but the relation between exponent and displacement
is more complicated. Looking at our data for the XXZ
model, we observe that the characteristic alternating pat-
tern is most conspicuously present in the 6&" sequences
precisely in those cases where a diffusive infrared singu-
larity is expected to dominate the low-frequency behavior
of C""((u).

The known coefficients 6& of 4* ((d) for J,/J = 1
and J,/J = 0.3 are displayed vs k in the main plot of
Fig. 1 (circles connected by solid lines). Note the dif-
ferent growth rates and degrees of alternation. In order
to estimate the exponent value o,» that gives rise to
the observed amount of alternation in the data sequence
Az", . . . , AK", we determine a matching model sequence

Ai, . . . , b,~ obtained &om (10) by nuxnerically minimiz-

ing the mean-square deviation

K

) (gpss g )2

with respect to the undetermined parameters A, a, and
The lower cutoK k;„was found to be necessary

because the first few continued-fraction coefficients tend
to deviate significantly from the asymptotic behavior
described by the model coefficients AI, . We have set
k;„= 3 for all sequences analyzed here. Two opti-
mized model Ap sequences are displayed as dashed lines

in Fig. 1 along with the data sets to which they have
been fitted.

We know the exact moments Mz&" up to K = 14, 7, 6 in
d = 1, 2, 3 space dimensions, respectively. The growth

4""(~) (x e (8)

The available data for the XXZ model exhibit growth
rates in the range 1 & A & 2.

Our method of estimating the infrared-singularity ex-

ponent in C)""(u) proceeds as follows: We choose a model
spectral density with (i) a variable overall frequency scale
unit uo, (ii) a power-law in&ared singularity with variable

exponent n, and (iii) a high-&equency decay law of the

type (8) with variable growth rate A. The simplest func-

tion which meets these requirements and has the correct
normalization reads

27r (d ( Ca/

C'(~) = exp
A(doi'[2 (1+n)] ~o ( ~o
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The frequency moments of this spectral density are

,„rP(1+~+ 2k)]
M2I, ——~0"

I [-(I+ )]

Closed-form expressions for the corresponding continued-
fraction coefficients are only known for the special case
4=1.

i ———(do(2k —1+a), b, 2). = —(u()(2k). (11)2' ' 2'

k

FIG. 1. Continued-fraction coefficients Ei*, . . . , Ai4 (cir-
cles connected by solid lines) of the zx site-spin autocorrela-
tion function at T = oo for two cases of the XXZ chain. The
sequences for J,/J = 0.3 and 1.0 have growth rates A = 1.03
and A = 1.18, respectively. The model AI, sequences which

provide the best 6t as described in the text are shown as
dashed lines. The inset shows the E& plotted vs k for the
site spin (open circles) and the (diagonal) chain spin (solid
circles) of the S = — XXZ model at T = oo on the square
lattice. Here A = 1.54 is the growth rate of the site-spin data.
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rates A range between 1.0 and 1.3 for d = 1 and up to
2.0 for d = 2 and 3

Before the presentation of our results, let us brieHy
review the predictions of diffusion phenomenology. The
Green function of the d-dimensional diffusion equation
(with Dirichlet boundary conditions at infinity) is given
by

—7 /4DC

G(r, t) =
(4~Dt) "/2 '

where D is the diffusion constant. This function describes
the density of a difFusing (globally conserved) quantity
initially concentrated in a point at the origin. The den-
sity autocorrelation function of that quantity exhibits the
characteristic difFusive long-time tail: G(0, t) oc t
Integration of the d-dimensional Green function over one
spatial coordinate yields the (d —1)-dimensional Green
function. Physically, this describes the diffusive spread-
ing of a linelike distribution. A planelike initial distribu-
tion is obtained by integrating over two dimensions. The
spectral density of G(0, t) has infrared singularities of the
form ~ur~ ~, in~a~, and ~ur~

~ in d = 1, 2, 3, re-

t
spective y. Our method of analysis is sensitive mainl t'ny o
he strongest of these three singularities, ~a~ ~ . That

singularity is expected for site-spin autocorrelation func-
tions in d = 1 as well as for autocorrelation functions of
chainlike and lattice-plane spin aggregates in d = 2 and

3, respectively.
In more general terms, the idea behind our method of

analysis may be stated as follows: Associated with any
d-dimensional diffusion process on a d-dimensional lat-
tice is a one-dixnensional diffusion process on the same
lattice, described in terms of aggregate dynaxnical vari-
ables. Therefore, the alternating pattern in the 6""

~ ~
Ie

data, wLch cs a direct and sensitive indicator of one-
dimensional diffusion processes, is at the same time an
indirect but equally sensitive indicator of d-dimensional
diffusion processes for d ) 1.

III. RESULTS

The J,/J dependence of the infrared exponents n
and a„ for the autocorrelation functions of a site spin
on a lattice of dixnension d = 1, 2, 3 is displayed in Fig. 2.
Vfe see at one glance that our indicator detects fairly re-
liably where site-spin autocorrelation functions describe
one-dimensional diffusion, namely, for the d = 1 lattice
only. The exponent o, varies strongly with J,/J as
expected and assumes a minimuxn value at the symme-
try point J,/J = 1, consistent with d = 1 spin diffusion.
Thhe exponent o.„,by contrast, stays near that value over
the entire anisotropy range shown, thus reQecting sus-
tained diffusive behavior. ' The broad nature of the
minimum in o, is attributable to the fact that the true
long-time behavior is only nebulously encoded in the first
few continued-&action coeKcients.

The data for the site-spin exponents n and o;„ in
lattice dimensions d = 2, 3 lie significantly above the d =
1 data. In d = 2, site-spin diffusion is characterized by
a logarithmic divergence in the spectral density. That
weak divergence causes a shallow minixnum in a atzx

= 1 and a sustained negative n„of much smaller
magnitude than in d = 1. The characteristic
cusp singularity of d = 3 site-spin diffusion is unlikel

be detectable by our analysis because of terms in the
u icy

spectral density that are regular at u = 0. Our data
for o, an~and a„,which are non-negative except near the
margins, indeed do not bear any signature of the diffusive
cusp singularity.

The exponents a and a„ for the d = 1 case were
previously analyzed by a somewhat different x.ethod,
which does not take fully into account the deviations of
the growth rate &om unity. That gave rise to significant
systematic errors in the resulting exponent values. They
have been much reduced in the results of the present
method.

Figures 3 and 4 summarize our numerical evidence for
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FIG. 2. J,iJ dependence of the infrared exponents n

(solid lines) and o. () „(dashed lines) for the site-spin spectral
densities at T = oo of the S = — XXZ model in lattice
dimensions d = 1, 2, 3.

FIG. 3. J I,IJ dependence of the infrared exponents cr

(solid lines) and n„(d shaed lines) for three types of spectral
densities at T = oo of the S = —XXZ model on the square2
lattice: site spin, chain spins in (1 0) direction (row), and
(1 1) direction (diagonal).
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FIG. 4. J,/J dependence of the infrared exponents o. ,
(solid lines) and n„(d ashed lines) for three types of spectral
densities at T = oo of the S = — XXZ model on the simple
cubic lattice: site spin, chain spin in (1 0 0) direction (row),
and (1 0 0) plane spin.

quantum spin diffusion in lattice dimensions d = 2, 3.
Consider first the square lattice (Fig. 3). The two upper-
most curves, which we have already discussed in the con-
text of Fig. 2, reflect the weak logarithmic divergence in
4""(u) associated with the taboo-dimensionat site-spin dif-
fusion. The two pairs of curves underneath bear the sig-
nature of the much stronger u ~z divergence in 4""(~)
associated with the one-dimensional diffusion of chainlike
spin aggregates consisting of entire rows or diagonals of
spins on the lattice. The exponent o. now has a much
deeper minimum at J,/J = 1, and a„stays strongly
negative over the entire parameter range.

The difference between the results for the two types
of chain spins in Fig. 3 is attributable to the fact that
the 6&" used in our analysis to gain information on the
isotropic long-time dynamics are strongly influenced by
the anisotropic short-time dynamics. The deviations be-
tween the two sets of curves are non-negligible but suffi-

ciently small to make our approach meaningful.

The different strengths of in&ared divergence in the
site-spin and chain-spin spectral densities at J,/J = 1
are already detectable in the corresponding continued-
fraction coeKcients 4&* as displayed in the inset to Fig. 1

by their different amplitudes of even-odd alternation.
On the simple cubic lattice (Fig. 4), we investigate

one-, two-, and three-dimensional diffusion processes.
The two curves at the top represent the infrared expo-
nents for the site-spin spectral densities, which are, as
already stated in the context of Fig. 2, largely insensi-
tive to the ~ w / cusp singularity associated with three-
dimensional spin diffusion. The two curves in the middle
of Fig. 4 resemble those at the top of Fig. 3 insofar as
both sets reflect the weak divergence of boo-dimensional
spin diffusion, chain-spin diffusion on the cubic lattice
and site-spin diffusion on the square lattice, respectively.
Likewise, the two curves at the bottom of Fig. 4, which
describe the in&ared exponents of lattice-plane spin spec-
tral densities for the d = 3 lattice, exhibit the same char-
acteristic signature of one-dimensional spin diffusion as
did the exponents of chain-spin spectral densities for the
d = 2 lattice (Fig. 3) and the site-spin spectral densities
for the d = 1 lattice (Fig. 2).

In conclusion, our method of analysis makes it possi-
ble to identify quantum spin diffusion processes in lattice
dimensions d = 1, 2, 3 and to discriminate between dif-
fusion processes of different dimensionality on a given

(d ) 2) lattice.
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